Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

<u>R. Hannaske^{1,2}</u>, Z. Elekes¹, R. Beyer¹, A.R. Junghans¹, D. Bemmerer¹, E. Birgersson¹, A. Ferrari¹, E. Grosse^{1,2}, M. Kempe^{1,2}, T. Kögler^{1,2}, M. Marta¹, R. Massarczyk^{1,2}, A. Matic¹, G. Schramm^{1,2}, R. Schwengner¹, and A. Wagner¹

 ¹ Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
 ² Technische Universität Dresden, 01062 Dresden, Germany

Supported by the European Commission in the projects ERINDA (FP7-269499) and EFNUDAT (FP6-036434), and by the German Federal Ministry for Education and Science (TRAKULA project, 02NUK13A).

Neutron total cross section

- fundamental data set for the evaluation of nuclear data libraries
- large sensitivity on optical model parameters in the fast neutrons energy range
- important for innovative nuclear applications
- ¹⁹⁷Au: on OECD NEA Nuclear Data High Priority Request list, energy range 5 – 200 keV (¹⁹⁷Au(n,γ) is activation standard in dosimetric applications)
- data with targeted uncertainty < 5 %: impact on future evaluations
- measurement from 200 keV to 2.5 MeV: consistency check
- ^{nat}Ta: structural material in many nuclear and high-temperature applications, component in Reduced Activation Ferritic / Martensitic steels
- recent evaluation recommends careful measurement from several tens of keV to several MeV with accuracy goal of ≈ 1 %

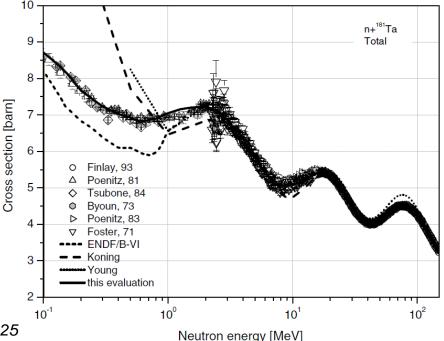
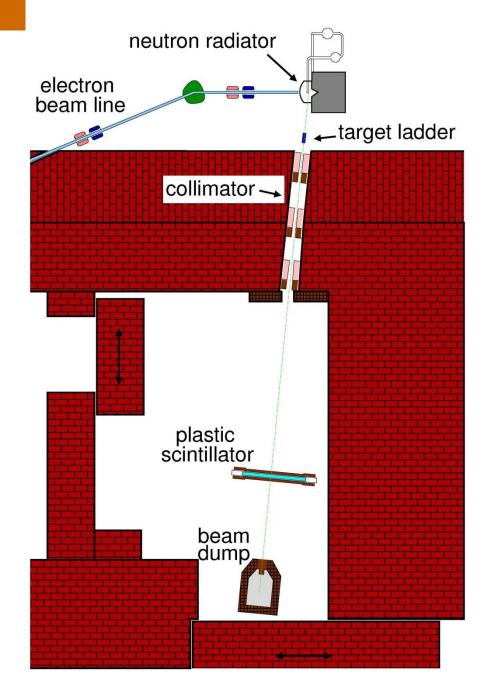


figure from Pereslavtsev and Fischer, NIM B 248 (2006) 225

Roland Hannaske | Institute of Radiation Physics | www.hzdr.de



nELBE at HZDR

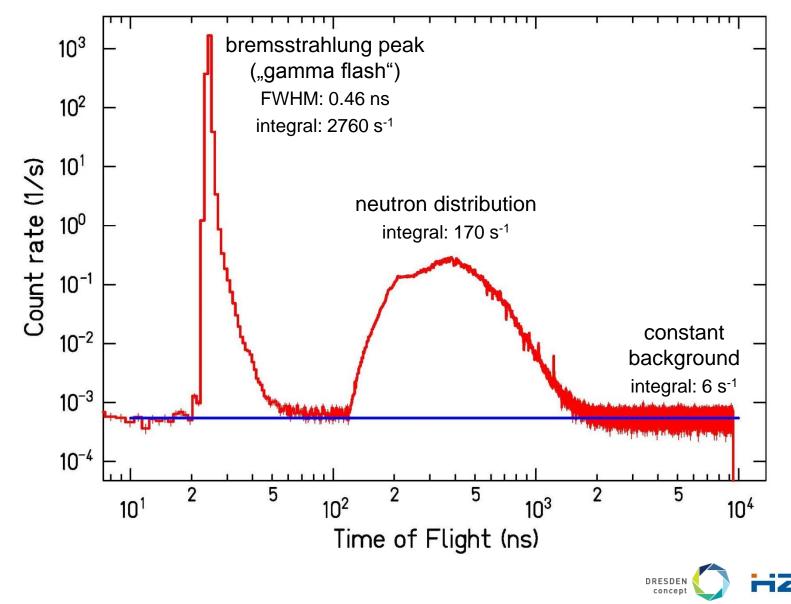
- world's only neutron time-of-flight facility driven by superconducting electron acc.
- compact photoneutron source (liquid lead circuit)
- experiments:
 - inelastic scattering (talk R. Schwengner)
 - fission (at new facility, talk T. Kögler)
 - transmission

electron bunch length	5 ps
repetition rate	101.6 kHz (cw)
flight path	7.175 m
neutron energy range	10 keV to 10 MeV
neutron source strength	10 ¹¹ s ⁻¹

reference ELBE & nELBE: Gabriel et al., NIM B 161 (2000) 1143 Altstadt et al., Ann. Nucl. Ene. 34 (2007) 36 Klug et al., NIM A 577 (2007) 641 Beyer et al., NIM A 575 (2007) 449 Beyer et al., NIM A 723 (2013) 151

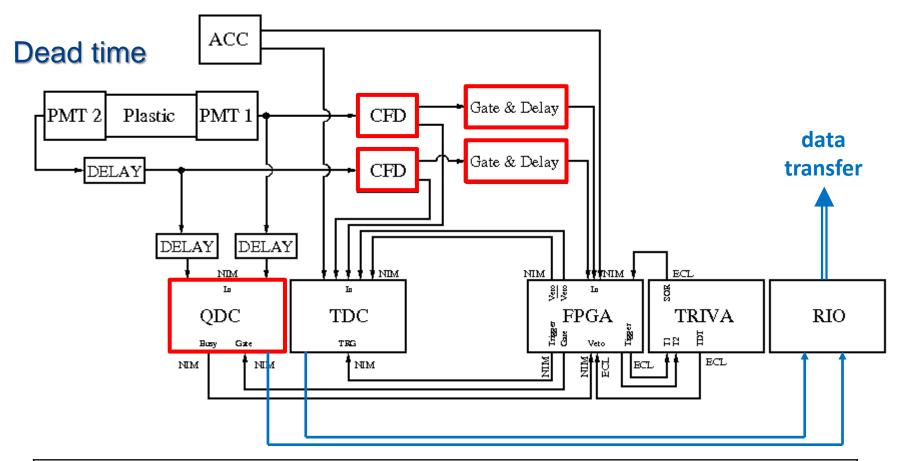
Transmission experiment

$$T = \frac{R_{in}}{R_{out}} = \exp(-nl\sigma_{tot})$$


- target samples (Ø 2.5 2.6 cm):
 - ^{nat}Ta (210 g, *l* = 2.6 cm),
 ¹⁹⁷Au (164 g, *l* =1.6 cm),
 PbSb4,
 empty
 - transmission $T \approx 0.3 0.6$
 - each with PbSb4 absorber (l = 3 cm)
 - periodically changed (300 900 s)
- neutron time-of-flight detector: fast plastic scintillator with low threshold
- relative measurement: efficiency / neutron flux not needed
- "effective" cross section from transmission averaged over energy resolution

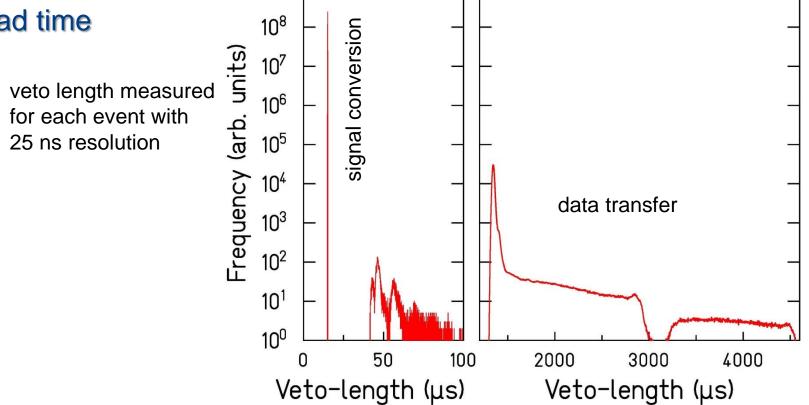
ERINDA Workshop, Geneva, 01.-03.10.2013 slide 4

Transmission experiment


dead-time corrected count rate with ¹⁹⁷Au sample (red) and fitted background (blue)

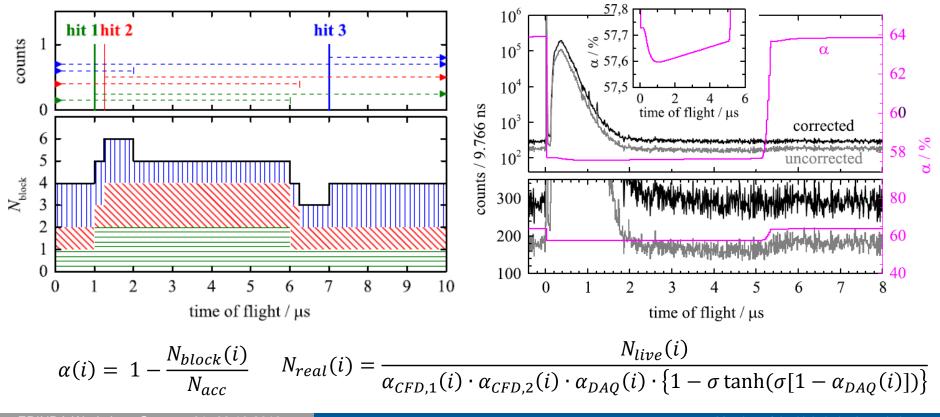
Data analysis

- subtraction of constant random background
 - ➔ dominated by beam-off background
 - ➔ reduced by using position information
 - → only very small dependence on fitting time interval
 - → contributes with 0.2 % to the systematic uncertainty of the cross section
- inscattering of neutrons
 - → negligible (minimized by geometry of setup)
- resonant self shielding
 - → negligible above 100 keV (overlapping resonances)
- correction for a time-of-flight dependent dead time
- neutron beam intensity fluctuations



(veto) length	module	purpose frequency	
30 – 60 ns	Gate & Delay	trigger generation	coincidence PMT 1 and 2
2.7 µs	CFD	afterpulse suppression	PMT signal (up to 2x10 ⁴ s ⁻¹)
15 µs	QDC	signal conversion	trigger (up to 10 ⁴ s ⁻¹)
0.8 – 5 ms		data transfer	after 31 triggers

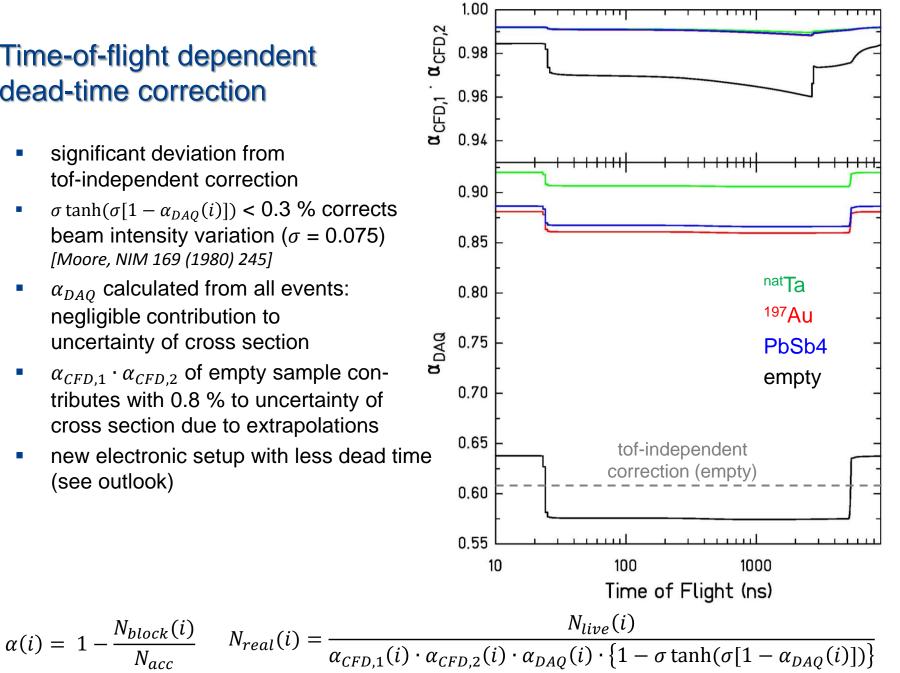
Dead time


(veto) length	module	purpose	frequency
30 – 60 ns	Gate & Delay	trigger generation coincidence PMT 1 and	
2.7 µs	CFD	afterpulse suppression	PMT signal (up to 2x10 ⁴ s ⁻¹)
15 µs	QDC	signal conversion	trigger (up to 10 ⁴ s ⁻¹)
0.8 – 5 ms		data transfer	after 31 triggers

Time-of-flight dependent dead-time correction

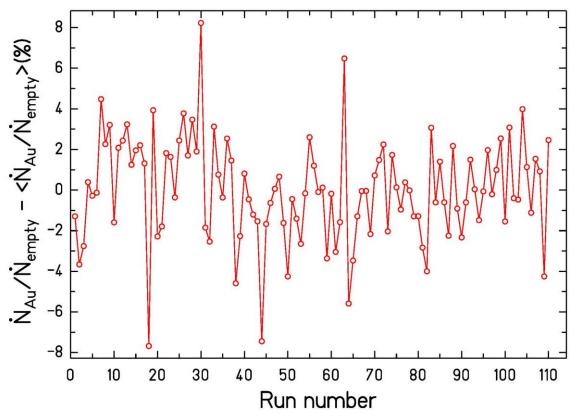
figures from Beyer et al., NIM A 723 (2013) 151

- veto start and duration measured
- How often (N_{block}) a time-of-flight channel (i) was blocked relative to all accelerator pulses (N_{acc})?
- truly happened events (N_{real}) as function of number of registered events (N_{live}) , α and variation of beam intensity (σ)



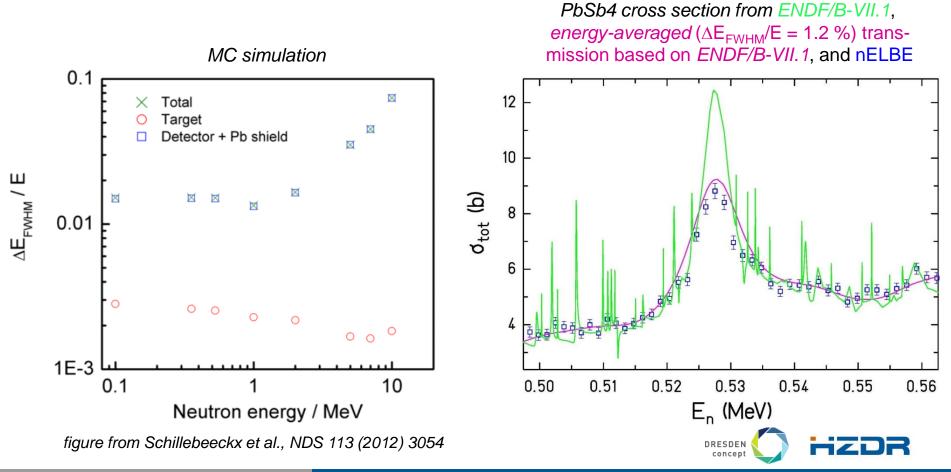
ERINDA Workshop, Geneva, 01.-03.10.2013 slide 9

Member of the Helmholtz Association Roland Hannaske | Institute of Radiation Physics | www.hzdr.de


Time-of-flight dependent dead-time correction

- significant deviation from tof-independent correction
- $\sigma \tanh(\sigma[1 \alpha_{DAO}(i)]) < 0.3$ % corrects beam intensity variation ($\sigma = 0.075$) [Moore, NIM 169 (1980) 245]
- α_{DAQ} calculated from all events: negligible contribution to uncertainty of cross section
- $\alpha_{CFD,1} \cdot \alpha_{CFD,2}$ of empty sample contributes with 0.8 % to uncertainty of cross section due to extrapolations
- new electronic setup with less dead time (see outlook)

Neutron beam intensity fluctuations


- transmission measurements need stable beam
- periodic target changes (300 900 s)
- fluctuations of count rate ratios have rel. standard deviation of 2.6 %

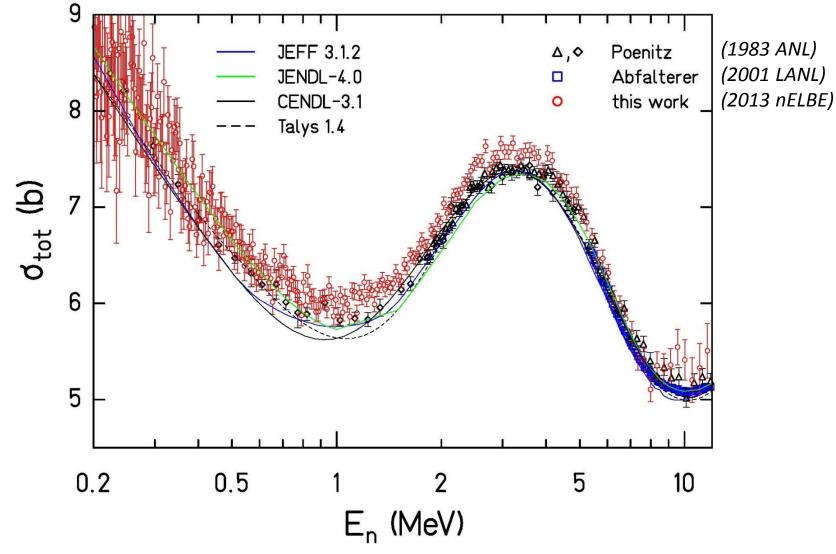
 different accumulation modes (all runs, average of groups of 5 runs): cross sections agree to < 0.5 %

Energy resolution - simulation and measurement

- minor contribution due to geom. extension of neutron-producing target (0.2 0.3 %)
- major contributions from the detectors due to geom. extension, time resolution and scattering in the detector shielding (lead)

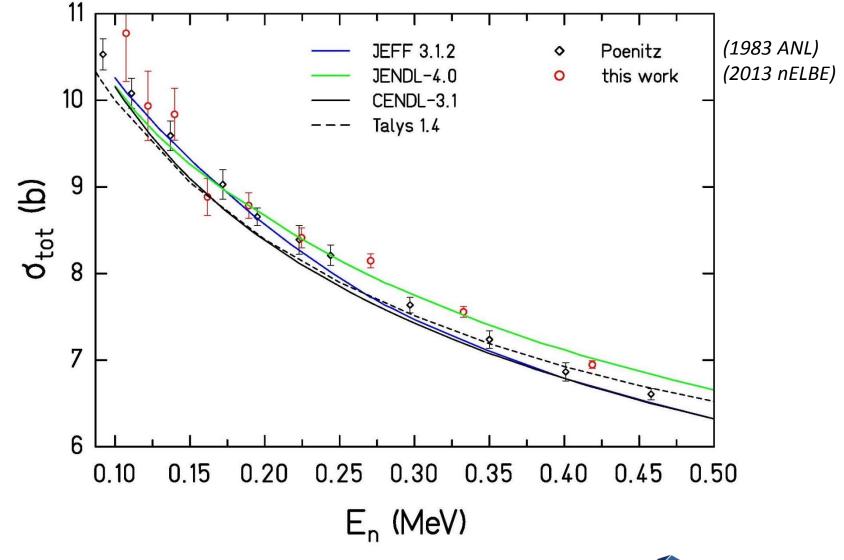
ERINDA Workshop, Geneva, 01.-03.10.2013 slide 12

Member of the Helmholtz Association Roland Hannaske | Institute of Radiation Physics | www.hzdr.de

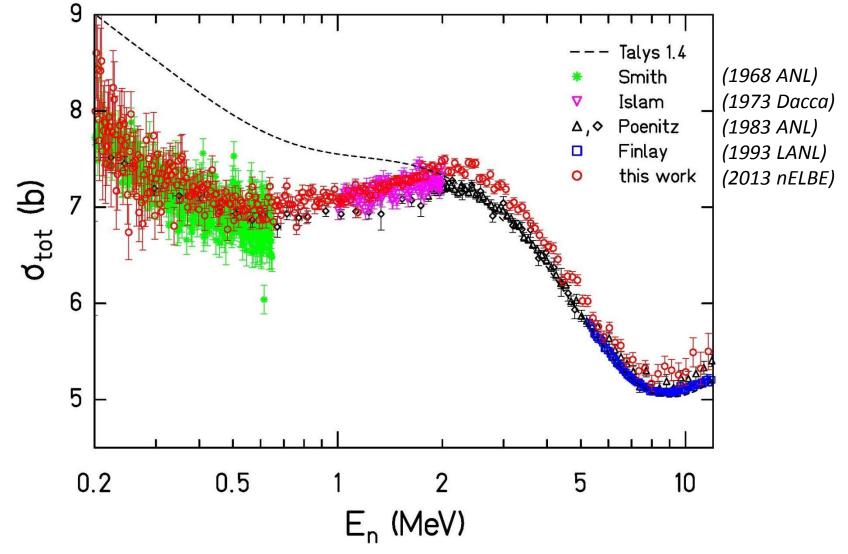

Experimental uncertainties of neutron total cross section

Statistical uncerta	inties				
E _n (MeV)	0.2	1.	.0	5.0	10.0
Та	6 % (1.0 %)*	0.9 %		0.9 %	2.6 %
Au	8 % (1.4 %)*	1.5 %		1.2 %	3.8 %
Energy resolution	(source + detector)				
$\Delta E/E$ (FWHM)	1.4 %	1.4 %		3.5 %	7.4 %
Bin width (keV)	1.36 (35)*	15.1		168	465
Systematic uncert	ainties	•			
Random background subtraction			0.2 %		
Transmission normalization			0.5 %		
Areal density of the target sample			0.6 %		
Dead-time correction factor			0.8 %		
Total systematic uncertainty			1.1 %		

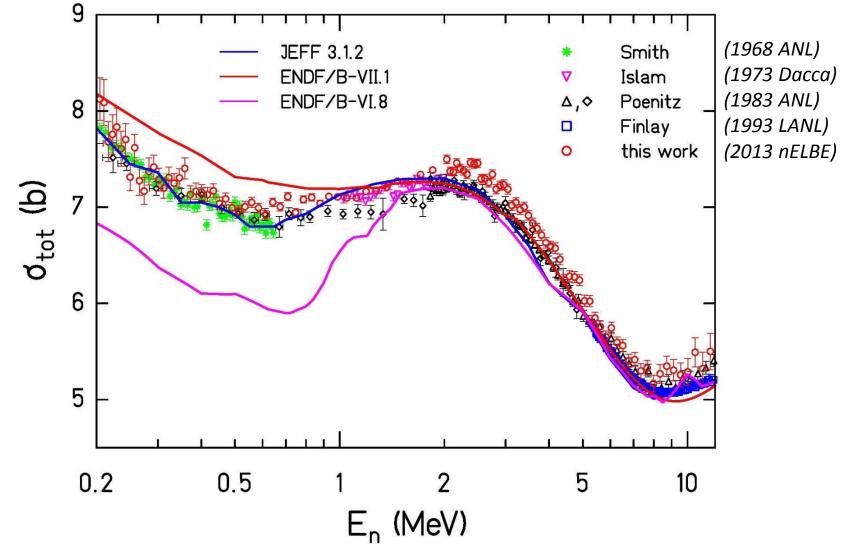
* rebinned data



Results ¹⁹⁷Au



Results ¹⁹⁷Au: from rebinned nELBE data between 100 and 500 keV

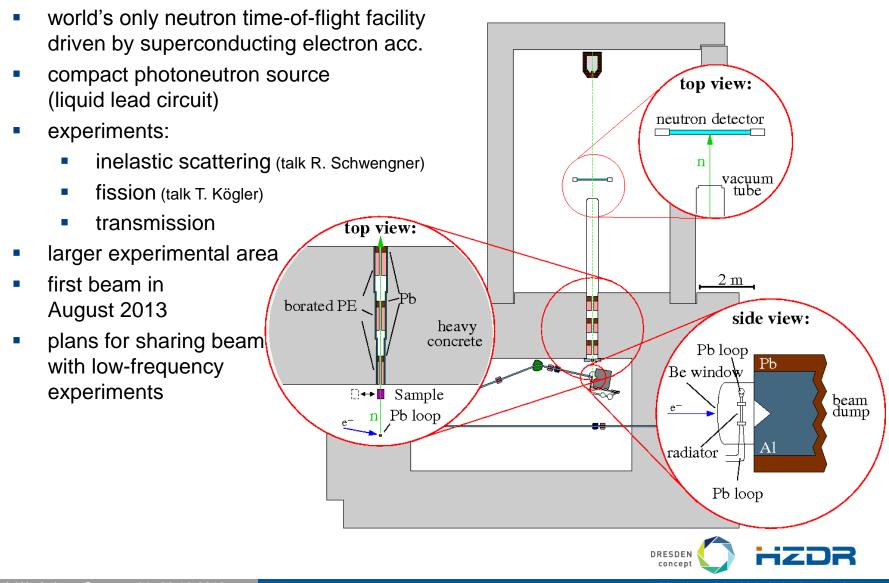

Results natTa

ERINDA Workshop, Geneva, 01.-03.10.2013 slide 16

Results natTa: nELBE, Smith and Islam data rebinned below 2 MeV

Summary

- neutron total cross sections of ¹⁹⁷Au and ^{nat}Ta have been measured at nELBE
 - energy range from 0.1 10 MeV
 - statistical uncertainty of up to 2 %
 - total systematic uncertainty of 1 %
 - very different beam and background conditions than found at other facilities
- nELBE data systematically higher than most other experiments
 - ¹⁹⁷Au: ≈ 2 %
 - ^{nat}Ta: ≈ 3 %
- submitted to Eur. Phys. J. A


Outlook: new electronic setup

- inputs: two PMTs of one single plastic scintillator and the accelerator reference
- fast QDC (6 μs busy time instead of 15 μs) and high resolution TDC (25 ps)
- dedicated FPGA trigger and veto logic
- different acquisition modes possible:
 - keep correlation between QDC and TDC events, veto length = QDC busy & readout time & trigger width
 - 2. ignore QDC-TDC-correlation, veto length = readout time & trigger width
 - 3. measure during readout, veto length = trigger width
 - 4. continuous storage mode, no veto
- first tests at new nELBE facility with detector coincidence rate of 22000 s⁻¹

mode	events / readout	TDC words / readout	trigger rate in 1000 s ⁻¹	readout rate in s ⁻¹	data rate in kbit/s	t _{live} /t _{real}
1	31	580	8.5	277	7580	0.616
2	1024	19800	10.4	10	7860	0.738
3	1024	19800	13.5	13	10120	0.959
4		24100		19	14580	1

Outlook: new nELBE facility

Outlook: new nELBE facility

ERINDA Workshop, Geneva, 01.-03.10.2013 slide 21

Member of the Helmholtz Association Roland Hannaske | Institute of Radiation Physics | www.hzdr.de