Collimation Review – 30/05/2013

Collimator impedance

N. Mounet, E. Métral, B. Salvant R. Bruce, S. Redaelli, B. Salvachua, G. Valentino

Acknowledgements: G. Arduini, A. Bertarelli, X. Buffat, K. Li, T. Pieloni, G. Rumolo, S. White, M. Zobov, collimation team, LHC operation, BI.

N. Mounet et al - Impedance - Collimation review 30/05/2013

Collimator impedance

- Review of collimator impedance & single-beam limits in 2012
- Post-LS1 resistive-wall impedance for several collimator scenarios and impact on beam stability
- Possible improvements with molybdenum coating
- Resistive-wall contribution of the dispersion suppressor collimators
- Impact of TCTP mode at 100 MHz
- Conclusions

Introduction: contribution of various collimator families to total "2012 - 4TeV" impedance (1/2)

 Real part of the impedance: relative contribution of collimator families to total impedance model (vertical dipolar, 4 TeV, 2012 settings):

N. Mounet et al - Impedance - Collimation review 30/05/2013

Introduction: contribution of various collimator families to total "2012 - 4TeV" impedance (2/2)

 Imag. part of the impedance: relative contribution of collimator families to total impedance model (vertical dipolar, 4 TeV, 2012 settings):

Note: this is similar in horizontal.

N. Mounet et al - Impedance - Collimation review 30/05/2013

Evaluation of the LHC impedance model w.r.t beam-based measurements

• Tune shifts measurements when moving collimator families at 4TeV ($Q' \sim 1-5$) \rightarrow compare tune slope w.r.t. intensity between simulations & measurements:

Evolution of the discrepancy between model & measurements since 2010

 \rightarrow No significant evolution of the discrepancy, i.e carbon materials conductivity seems to have remained unchanged,

→ studies ongoing on geometric impedance (M. Zobov & O. Frasciello, INFN).

Single beam stability limit in 2012

Single-beam and flat top instabilities observed this year (not the problematic end-of-squeeze ones – cf. E. Métral & T. Pieloni's talks)

Note: beam and machine parameters are sometimes slightly different between these measurements.

5

Post-LS1 impedance scenarios

4 cases studied:

- "nominal": most critical at high frequency (>1MHz): +60 % impedance.
- "tight settings in sigma": tighter than 4TeV 2012 settings at high frequency (>1MHz): +60 % impedance.
- "tight settings in mm": closer to 4TeV 2012 settings at high frequency (>1MHz): +40 % impedance.
- "relaxed": most relaxed collimators settings, close to 2011 settings at high frequency (>1MHz): -15 % impedance.

Post-LS1 impedance scenarios

Ratio of the post-LS1 impedances w.r.t. 2012 impedance:

N. Mounet et al - Impedance - Collimation review 30/05/2013

Post-LS1 impedance scenarios: intensity limit vs. emittance

Assuming linear intensity dependence of instability growth rate:

Ways to achieve single-beam stability

- > Use a classical 25 ns beam \rightarrow OK even with nominal settings.
- ➤ Use relaxed settings until head-on collision \rightarrow then all beams except 50 ns BCMS should be stable.
- Use the "old" (negative) octupole polarity with high Q' (>15). Has not been tested but can potentially improve the situation.
- Use additional octupoles present in the machine (see. R. Tomas et al, Evian 2012).
- Decrease the impedance ?

Possible improvement with Molybdenum coating

• Idea: coat all TCS in IR7 by molybdenum on top of the CFC jaw (50µm, $\rho_{CFC} = 5 \mu\Omega.m$, $\rho_{Mo} = 5.35 \mu\Omega.cm - cf$. A. Bertarelli et al).

N. Mounet et al - Impedance - Collimation review 30/05/2013

Possible improvement with Molybdenum coating

Ratio on total impedances (nominal settings):

N. Mounet et al - Impedance - Collimation review 30/05/2013

Impact of the dispersion suppresor collimators

- 2 TCLD in IR7 (one in IR2 but open for proton run).
- Half-gap can be small (~mm) but tungsten material & beta functions not too high
 - \rightarrow comparable to some of the current TCLA or TCT,
 - → small resistive-wall contribution.
- Geometric impedance to be evaluated with design.

Impact of newly found resonant mode on TCTP

- From CST time domain simulations: strong trapped mode in the transverse impedance of the new (post-LS1) TCTP tertiary collimators (geometry also used for post-LS1 TCSG in IR6)
- Can be considered as a additional resonator impedance.
- In the most pessimistic case, taking into account post-LS1 half-gaps and beta functions (cf. R. Bruce), mode corresponds to a resonator with:
 - Shunt impedance ~20 MOhm/m,
 - Frequency ~100 MHz,
 - > Quality factor ~18.
- There are also a few harmonics (weaker).
- What is the impact fo this mode on the beam dynamics ?

Impact of TCTP mode

 Taking into account the mode harmonics, we get in the most pessimistic TCT scenario (8 sigmas) with nominal (6.5 TeV) settings

⇒ Mode does not have any significant impact (according to both HEADTAIL and DELPHI codes), with damper on. Even less impact with damper off.

N. Mounet et al - Impedance - Collimation review 30/05/2013

Impact of TCTP mode

 Impact becomes larger with generally more relaxed settings (here tight settings), even with realisitic TCT settings.

 \rightarrow if we are marginally stable, we might want to worry...

N. Mounet et al - Impedance - Collimation review 30/05/2013

Conclusions

- Collimator impedance is a critical factor for beam stability.
- Investigated experimentally through tune shifts measurements, which are around a factor 2 above predictions from the impedance model. Discrepancy has remained constant since 2010 and is under study.
- Collimator and beam scenarios for post-LS1 operation can lead to single-beam instabilities. Several strategies are currently under study to tackle this.
- Coating the TCS in IR7 with a metallic layer of Mo could significantly reduce the impedance.
- The new dispersion suppressor collimator should have very little impact (depending on the design).
- The TCTP resonant mode exhibited recently can have a marginal impact on beam stability, depending on the settings.
- NOTE: the (problematic) end-of-squeeze instabilities observed in 2012 are not yet understood, in particular the role of impedance is not clear yet. We might have much tighter constraints on the impedance !