

The n_TOF Collaboration, www.cern.ch/nTOF

Physics at the new CERN neutron beam line

Carlos GUERRERO on behalf of *The n_TOF Collaboration*

CERN, Geneva (Switzerland)

With figures from: E. Chiaveri, V. Vlachoudis, S. Girod, S. Barros, C. Lederer, C. Weiss, G. Smith, S. Pomp, ...

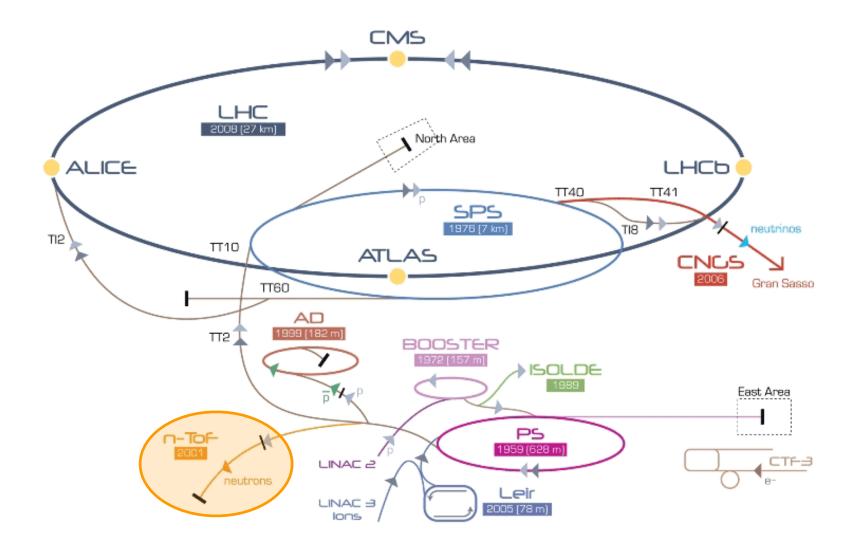
The n_TOF Collaboration

30 Research Institutions from Europe, Asia and USA. 16 PhD students

NUCLEAR ASTROPHYSICS: stellar nucleosynthesis

Neutron capture and (n,α) cross section of stable & unstable isotopes playing a role in the *s*- and *r*-processes (0.1-500 keV).

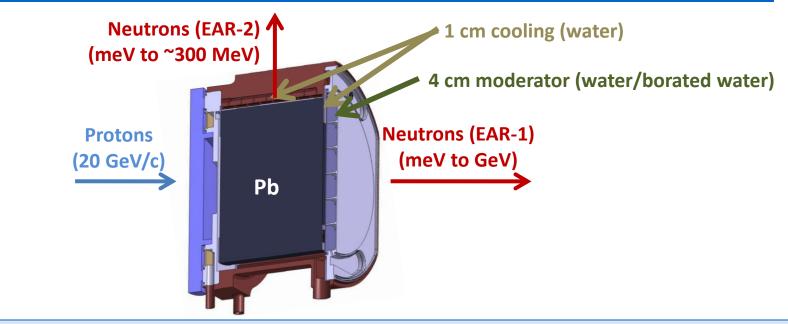
NUCLEAR TECHNOLOGIES: ADS, Gen-IV and Th/U fuel cycle


Neutron capture and fission cross sections of Actinides in the thermal (meV), epithermal (eV-keV) and fast (MeV) energy regions.

BASIC NUCLEAR PHYSICS: fission process, levels densities, γ-ray strength functions

Time-of-Flight measurements with dedicated detectors providing valuable information on basic nuclear physics quantities.


n_TOF: A spallation neutron source using the PS 20 GeV/c p beam


C. Guerrero, "Physics at the new CERN neutron beam line"

The n_TOF Facility at CERN

The n_TOF lead spallation target (from 2008 onwards)

Approx. 400 FAST (MeV-GeV) neutrons/proton (20 GeV/c) are generated @target

- EAR-1: Moderation in 5 cm of water+¹⁰B-water and 185 m horizontal flight path (meV to GeV)

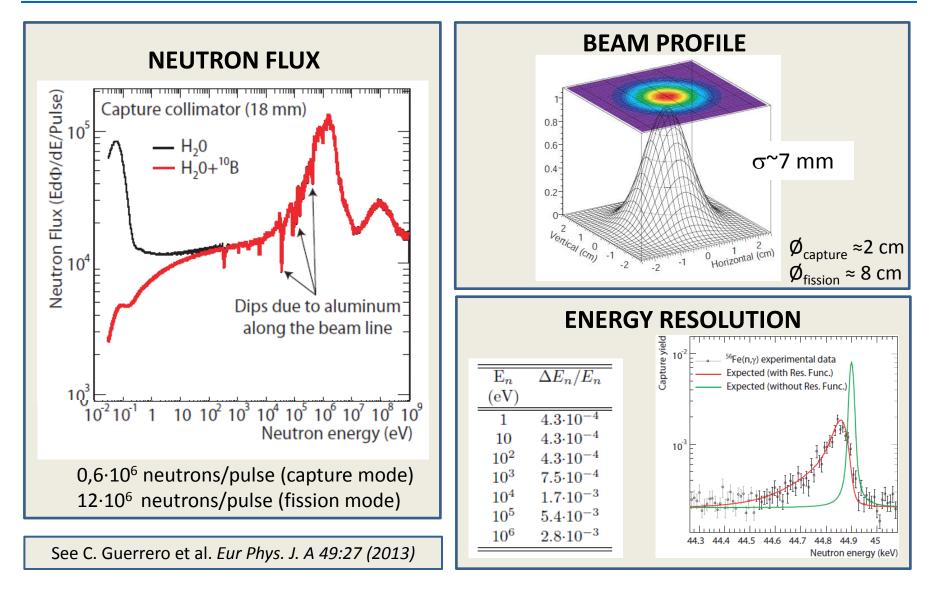
- EAR-2: Moderation in ~1 cm of water meV to GeV and 20 m vertical flight path (meV to ~300 MeV)

```
ToF (GeV) ~ 630 ns

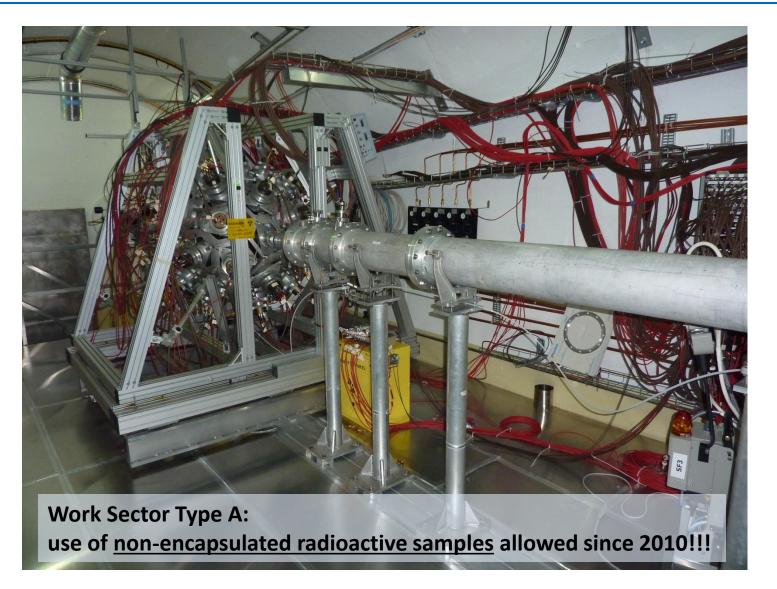
ToF (MeV) ~ 13 μs // 1.3 μs

ToF (keV) ~ 420 μs // 42 μs

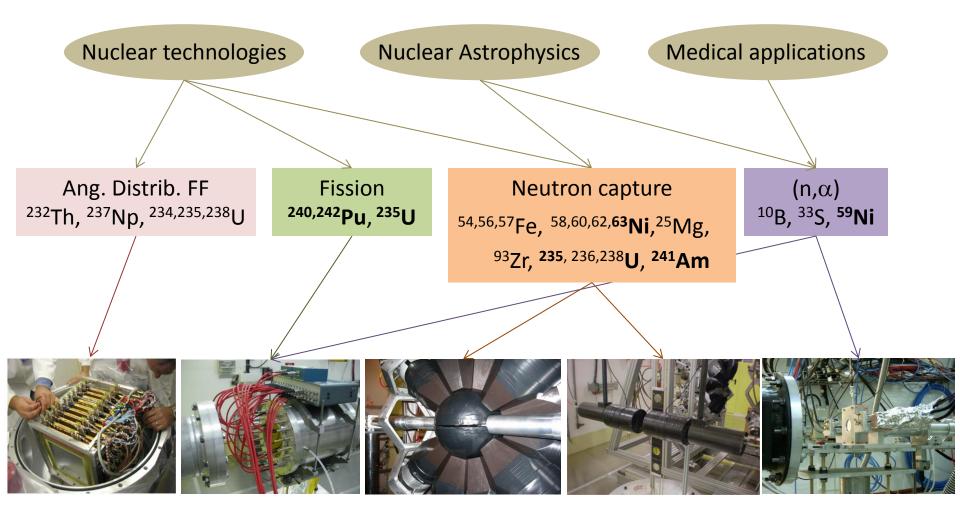
ToF (eV) ~ 13 ms // 1.3 ms


ToF (10 meV) ~ 133 ms // 13 ms
```


The existing n_TOF EAR1 @185 m


Main characteristics of the existing n_TOF EAR-1

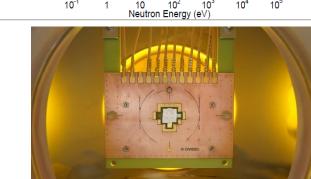
C. Guerrero, "Physics at the new CERN neutron beam line"



Main characteristics of the existing n_TOF EAR-1

n_TOF EAR1 Phase2 (2009-2012)

Recent results

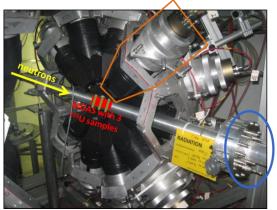

C. Lederer et al., "Neutron capture cross section of unstable ⁶³Ni: implications for stellar nucleosynthesis", Phys. Rev. Lett. 110 (2013) 022501

C. Weiss et al., "A new CVD diamond mosaic-detector for (n,α) cross-section measurements at the n_TOF experiment at CERN", Nucl. Instrum. and Meth. A (In Press)

C. Guerrero et al., "Simultaneous measurement of neutron-induced capture and fission reactions at CERN", Eur. Phys. J. A (2012) 48:29

See more on E. Mendoza and A. Tsinganis talks!

C. Guerrero, "Physics at the new CERN neutron beam line" Final ERINDA User Meeting and Scientific Workshop, October 1-3, 2013 (Geneva, Switzerland)


10

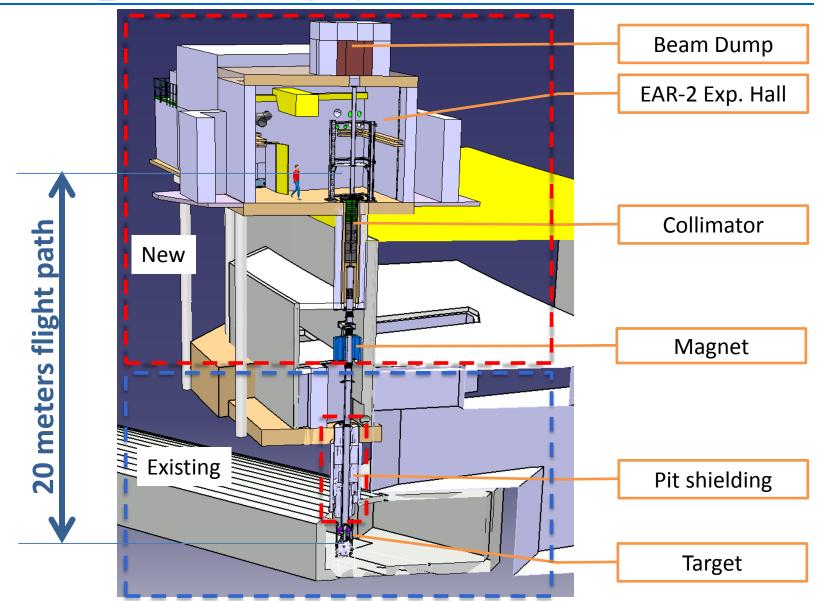
Capture Yield

10

104

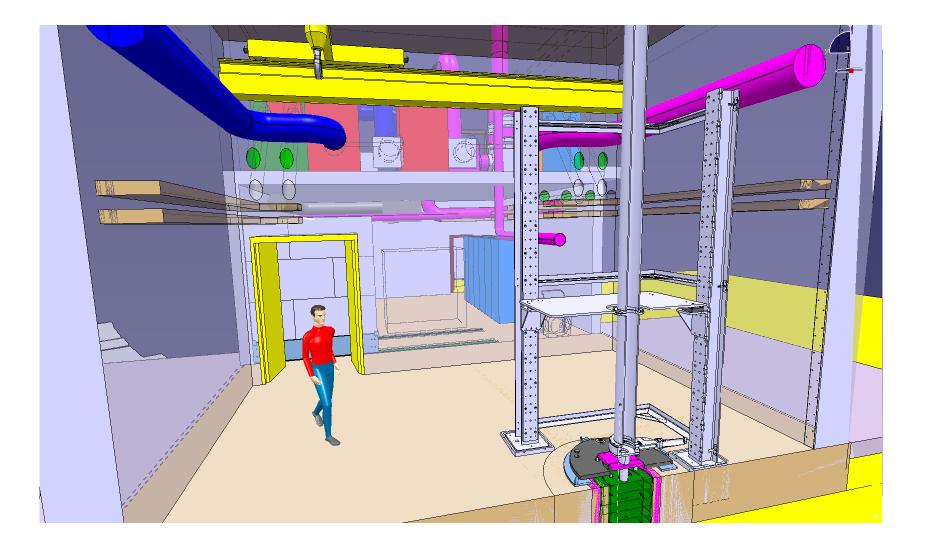
Ni63 sample Ni62 sample

BaF₂ module

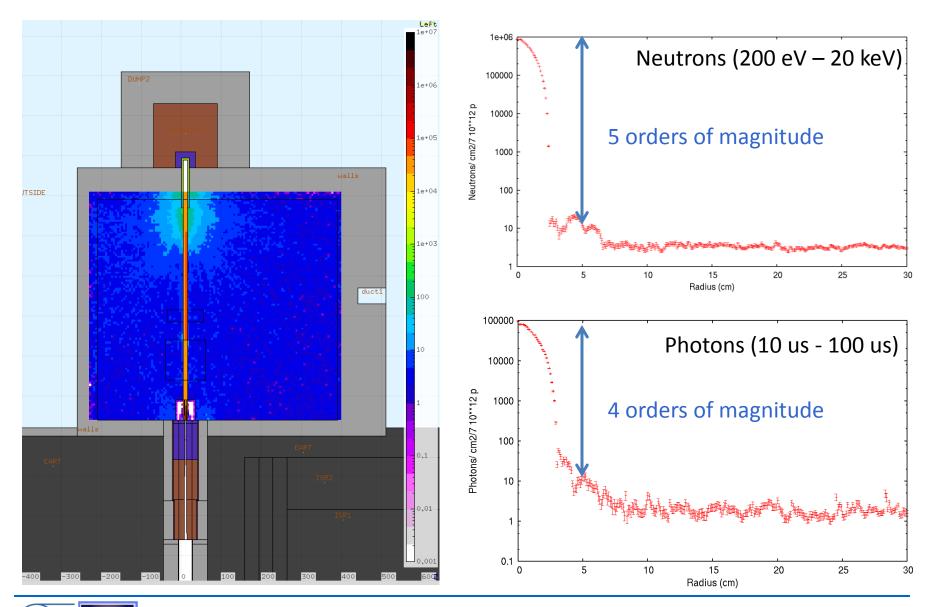


MGAS signals

The future n_TOF EAR2 @20 m

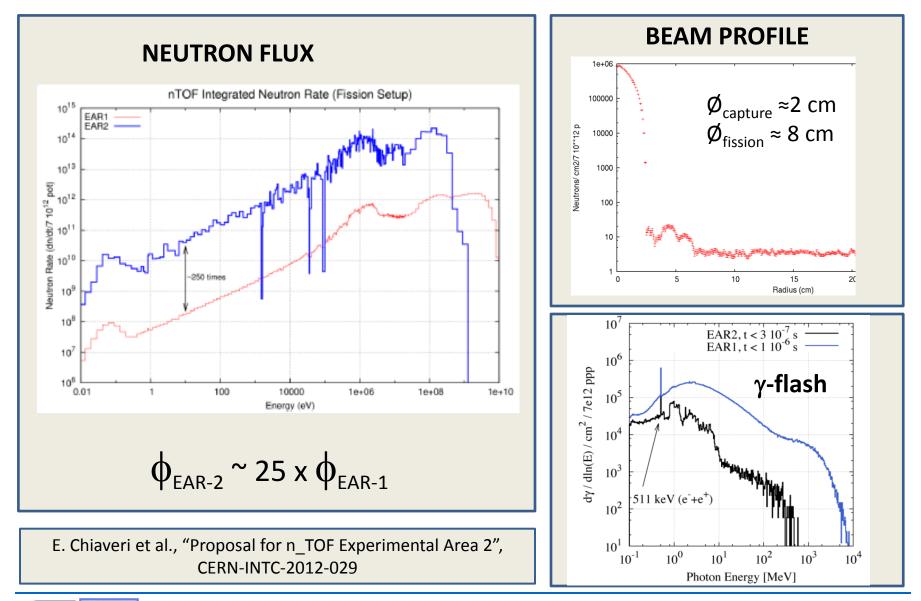

The future: n_TOF vertical flight path at 20 m

C. Guerrero, "Physics at the new CERN neutron beam line"



The future: n_TOF vertical flight path at 20 m

Detailed FLUKA simulation for the design of collimators and dump


C. Guerrero, "Physics at the new CERN neutron beam line"

Construction of n_TOF EAR-2

Main characteristics of the future n_TOF EAR-2

C. Guerrero, "Physics at the new CERN neutron beam line"

Advantages of EAR-2 compared to EAR-1:

- on very small samples: reduce activity or use samples with limited availability
- on isotopes with very small cross sections: where signal/background ratio is crucial
- in much shorter time: some meas. can be eventually repeated to reduce systematic errors
- on neutron-induced cross sections at high energies (E_n >1-100 MeV), which are not possible in the existing EAR-1, will benefit if the γ -flash is reduced.
- possibility to bring a 'basket' with electronics component down to only 1.5 m from the target (10¹⁰ neutrons/pulse): irradiation facility (e.g. SEE)

Proposals (some) for experiments at n_TOF EAR-2

Commissioning

- First beam scheduled for July 2014
- The commissioning, led by F. Gunsing, will take 3 to 6 months
- First beams for physics by the end of 2014: detailed proposal for CERN INTC February 2014 Nuclear Technology
- The role of ²³⁸Pu and ²⁴⁴Cm in the management of nuclear waste: (n, γ) cross sections
- Measurement of the capture (and fission) cross sections of the fissile ^{239,241}Pu and ²⁴⁵Cm
- Measurements of (n,xn) reaction cross sections with HPGe detectors (¹⁹⁷Au, ¹⁸¹Ta, etc.)
- Measurements of (n,n) and (n,xn) reactions cross sections with CsI+Si telescopes
- Fission process and the emission of prompt γ 's on ²³⁵U and ^{239,241}Pu isotopes with STEFF
- Fission cross section of the ²³⁰Th, ²³¹Pa and ²³²U reaction
-

Astrophysics

- Measurement of the ${}^{25}Mg(n, \alpha){}^{22}Ne$ cross section
- Neutron capture measurement of the *s*-process branching points ⁷⁹Se and ¹⁴⁷Pm
- Destruction of the cosmic γ -ray emitter $^{26}\mbox{Al}$ by neutron induced reactions
- Measurement of ⁷Be(n,p)⁷Li and ⁷Be(n,α)⁴He cross sections, for the cosmological Li problem.

Others include basic nuclear physics, medical physics, detectors tests, etc.

Capture cross sections of fissile isotopes

TAC + MGAS technique successful @ EAR1, **BUT**:

- For ²³³U and ²³⁵U masses of ~30-100 mg used
- Requires a stack of many samples/ detectors
- Background from fission detectors
- Difficulty to find large number of samples
- The thin/Thick approach also difficult (samples)
- Need TAC for background identification (no C6D6)
- γ -flash limits the neutron energy (E_n<10 keV)

All these are overcome at EAR-2

- A two sample back-to-back approach will be employed
- Detector choice for capture could be array of C₆D₆ (x4) or new calorimeter (see CHANDA!)
- The reduced γ -flash should allow for a higher energy limit
- First campaigns for ²³³U and ²³⁵U, then ^{239,241}Pu and ²⁴⁵Cm

 Image: series of the series of the

MGAS signals

(n,n) and (n,xn) cross sections at high energy

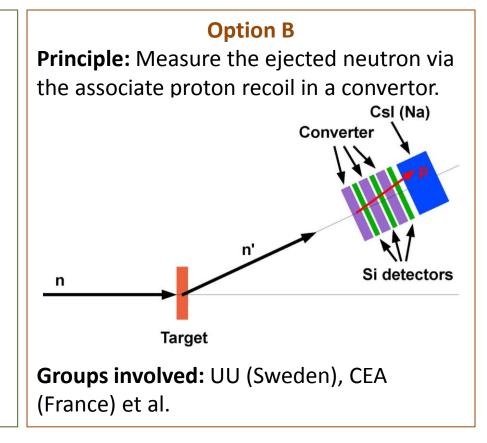
Physics: optical model, ...

Applications: ADS, SEE, Medical, Dosimetry, ...

<u>Exp. data:</u> some (n,n) above 30 MeV [e.g. Öhrn et al., PRC**77** (2008) 024605]

almost nothing on (n,nx)! [e.g. Sagrado Garcia et al., PRC84 (2011) 044619]

Option A

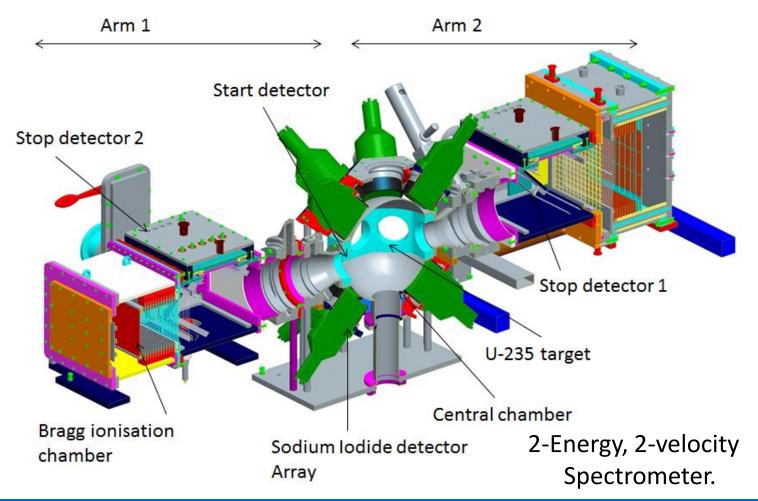

Principle:

Measure (n,xn) through identification of the reaction product's γ -ray emission.

Detectors:

HPGe (γ -flash could be an issue).

Groups involved: NTUA (Greece), CEA (France), IFIN-HH (Romania) et al.



C. Guerrero, "Physics at the new CERN neutron beam line"

(n,f) and prompt γ -ray emission of ²³⁵U and ^{239,241}Pu with STEFF

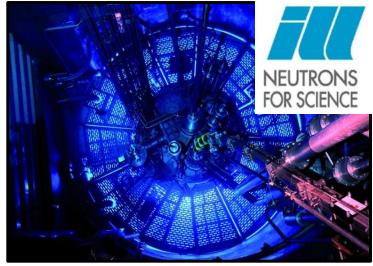
STEFF: Spectrometer for Exotic Fission Fragments [University of Manchester (UK)]

- Fragment Mass identification through ToF (velocity) plus Bragg IC (energy)
- γ-rays energies and multiplicities through NaI detector array (x16) [NEA HPRL]

C. Guerrero, "Physics at the new CERN neutron beam line"

Tackling the *s*-process branching points ⁷⁹Se, ¹⁴⁷Pm, ¹⁷¹Tm and ²⁰⁴Tl

²⁰⁴ Bi	²⁰⁵ Bi	²⁰⁶ Bi	²⁰⁷ Bi	²⁰⁸ Bi	²⁰⁹ Bi
²⁰³ Pb	²⁰⁴ Pb	²⁰⁵ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb
202 T [203TL	²⁰⁴ Tl	²⁰⁵ Tl	206TL	207 T [
²⁰¹ Hg	²⁰² Hg	²⁰³ Hg	²⁰⁴ Hg	²⁰⁵ Hg	²⁰⁶ Hg


e.g. *s*-process branching at ²⁰⁴Tl

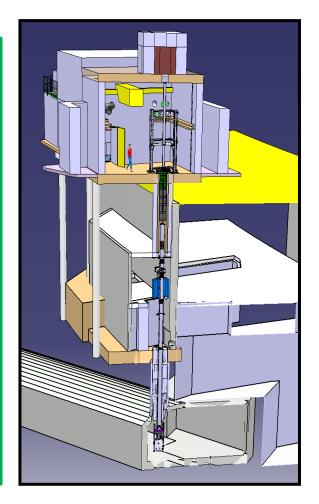
²⁰⁵Pb ($t_{1/2} = 1.5 \times 10^7$ a) is s-only, thus the SS abundances of ²⁰⁵Pb/²⁰⁵Tl provides chronometric info on the time span between the last nucleosynthetic events and the formation of solar system solid bodies. (At present, upper limit for the ²⁰⁵Pb/²⁰⁴Pb abundance ratio of 9x10⁻⁵ in meteorites)

Production via (n,γ) **or (n**,γ)β⁻ **in the ILL research reactor** $Φ_{n,th} = 1.5x10^{15} n/cm^2/s$ (→ 60 days)

147Pm: ¹⁴⁶Nd(n,γ)¹⁴⁷Nd (β⁻, 10d)¹⁴⁷Pm → 0.29 mg (2.6 y)**171Tm:** ¹⁷⁰Er(n,γ)¹⁷¹Er (β⁻, 7.5h)¹⁷¹Tm → 3.69 mg (1.9 y)**204TI:** ²⁰³Tl(n,γ)²⁰⁴Tl → 11.0 mg (3.8 y)

GOAL is to measure MACS with C₆D₆ at EAR-2

ILL: a source for radioactive samples


C. Guerrero, "Physics at the new CERN neutron beam line"

The new n_TOF EAR-2 20 m neutron beam line will be operative at CERN from July 2014

25 times higher flux (n/pulse) than n_TOF EAR1 (185 m) 250 times higher flux neutron rate (n/s) than n_TOF EAR1 Reduced energy resolution(no RR above ~10 keV) Runs in parallel to EAR1

First physics experiments by end 2014:

- Capture on fissile isotopes
- Capture on small mass *s*-process branching points
- Fission spectroscopy and prompt $\gamma\text{-rays}$ with STEFF
- Elastic/inelastic reactions (HPGe or CsI+Si telescopes)
- Fission on high activity samples (e.g. ²⁴⁰Pu)
- Irradiation of electronic components (@1.5 m)
- .

