Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

E. Grosse, A.R. Junghans, and R. Massarczyk TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf

Radiative capture of fast neutrons

Nuclear shape and dipole strength

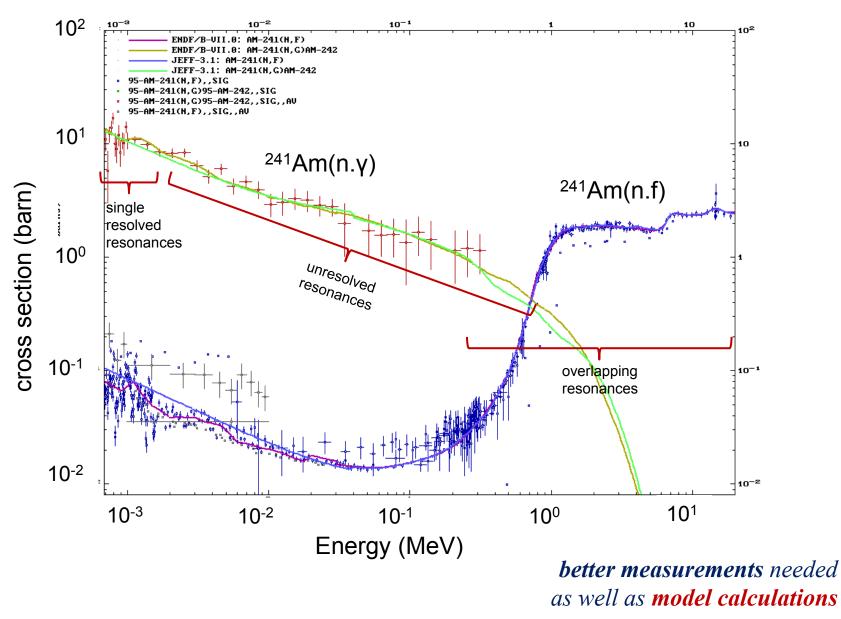
Level densities and nuclear shape

Electric dipole and other radiative strength

Predictions for capture cross sections

Work in progress - 2013 in collaboration with R. Beyer, R. Schwengner, A. Wagner and partners in EFNUDAT and ERINDA

Neutron induced *fission* in competition to *radiative neutron capture*



Radiative capture, averaged over resonances **R** and summed over final states **f** in γ -decay of multipolarity λ , and ℓ_n

$$\left\langle \sigma_{n,\gamma}(E_{n}) \right\rangle_{R} \approx 2\pi^{2} \lambda_{n}^{2} \sum_{f,\ell,\lambda} (2\ell+1) \left\langle \rho(E_{R}) \cdot \frac{\Gamma_{n} \times \Gamma_{\gamma}(E_{R} - E_{f})}{\Gamma_{n} + \Gamma_{\gamma}} \right\rangle_{R} \qquad E_{R} = S_{n} + E_{n} = E_{f} + E_{\gamma} \approx S_{n} \\ \Gamma_{n} \succ \Gamma_{\gamma} \qquad formation \cdot decay \qquad \ell \equiv \ell_{n}; \quad \lambda \equiv \lambda_{\gamma}; \quad \Delta \equiv \Delta(E_{n}) \\ \equiv 2\pi^{2} \lambda_{n}^{2} \sum_{\ell,\lambda} (2\ell+1) \left\langle \sum_{m} C(I_{R}, I_{f}, \lambda, n_{f}) \right\rangle_{P} \left\langle \rho(E_{f}, I_{f}) E_{\gamma}^{2\lambda+1} f_{\lambda}(E_{\gamma}) dE_{\gamma} \right\rangle_{R} \qquad E_{\gamma}^{2\lambda+1} f_{\lambda}(E_{\gamma}) = \Gamma_{\gamma}(E_{\gamma})\rho(E_{R}) \\ Level \ density \ \rho^{enters} \ for \ 0 < E_{f} < E_{R}, \qquad Photon \ strength \ f_{\lambda} \ is \ assumed \ to \ depend \ on \ E_{\gamma} \ only, \\ \rho(E_{x}, I) = \rho_{int}(E_{x}, I) \cdot K_{coll} (I, \beta, \gamma) \qquad and \ not \ on \ E_{x}(Axel-Brink \ hypothesis) \\ Average \ radiative \ capture \ cross \ section \ is \ proportional \ to \ \rho(E_{F}, I_{f}) \ and \ to \ photon \ strength \ f_{\lambda}(E_{\gamma}); \\ Both, \ are \ influenced \ by \ nuclear \ symmetry, \ i.e.\ shape \ (\beta \ and \ \gamma). \\ For \ many, \ if \ not \ nearly \ all, \ heavy \ nuclei \ only \ the \ \mathcal{R} -symmetry \ is \ formally \ well \ established, \\ whereas \ usually \ spherical \ or \ axial \ symmetry \ (\beta \ and \ \gamma) \ are \ assumed \ ad \ hoc. \\ Triaxial \ shapes \ are \ of \ importance \ for \ radiative \ neutron \ capture \ as \ well \ as \ for \ fission, \ and \ thus \ for \ transmutation \ physics. \end{cases}$$

For many properties of heavy nuclei *triaxiality* plays an important role – an issue **not** contained in many **model calculations**.

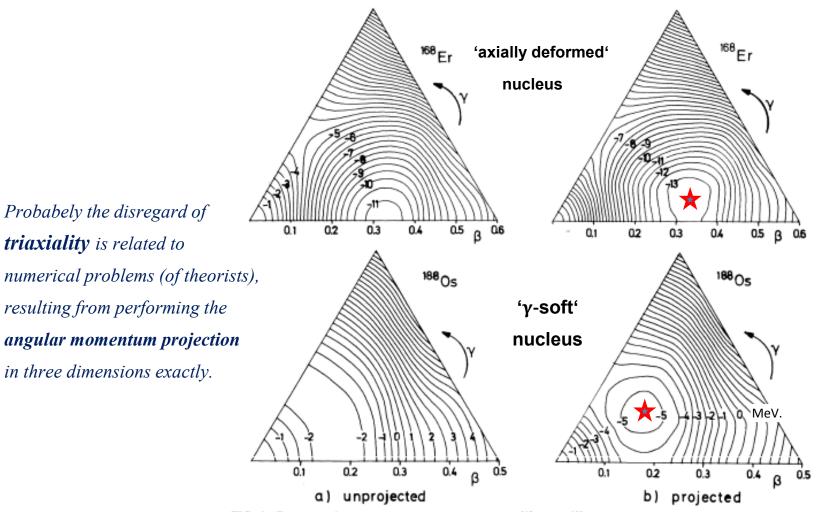
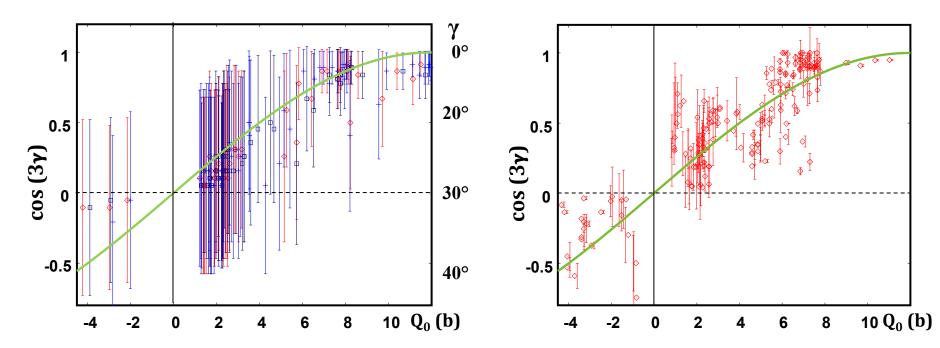


FIG. 1. Energy surface in the β - γ plane for the nuclei ¹⁶⁸Er and ¹⁸⁸Os (a) without angular momentum projection and (b) with exact three-dimensional angular momentum projection. The units on the equipotential lines are megaelectron-

Hayashi, Hara, Ring, PRL 53 (1984) 337

Triaxial deformation

seen in Hartree-Fock-Bogolyubov calculations with Gogny force in accord to Coulex data.

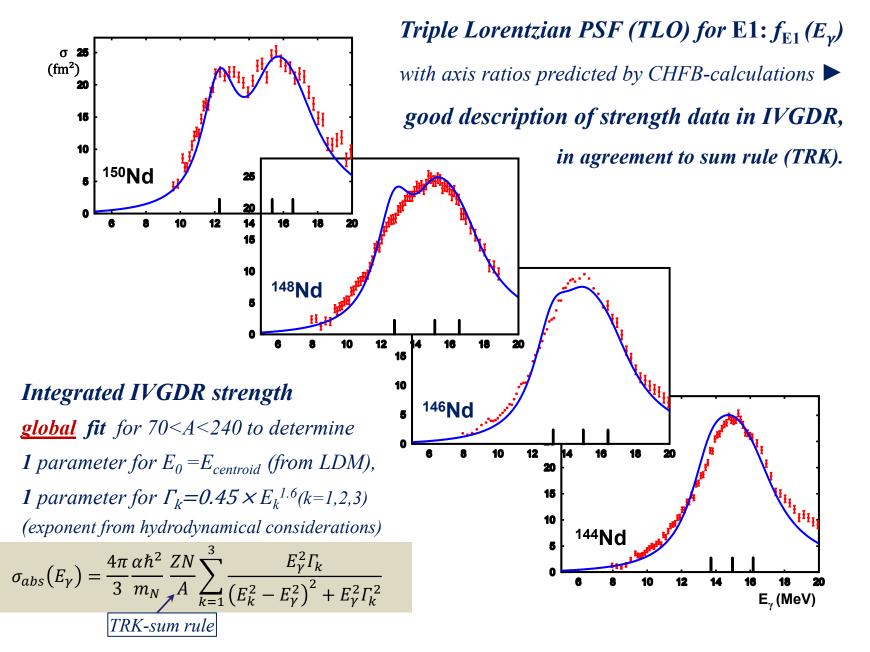


CHFB calculation for stable isotopes, bars indicate variance. Calculation also performed for exotic nuclei => global predictions can be based on them.

Coulex-data, rotation invariant analysis, with experimental uncertainty bars. => Rigid triaxial deformation.

> Toh et al., PRC 87 (13) 041304 (Gamma-sphere) Cline, Annu. Rev. Nucl. Part. Sci. 36 (86) 683 Srebnry, Czosnyka et al., NP A 766 (06) 25 (Rochester-Warsaw collaboration)

Bertsch et al., PRL 99 (2007) 032502 Delaroche et al., PRC 81 (2010) 014303 (CEA/DAM & UoWash.)

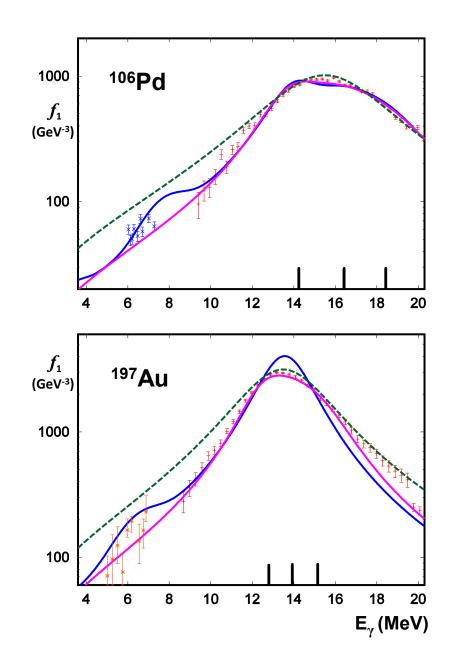


Triple Lorentzian PSF (TLO) also fits E1-data very well for nuclei usually considered spherical (axis ratios from CHFB calculations and integral from TRK sum rule). Instantaneous shape sampling improves fit (CHFB → variance).

$$f_{\rm E1}(E_{\gamma}) = \frac{4 \alpha}{3\pi g m_N c^2} \frac{ZN}{A} \sum_{k=1}^{3} \frac{E_{\gamma} \Gamma_k}{\left(E_k^2 - E_{\gamma}^2\right)^2 + E_{\gamma}^2 \Gamma_k^2}$$

Integrated strength, shape of IVGDR and agreement to sum rule (TRK) are well predicted. The tail region is confirmed by various data; additional components needed to improve fit.

Different tails as **RIPL-3** with **SLO**, *the standard distibuted by* **IAEA**.



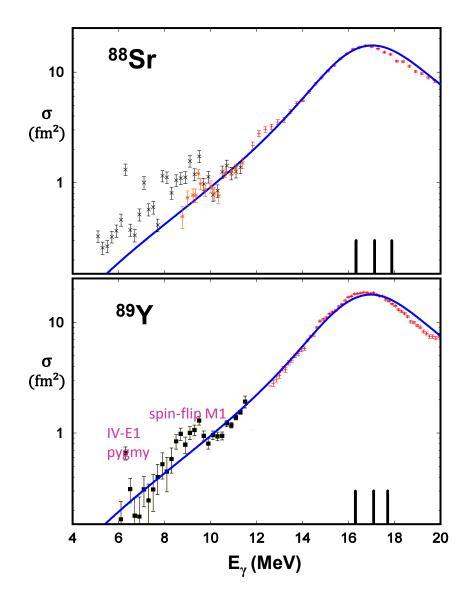
A. Leprêtre et al., NPA 175, 609 (1971) ; J.Kopecky & M.Uhl, Phys. Rev. C 41 (1990) 1941 A. Veyssière et al., NPA159, 561 (1970) ; G.A.Bartholomew et al., Adv. in Nucl. Phys. 7 (1973) 229 A triple Lorentzian (TLO) fits E1data for odd nuclei (A>70) equally well with axis ratios from CHFB and E_k from LDM (even neighbors); only global fit parameters.

$$\sigma_{abs}(E_{\gamma}) = g_{eff}(\pi\hbar c)^2 E_{\gamma} f_{\lambda}(E_{\gamma})$$

$$f_{g_{eff}} = \sum_{r=1,m} \frac{2J_r + 1}{2J_0 + 1} = 2\lambda + 1 \text{ for all } J_0$$

$$m = \min(2\lambda + 1, 2J_0 + 1)$$

Integrated strength, shape of IVGDR and agreement to sum rule (TRK) are very similar for odd nuclei and even neighbours; the tail region is confirmed by ELBE data. but at variance to RIPL-3, distibuted by IAEA.



The intrinsic state density $\rho_{int}(E_x) = \frac{e^S}{\sqrt{d}}$ is sensitive to shell, deformation and pairing corrections:

Effects of shells and deformation are known from masses and liquid drop calculations, but damped from δW_o (at the ground state) with increasing $t: \delta W(t) = \delta W_o \cdot \frac{\tau^2 \cosh \tau}{(\sinh \tau)^2} \xrightarrow{t \to \infty} 0$; $\tau = \frac{2\pi^2 t}{\hbar \sigma_{sh}} A^{1/3}$ as controlled by the average shell energy $\hbar \sigma_{sh} \cong \hbar^2 / m_N A^{4_3} \cong 41/A^{4_3}$ MeV. **Pairing** causes a condensation at E_{con} and a critical temperature $t_c : \Delta_0 = \frac{12}{\sqrt{A}}$; $E_{con} = \frac{3a\Delta_0^2}{2\pi^2}$; $\frac{t_c}{\Delta_0} = 0.567$. with the level density parameter **a** approximately given by $a \cong \pi^2 A / 4\varepsilon_F \cong A/14$.

A large backshift $E_{bs} = E_{con} + n \Delta_0$ (n=0,+1,+2 for o-o, odd and e-e nuclei) is **positive** – also for small A and **reduces** $\rho_{int}(E_x) = \frac{e^S}{\sqrt{d}}$.

At energy $E_c = at_c^2 + E_{bs} - \delta W(t_c)$ a phase transition occurs – in the two phases **S** and E_x are given by:

In the **super-fluid phase (SFM)** ($t < t_c$) an interpolation from E_c to E_{gs} is controlled by:

In the **Fermi-gas (FGM)** phase $(t>t_c)$ one has:

$$S t = F_{SF}S_c t_c; \qquad E_x = F_{SF}E_c$$

$$S_c = S(t_c, FG); \qquad F_{SF} = \left(\frac{t}{t_c}\right)^{2.5} \xrightarrow{t \to t_c} 1$$

$$\xrightarrow{t \to 0} 0$$

$$d(E_x, SF) = d_c = d(t_c, FG)$$

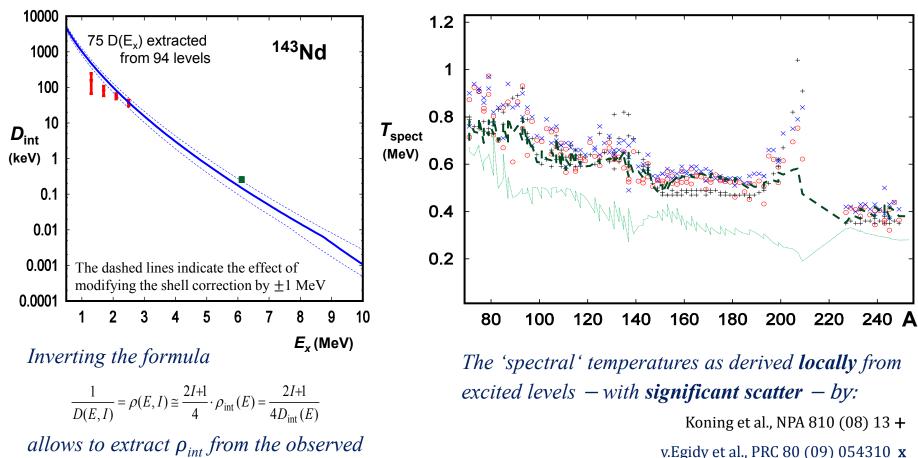
$$S = 2at - \frac{\delta W(t)}{t} + \frac{\delta W_0}{t} \frac{\tau}{\sinh(\tau)} \xrightarrow[t \to \infty]{} 2at$$
$$E_x = at^2 + E_{bs} - \delta W(t) \xrightarrow[t \to \infty]{} E_{bs} + at^2$$
$$\xrightarrow[t \to 0]{} E_{bs} - \delta W_0$$

π

The determinant d relates to the saddle point method.

Ignatyuk et al., PRC 47 (93) 1504; Landau-Lifschitz V, §59; Goriely, NP A 605 (96) 28 Schmidt & Jurado, PRC 83, 014607 (11); Bohr and Mottelson, vol. I, 2 & 2B (69) & II, 6-523 (75) ; Kataria & Kapoor, PRC 18 (78) 549.

The level density formalism proposed here compares well to s-wave resonances and to bound states – and the temperatures derived from them



iuy et al., 1 Ke 00 (07) 03 1310 x

Belgya et al., RIPL-2/3 o

agree reasonably well to the prediction: -----, based on triaxiality only and on global parameters (a =.07(A+2A^{2/3}) \cong A/14).

Belgya, Capote et al., (2012) www-nds.iaea.org/RIPL-3/levels/levels/

 $\mathbf{\Phi} \mathbf{D}_{\text{int}}(\mathbf{S}_{n}, \mathbf{1}_{2}^{+}) \qquad .$

 $\mathbf{\Phi}$ D_{int}(bound levels, various I^{π})

average level distances D(E,I) for **all I**;

when σ is taken from systematics.

Nuclear shapes have an important influence on level densites via collective enhancement K_{coll} : Collective rotation induces band for each intrinsic state and levels are pulled down Included adiabatically, level densities are considerably larger than the state density: For triaxial nuclei this rotational enhancement at low energy is largest. \mathcal{R} -symmetry is the only constraint; for small I and $E_{rot} \ll E_x$ one has :

$$\rho(E,I) \cong \sum_{\tau=1}^{2I+1} \rho_{\text{int}} \left(E - E_{rot}(I,\tau) \right) \xrightarrow{I \text{ small}} \frac{2I+1}{4} \cdot \rho_{\text{int}}(E)$$

$$\mathcal{R}\text{-symmetry}$$

Triaxial nuclei are considered the **general case** – and the enhancement in $\rho(E,I)$ allows a reduction of $\rho_{int}(E)$ as compared to 'conventional' prescriptions:

In *axially deformed* nuclei (no rotation about the symmetry axis) one uses:

For <u>spherical</u> nuclei the level density for a given I is usually obtained from $\rho(E,M=I) - \rho(E,M=I+1)$, leading to a reduction of ρ by more than 100:

Spin dispersion and cut off related to moments of inertia: \mathfrak{S}_j for collective rigid rotationon – and \mathfrak{S}_s for statistical fermionic motion.

$$\sigma_s^2 = \frac{\mathfrak{I}_s \cdot T}{\hbar^2}; \quad \mathfrak{I}_j \propto \frac{\operatorname{Am}_n(R_k^2 + R_l^2)}{5}; \quad \mathfrak{I}_s \equiv \mathfrak{I}_3; \quad T = \left(\frac{d \ln(\rho_{\text{int}})}{dE}\right)^{-1}$$

 $\rho(E,I) \xrightarrow{I \text{ small}} \frac{2I+1}{\sqrt{8\pi} \sigma} \cdot \rho_{\text{int}}(E).$

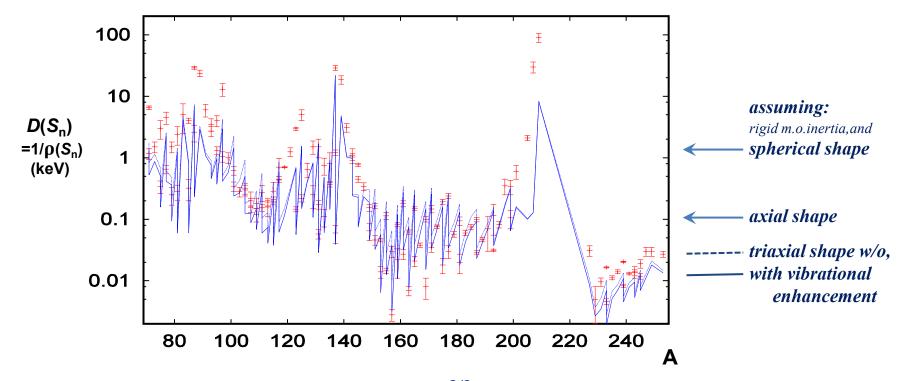
 $\rho(E,I) \xrightarrow{I \text{ small}} \frac{2I+1}{\sqrt{8\pi} \sigma_s^3} \cdot \rho_{\text{int}}(E);$

Capture of s-neutrons by e-e nuclei yields $I_R = \frac{1}{2}^+$

Ericson, Nucl. Phys. 6 (1958) 62. Bethe, Phys. Rev. **50**, 332 (1936)

Bjørnholm, Bohr & Mottelson, Rochester conf. on fission (1973), Bohr & Mottelson, Vol II, 4-63 (1975)

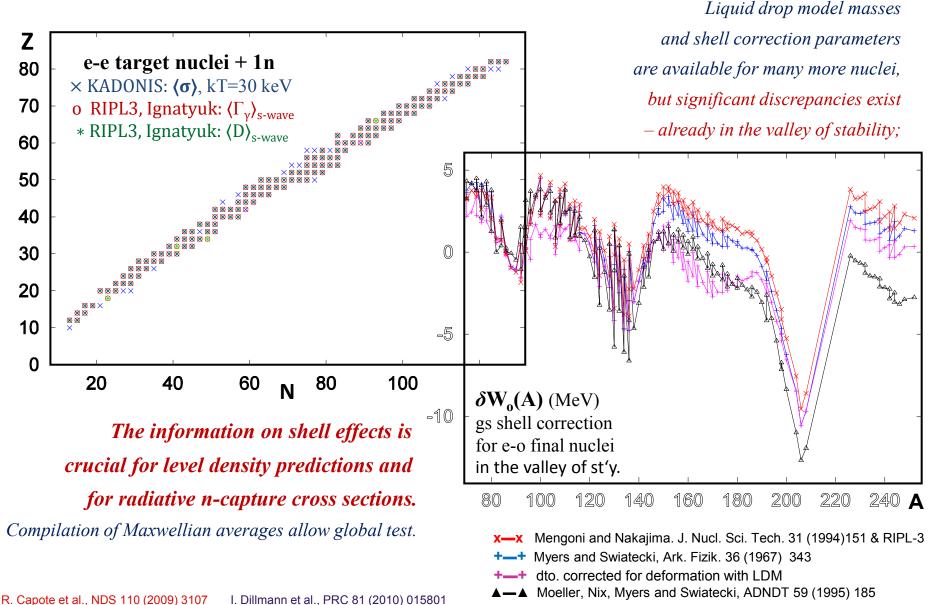
In 132 nuclei with 70<A<250 the mean distance of s-wave resonances at S_n , $I_R = \frac{1}{2}^+$ is well reproduced assuming triaxiality – with no sensitivity to $\beta \& \gamma$



The only free parameter (level density p.) $\mathbf{a} = \frac{\mathbf{A} + 3\mathbf{A}^{2/3}}{\mathbf{14}}$ is close to the value for nuclear matter $\mathbf{a} = \frac{\pi^2 \mathbf{A}}{4\varepsilon_F} \cong \frac{\mathbf{A}}{\mathbf{14}}$. The comparison to the data at $(\mathbf{S}_n, \frac{1}{2}^+)$ clearly demonstrates the effect of reduced symmetry, i.e. the importance of triaxiality, whereas the actual values for $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ are unimportant..

But: absolute values depend significantly on the choice of shell correction δW_o ; Myers & Swiatecki, corrected for deformation by LDM, was used.

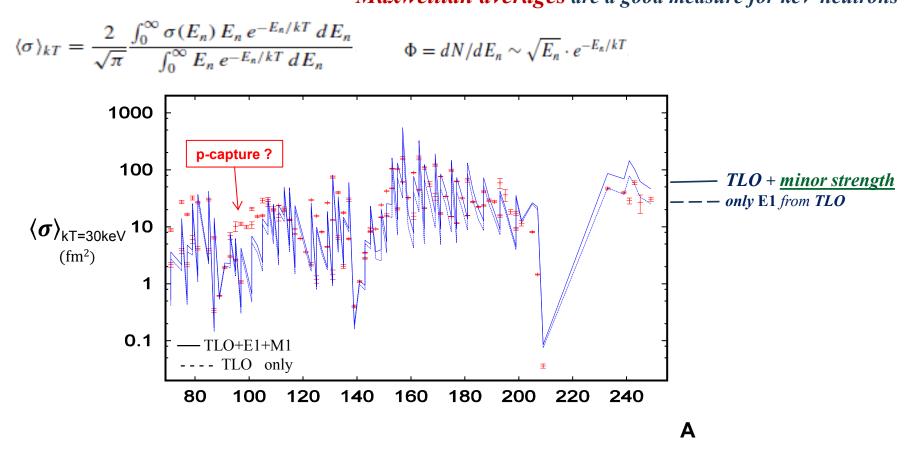
Data at S_n for the average level distance $\langle \mathbf{D} \rangle$ and radiative width $\langle \Gamma_{\gamma} \rangle$ are known for more than 125 e-e target nuclei



www-nds.iaea.org/RIPL-3/ AIP Conf. Proc. **819**, 123; www.kadonis.org

A simultaneous global prediction of

average level distances at S_n and photon widths for radiative neutron capture (unresolved resonance region) allows test of the TLO-photon strength $f_1(E_{\gamma})$ and the level density parameterization. Maxwellian averages are a good measure for keV neutrons



good agreement to Maxwellian averages for >100 nuclei with predominant s-capture. Global predictions are possible, as $\langle \sigma \rangle$ depend significantly only on a – and also on $f_1(E_{\gamma})$, on the nuclear symmetry, and the choice of shell correction δW_o

Grosse et al., to be published in Physics Procedia (13)

Various collective modes contribute to the photon strength in radiative capture:

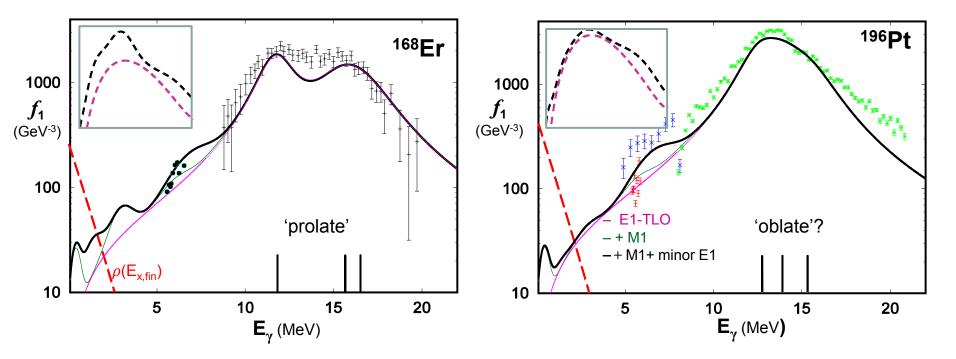
E1: *IVGDR*, fit by TLO with sum rule (TRK) and global spreading width $\Gamma \propto E_{GDR}^{1.6}$: $\int fdE \approx 12.8 \text{ GeV}^{-2}$ isoscalar(IS) E1 strength in 'pygmy' resonance at $E_{py} \approx 0.5 \cdot E_{GDR} \approx 6 \text{ MeV}$: $\int fdE \approx 0.1 \text{ GeV}^{-2}$ vibration-coupling : $(2^+ \times 3^-)1^- @E_{sum} \approx 3 \text{ MeV}$; $I \propto B(E2) \cdot B(E3)$: $\int fdE \approx 0.024 \text{ GeV}^{-2}$ **M1:** orbital (scissors) mode @ $\approx 3 \text{ MeV}$; $I_{sc} \approx Z^2 \cdot \beta^2$: $\int fdE \approx 0.046 \text{ GeV}^{-2}$

M1: orbital (scissors) mode @ ≈ 3 MeV ; I_{sc} ≈ Z²·β² : ∫fdE ≈ 0.046 GeV⁻² isoscalar and isovector components of spin-flip mode @ ≈ 7 MeV: ∫fdE ≈ .042 GeV⁻² 'zero pole' originating from a recoupling of nucleon spins within equal configurations: ∫fdE ≈ 0.014 GeV⁻²
E2: quadrupole vibrations @ ≈ 1-2 MeV contribute ∫fdE < 10⁻², the GQR @ ≥ 9 MeV ∫fdE < 0.2 GeV⁻².

The parameters of these minor contributions to strength are approximated based on intensive experimental studies at e-beams (Urbana, Bartol, Stuttgart, Darmstadt, Dresden, Duke,...); they determine transition strength $f_{\lambda}(0 \rightarrow R)$ from ground to excited states and resonances R.

Axel-Brink hypothesis predicts same strength on top of any quasi-particle state E_x , causing collectively enhanced decay transitions $f_\lambda(R \rightarrow E_x) = f_\lambda(0 \rightarrow R)$. Respective structures may appear in CN-reaction spectra (BNL, LASL, Oslo,..) and they contribute to **radiative capture** of p and n – especially for $E_\gamma \approx 3$ MeV.

Poelhekken et al., PLB 278 (92) 423 Pysmenetska et al., Phys. Rev. C 73 (2006) 017302 von Garrel et al., Phys. Rev. C 73 (2006) 054315 Kneissl, Nuclear Physics News 16 (2006) 27 **Overlap** between final level density $\rho(E_x)$ and photon width $\Gamma(E_\gamma)$ peaks at ≈ 3 MeV; it determines 1st photon yield and sensitivity of radiative capture cross sections to $\rho(Ex)$ and $f(E\gamma)$. Additional <u>'minor'</u> strength near 3-5 MeV (scissors M1, pygmy E1, $(2^+\otimes 3^-)_{1-}$) leads to some enhancement.



Triple Lorentzian E1-PSF (TLO) causes ≤ 80% of yield; minor components non-negligible ► need of new experimental investigations.

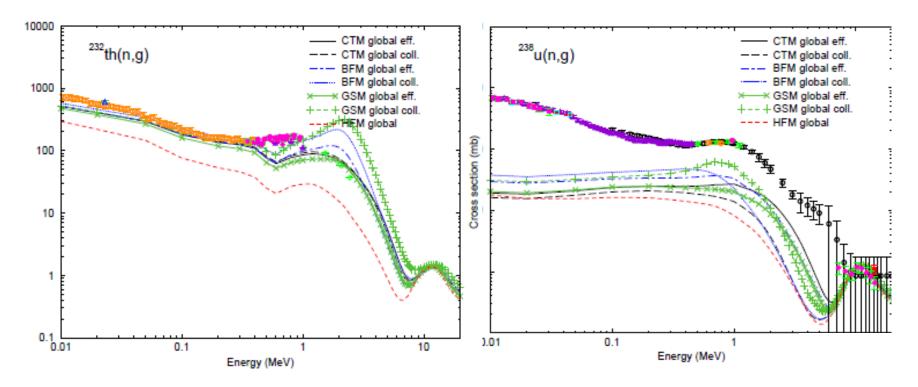
Good description of **dipole strength** data in **IVGDR** and (n,γ) -data **in the tail** using axis ratios from HFB and widths $\Gamma_k \propto E_k^{1.6}$.

Gurevich et al., NPA,351(81) 257 Mughabghab & Dunford, PLB 487(00)155

The **photon strength** and **level density** f_1 ²³⁹**Pu**(γ,n) parametrizations presented here (GeV-3) 1000 also work well for *actinides*: Calculation agrees well to data E1+M1 without any new parameter, 100 E1(TLO) indicating a possible use for transmutational applications. 10 1000 14 6 8 10 12 16 18 2 E_v (MeV) **²⁴⁰Pu**(n, γ) × 10 100 Photon strength other than $\langle \boldsymbol{\sigma}_{\mathsf{n},\gamma} \rangle$ GDR-tail => isovector E1 (fm²) **10 ²³⁸U**(n,γ) + E1 has ≥ 30 % influence + M1 on radiative capture TLO only cross section 232 **Th**(**n**, γ) ÷ 10 1 (mainly orbital M1). 100 200 300 400 500 0 E_n (keV)

K. Wisshak et al., NSE,137,183 (2001) R.R.Spencer,F.Käppeler, Wash. conf. ,2,620 (1975) L.W.Weston,J.H.Todd, NSE,63,143 (1977) + G.M. Gurevich et al., Nucl. Phys. A 351, 257 (1981) ⊉ B.L. Berman et al., Phys. Rev. C 34 (1986) 2201 x Y. Birenbaum, et al., Phys. Rev. C 36 (1987)1293

The photon strength and level density parametrizations used by TALYS-1.4 do not work well for actinides:



Apparently global parametrizations for photon strength and level density as used by us avoid eventual false measurements of photon cross sections in the IVGDR, in its tail and at S_n . For actinides (transmutation etc.) an extrapolation to unstable isotopes is important.

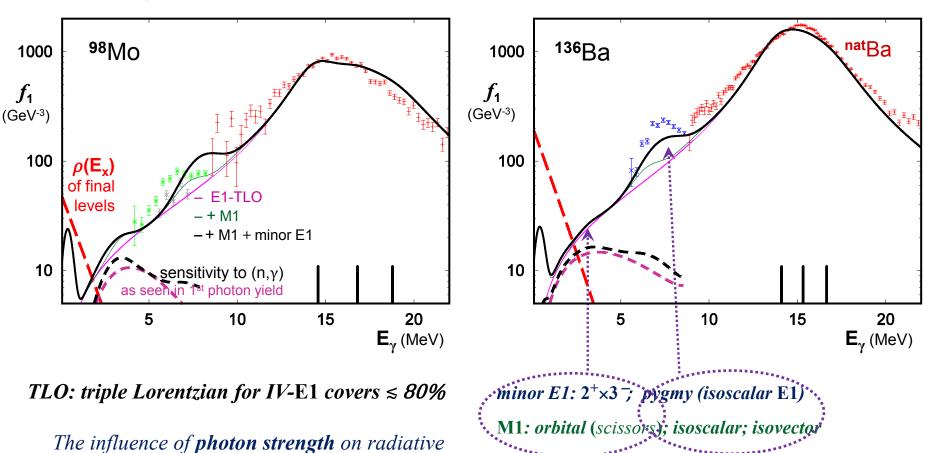
Conclusions

Transmutation of nuclear waste needs numerical simulations and these need good input – like *global* parameterizations derived from basic theory only.

Ad hoc assumptions about **spherical or axial symmetry** of heavy nuclei simplify (most) theorist's efforts, **but** experimentalist's observations indicate that nearly all of these **nuclei are less symmetric**:

- 1. Multiple Coulomb excitation and other spectroscopic data are well described assuming triaxiality;
- 2. the strength of the IVGDR agrees to the classical sum-rule (TRK) if a triple splitting is admitted;
- 3. level distances observed at S_n show collective enhancement indicating 3 rotational axes.
- A respective combined analysis of $\rho(E_x)$ and $\langle \sigma(n,\gamma) \rangle$ needs a small number of global parameters only: A nuclear matter level density parameter a, large backshift $(E_{con}+n\Delta_0)$, triaxiality (γ -value unimportant).
- **Radiative processes** are dominated by the tail of the electric **dipole strength**, described for 70<A<240 by a **triple Lorentzian (TLO)** with 2 free **global** parameters; **no** need for a variation of Γ_{GDR} with E_{γ} . Maxwellian averaged **neutron capture** data and $\langle \Gamma_{\gamma} \rangle$ are predicted with no extra free parameters;
- **M1** orbital strength important for large β as well as **E1(2⁺\otimes3⁻)** need further investigation studies should also clarify the effect of spin, parity and of shell corrections.
- The present analysis shows features clearly at variance to TALYS, RIPL-3, ...which show remarkable uncertainties and ambiguities, as triaxiality and collective enhancement effects are not well regarded.

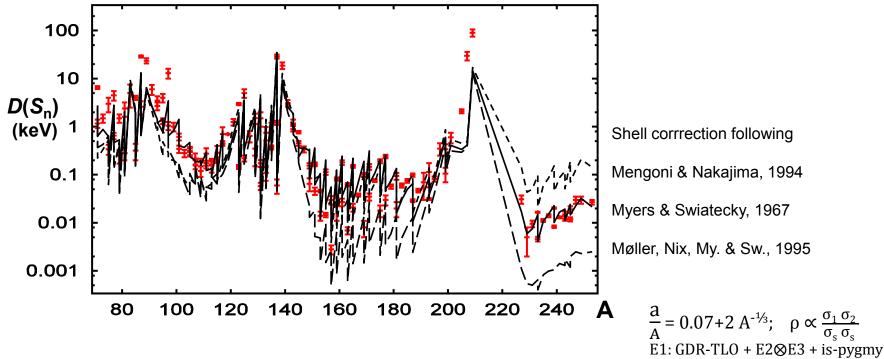
! Most heavy nuclei are <u>triaxial</u> $\Rightarrow \Gamma_{GDR} \propto E_{GDR}^{1.6}$ & TRK sum rule holds $\Rightarrow \rho$ collectively enhanced & $E_{bs} = E_{con} + \Delta_o$ Some additional photon strength \Rightarrow capture data well described globally!



ELBE data for ${}^{98}Mo$ and ${}^{136}Ba$ show significant excess over TLO; lower energy data needed to quantify it.

has nearly no influence on primary γ -transitions.

Average resonance distance $D = 1/\rho$ at Sn in comparison to calculations using differently determined shell corrections.



M1: spin-flip + scissors + zero pole

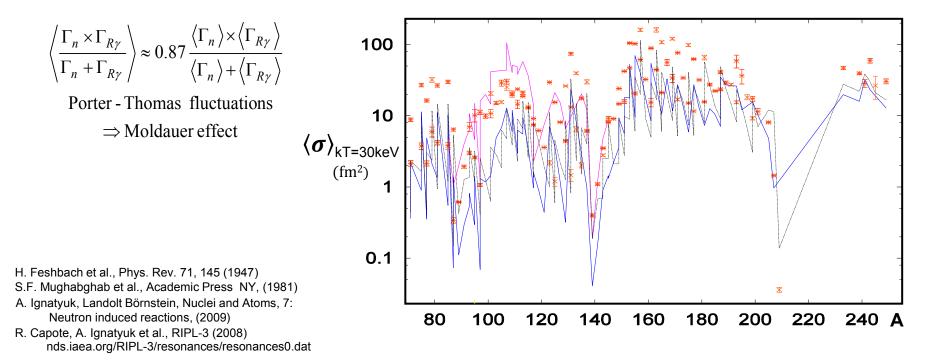
132 nuclei with ρ measured at S_n , 3000 shape samples (Delaroche et al.), rotational & vibrational enhancement (Bjørnholm et al.)

Radiative capture, averaged over resonances and summed over final states in γ -decay Average radiative capture cross section is proportional to $\rho(E_f)$ and to photon strength f_{λ} .

$$\left\langle \sigma_{n,\gamma}(E_n) \right\rangle_{\mathrm{R}} \approx 2(2\ell+1)\pi^2 \lambda_n^2 \rho(E_{R,\ell}) \Delta \left\langle \frac{\Gamma_n \times \Gamma_{R\gamma}}{\Gamma_n + \Gamma_{R\gamma}} \right\rangle_{\ell}; \quad \left\langle \Gamma_n \right\rangle = \frac{(2\ell+1)S_{\ell}}{(\ell+1)\rho(E_{R,\ell})}; \quad \left\langle \Gamma_{R\gamma} \right\rangle = \left\langle \sum_{\mathrm{f}} \overline{\Gamma}_{\gamma}(R \to \mathrm{f}) \right\rangle; \quad E_R = S_n + E_n = E_{\mathrm{f}} + E_{\gamma} \approx S_n$$
formation
decay

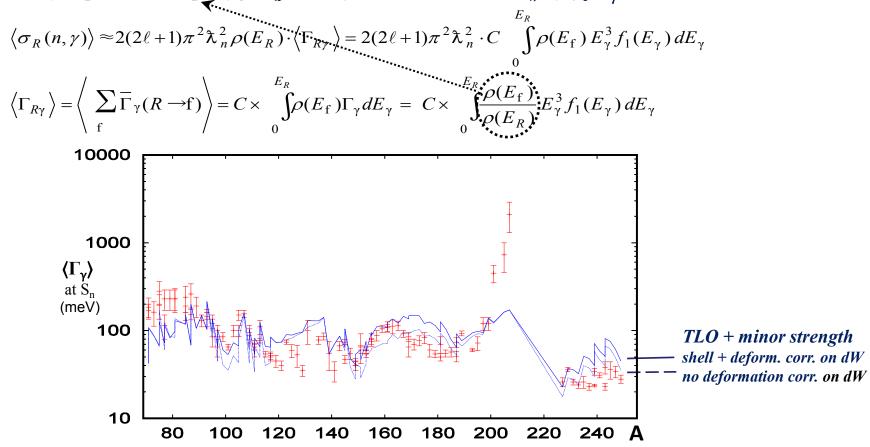
Level density $\rho(S_n)$, neutron strength S and $\langle \Gamma_{\gamma} \rangle$, are tabulated in RIPL-3 for $\ell = 0 \& 1$, and σ_R can be calculated as Maxwellian averages, which are a good measure for fast neutrons (overlapping resonance region) with flux: $2 \int_{0}^{\infty} \sigma(E_n) E_n e^{-E_n/kT} dE_n$

$$\Phi = dN/dE_n \sim \sqrt{E_n} \cdot e^{-E_n/kT} \qquad \langle \sigma \rangle_{kT} = \frac{2}{\sqrt{\pi}} \frac{\int_0^\infty G(E_n) E_n e^{-E_n/kT} dE_n}{\int_0^\infty E_n e^{-E_n/kT} dE_n}$$



Average radiative width is nearly independent of $\rho(S_n)$;

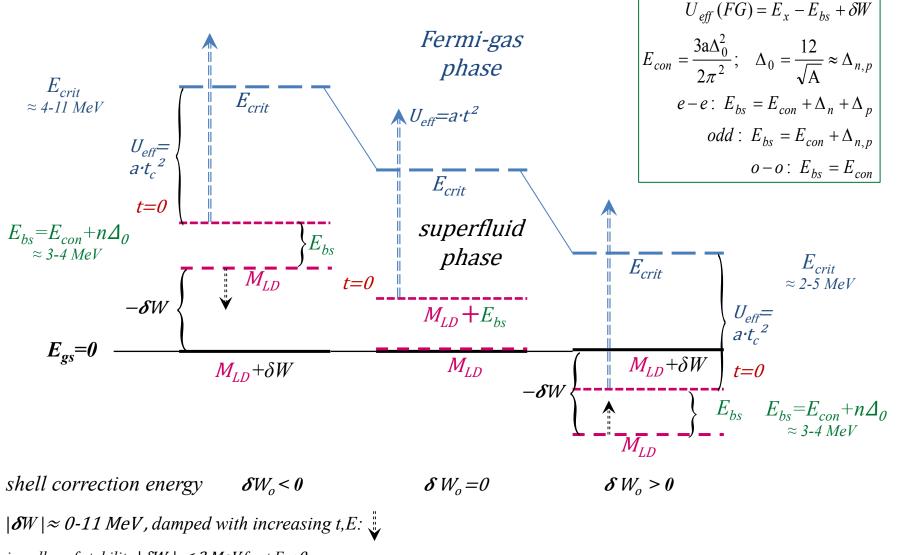
it mainly depends on slope of $\rho(E_x)$ in the final nucleus below S_n , if $f_1(E_\gamma)$ is known.



The average photon width can be determined in neutron capture by combining neutron width (i.e. resonant neutron interaction) and branching into photon emission. For this analysis non-resonant processes and the neutron strength function may be important.

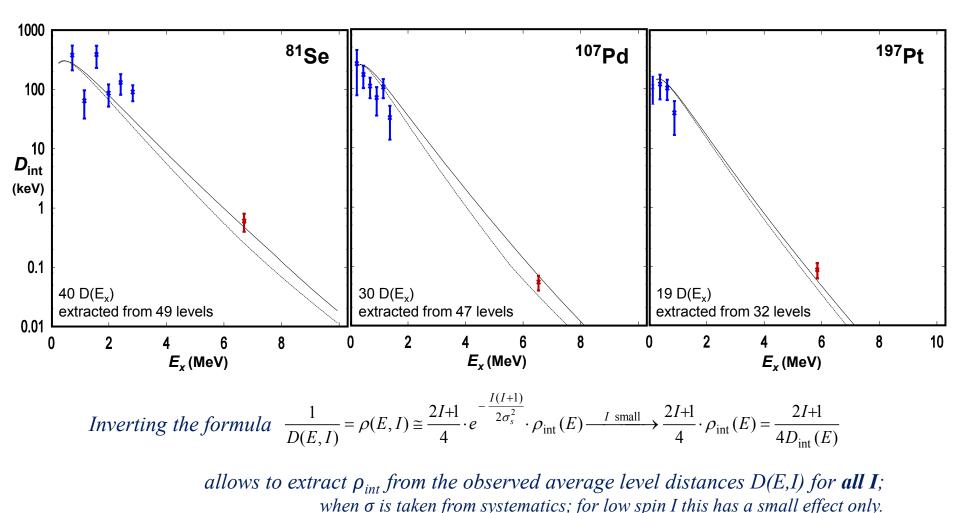
Schematic energy relations in the two nuclear phases

indicating the account for shell effects and pairing



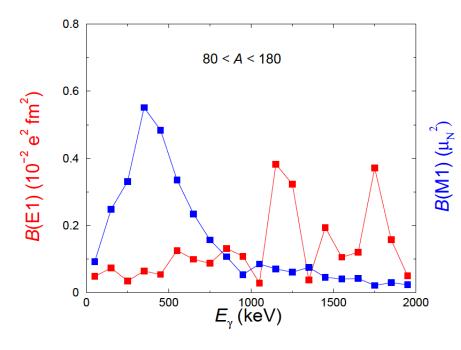
in valley of stability $|\delta W_o| < 2 \text{ MeV}$ for $t, E \rightarrow 0$

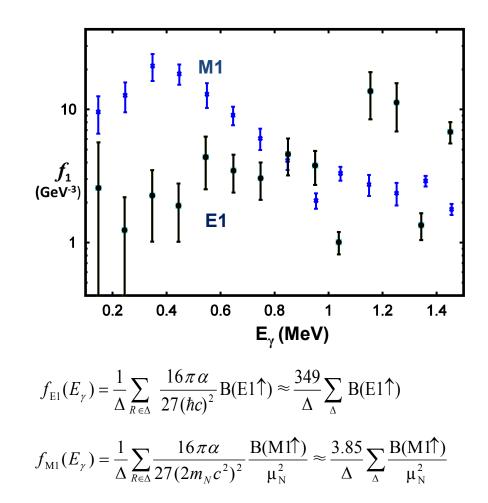
The *level density* formalism proposed here compares well to bound states and s-wave resonances



Low energy photon strength

Information on low energy strength may be obtained from gamma transition rate averages (ENSDF, Evaluated Nuclear Structure Data File). Application at high excitation because of Axel-Brink hypothesis.



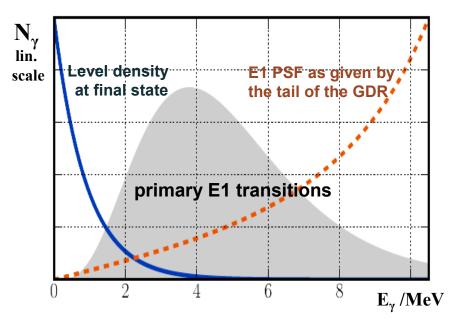


More data needed on **photon strength** for E_{γ} in the range 2-5 MeV, at $E_x \leq S_n$ this is a real challenge.

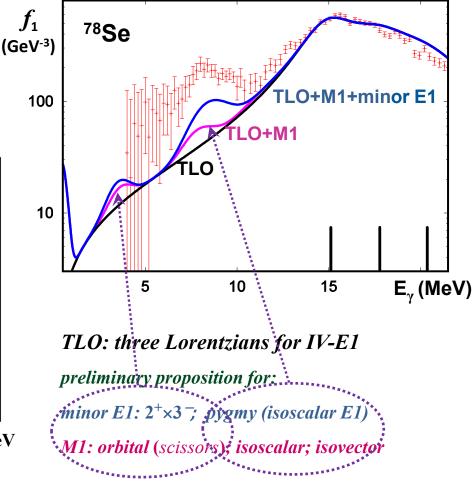
ELBE data for ⁷⁸Se

show significant excess over TLO;

data for lower energies needed to identify it.



The influence of **photon strength** on radiative neutron capture results from the overlap of Γ_{γ} (small at low E_{γ} as consequence of $E_{\gamma}^{2\lambda+1}$) and level density ρ below S_n (small at low E_{χ}). This relates to Axel-Brink hypothesis.



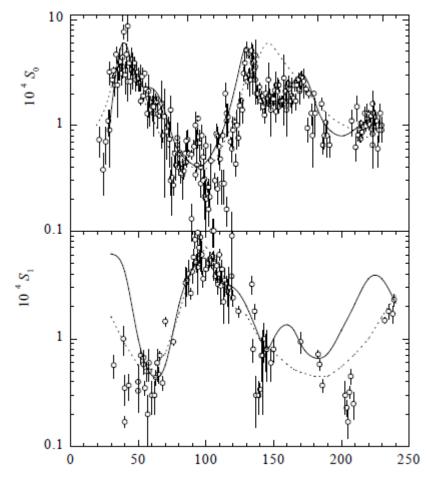
Orbital M1 and vib-coup E1 are important for radiative neutron capture,

the photon strength at very low energy has nearly no influence on primary γ-transitions.

The **level density** ρ in heavy nuclei is strongly influenced by the **pairing effect**, which lowers the level energies at low excitation such that at a critical temperature t_c a transition from a paired superfluid phase to a Fermi gas phase is observed; a phenomenological treatment of the shell, pairing and deformation effects is global.



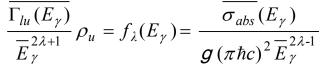
Pairing is accounted for by the critical temperature t_c and a condensation energy E_{cond} , both related to the pairing gap Δ_0 : $\Delta_0 = \frac{12}{\sqrt{A}}; \quad \frac{t_c}{\Delta_0} = 0.567; \quad E_{cond} = \frac{3a\Delta_0^2}{2\pi^2}$ with the level density parameter **a** approximately given by **a** $\simeq \pi^2 A/4\varepsilon_{\rm F} \simeq A/14$. In the Fermi gas phase the energy is corrected by a backshift $E_s = E_{cond} + n \Delta_0$ with $\mathbf{n} = \mathbf{0}, +1, +2$ for o-o, odd and e-e nuclei. *This choice of* **n** *makes o-o nuclei the 'reference'* and assures, that E_s is positive also for o-o nuclei with small A – at variance to the usual *'inconsistent' choice* **n**= **-2,-1,0** *for o-o, odd, e-e nuclei.* For odd nuclei this leads to a reduction of the level density.

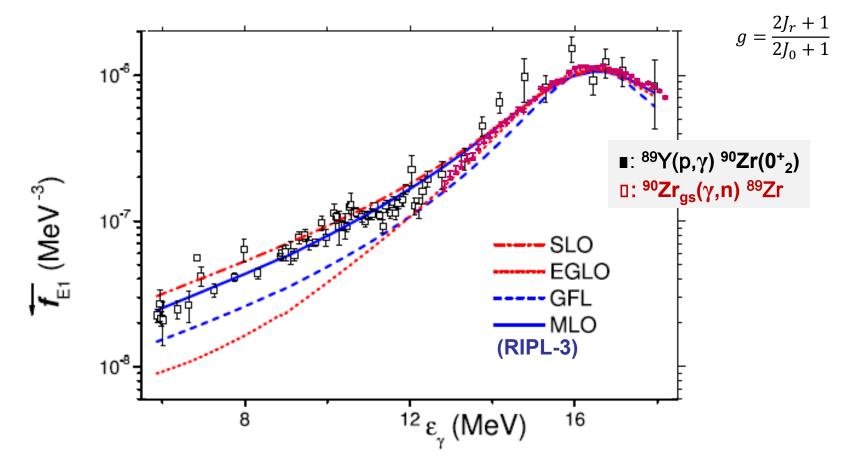


Strength functions of s- and p-wave neutrons as a function of the mass number. Results of calculations are shown by dashed curves for the spherical optical model and solid ones for the coupled-channels method.

A. Ignatyuk, Landolt Börnstein, Nuclei and Atoms, 7: Neutron induced reactions,

Photon strength function (PSF): $f_{\lambda}(E_{\gamma})$



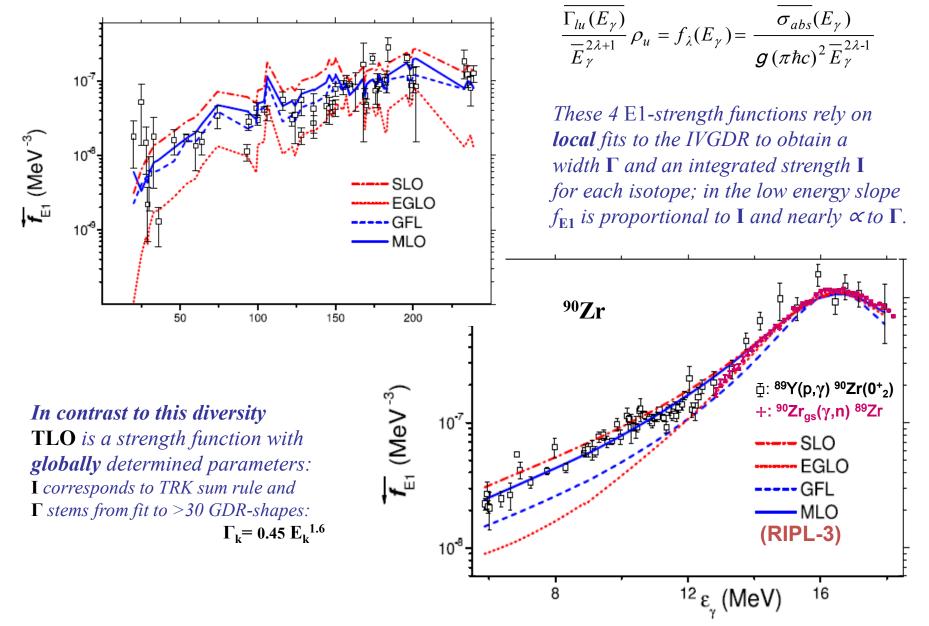


Axel-Brink hypothesis confirmed: E1-strength on top of 90 Zr (0^+_2) coincides with GDR on 90 Zr_{gs} Lorentzians describe data in the IVGDR as well as below 12 MeV (= threshold for 90 Zr(γ ,n))

R. Capote et al., NDS 110 (2009) 3107 www-nds.iaea.org/RIPL-3/

Z. Szeflinski et al., Phys.Lett.B 126 (1983)159 G.A.Bartholomew et al., Adv. in Nucl. Phys. 7(1973) 229

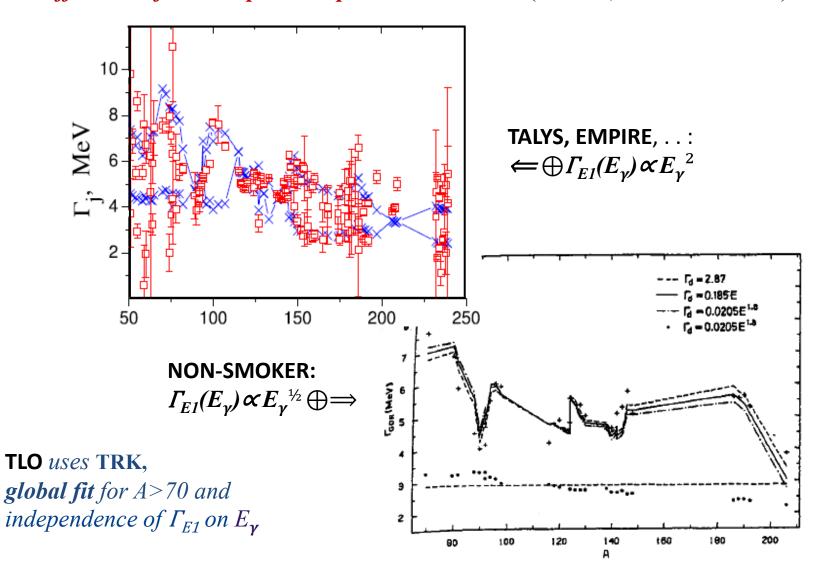
Electric dipole strength functions in RIPL-3.



http://www-nds.iaea.org/RIPL-3/gamma/gamma-strength-exp.dat

R. Capote et al., NDS 110 (2009) 3107 www-nds.iaea.org/RIPL-3/

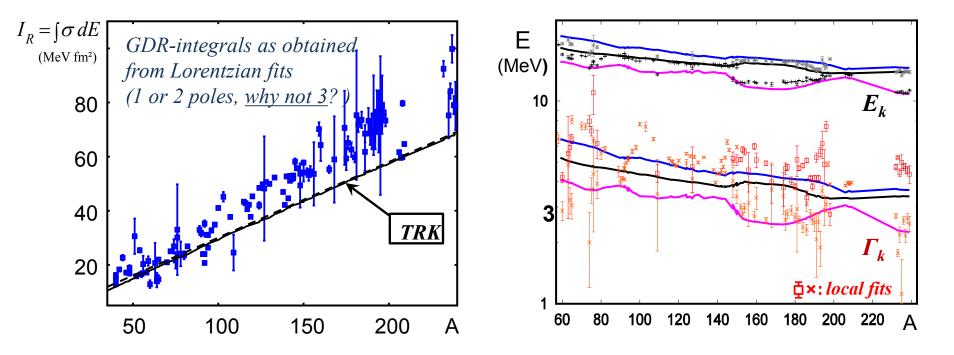
Local GDR fits => *erratically variing* Γ_r => *Difference of TLO to previous parameterizations* (TALYS, NON-SMOKER)



V.A. Pluiko, www-nds.iaea.org/RIPL-3/gamma/gdrparameters-exp.dat; ADNDT 97 (2011) 567; R. Capote et al., NDS 110 (2009) 3107

Thielemann & Arnould (1983); contr. to conf. on Nucl. Data for Science and Techn., Böckhoff ed.

Local GDR fits => I_r , which often exceed TRK sum & erratically variing Γ_r



sum rule predicts dipole strength *I* varying only smoothly with A;

individual fits yield large scatter in I & *I* due to neglect of *triaxiality*.

<u>TLO</u> fixes I_R to TRK sum and E_k , Γ_k to LDM, hydrodynamics and $\beta\gamma$ from HFB $\Gamma_{EI}(E_{\gamma}) = const(E_{\gamma})$

W. Kuhn, Z. Phys. 33 (1925) 408;
F. Reiche and W. Thomas, ibid. 34
M. Gell-Mann et al., PR 95 (1954) 1612

J.-P. Delaroche et al., PRC 81 (10) 014303 B. Bush and Y. Alhassid, NPA **531** (91) 27 V.A. Pluiko, www-nds.iaea.org/RIPL-3/gamma/gdrparameters-exp.dat; ADNDT 2011; R. Capote et al., NDS 110 (2009) 3107