Measurement of cross-sections of yttrium (n,xn)threshold reactions by means of gamma spectroscopy

The ERINDA Worskhop 2013

P. Chudoba ^{1,2}, S. Kilim ³, M. Szuta ³, Polish ³ and Czech ¹ group

¹Nuclear Physics Institute of the ASCR, v. v. i., Rez 130, 250 68 Rez, Czech Republic

²Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Praha 2, Czech Republic

³National Centre for Nuclear Research, Otwock-Świerk 05-400, Poland

2.10.2013

Index

- Motivation of measurement
- Cross-sections measurement
- 3 Experimental arrangement
- 4 Cross-section results
- 5 Further work

Motivation of measurement

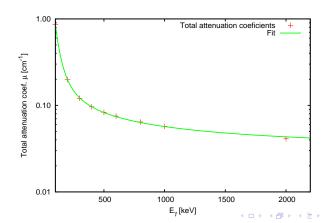
Necessity of fast neutron field monitoring in facilities like

- Accelerator driven systems (ADS)
- Neutron spallation sources
- Future fusion reactors and fast reactors

Why yttrium?

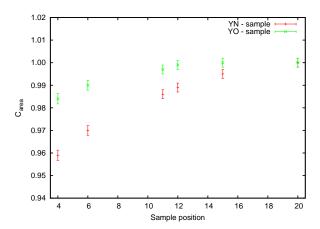
- Products of (n,xn) reactions on yttrium are easily identifiable
- ullet Half-lives of the products have good length for γ -spectrometry
- \bullet γ transitions are intensive enough for detection and are well separated from each other

F	Reaction	E_{thr} [MeV]	$T_{\frac{1}{2}}$	$ extstyle{E}_{\gamma}$ [keV]	I_{γ} [%]
⁸⁹ Y	′(n,2n) ⁸⁸ Y	11.6	106.626 d	898.042	93.683
				1836.063	99.24
⁸⁹ Y	′(n,3n) ⁸⁷ Y	21.1	79.8 h	388.531	82.2
				484.805	89.845
89Y	(n,3n) ^{87<i>m</i>} Y	21.6	13.37 h	380.79	78.055

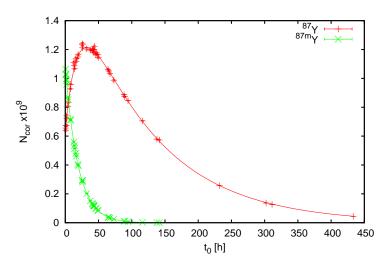

γ -spectroscopic methods

- With accurate knowledge of isotopic composition, it is possible to measure cross-section
- With known cross-section the integral of the beam is possible to determine
- Investigated reactions: ⁸⁹Y(n,2n)⁸⁸Y, ⁸⁹Y(n,3n)⁸⁷Y
- Equations for determining of cross-section in case of simple decay

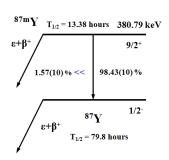
$$\begin{split} N_{yield} &= \frac{S_{peak} \cdot C_{abs}\left(E\right)}{I_{\gamma} \cdot \varepsilon_{p}\left(E\right) \cdot COI\left(E\right) \cdot C_{area}} \frac{t_{real}}{t_{live}} \frac{e^{\lambda \cdot t_{0}}}{1 - e^{-\lambda \cdot t_{real}}} \frac{\lambda \cdot t_{irr}}{1 - e^{-\lambda \cdot t_{irr}}}, \\ \sigma &= \frac{N_{yield} \cdot S \cdot A \cdot B_{a}}{N_{n} \cdot N_{A} \cdot m}. \end{split}$$


Self-absorption correction - $C_{abs}(E)$

$$C_{abs} = \frac{\int\limits_0^D \frac{I_0}{D} dx}{\int\limits_0^D \frac{I_0}{D} e^{-\mu \cdot x} dx} = \frac{\mu \cdot D}{1 - e^{-\mu \cdot D}}.$$


Square emitter correction - C_{area}

$$C_{area} = \frac{\varepsilon_{foil}}{\varepsilon_{point}}.$$

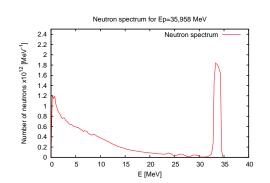

Decay of 87 Y and 87 mY

In case of decay of 87 Y and 87 mY

Correction for decay during cooling and irradiation

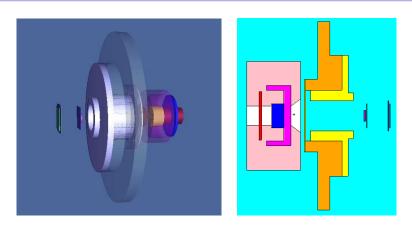
- In case of ⁸⁹Y(n,3n)⁸⁷Y reaction the ground and isomeric states are produced simultaneously
- For determination of ⁸⁷Y ground state production it is necessary to involve 87mY decay to the ground state.

$$\textit{N}_{g0} = \frac{\textit{S}_{\textit{peak}} \cdot \textit{C}_{\textit{abs}}\left(\textit{E}\right) \cdot \textit{B}_{\textit{a}} \cdot e^{\lambda_{\textit{g}} \cdot t_{0}}}{\textit{I}_{\gamma} \cdot \varepsilon_{\textit{p}}\left(\textit{E}\right) \cdot \textit{COI}\left(\textit{E}\right) \cdot \textit{C}_{\textit{area}}} \frac{t_{\textit{real}}}{t_{\textit{live}}} \frac{1}{\left(1 - e^{-\lambda \cdot t_{\textit{real}}}\right)} + \frac{\lambda_{\textit{m}} \cdot \textit{N}_{\textit{m0}}}{\lambda_{\textit{g}} - \lambda_{\textit{m}}} \left(1 - e^{\left(\lambda_{\textit{g}} - \lambda_{\textit{m}}\right) \cdot t_{0}}\right)$$


$$\textit{C}_{\textit{irr}} = \frac{\textit{P}_{\textit{g}} \cdot t_{\textit{irr}}}{\textit{N}_{\textit{g}0}} = \frac{\lambda_{\textit{g}} \cdot t_{\textit{irr}}}{1 - e^{-\lambda_{\textit{g}} \cdot t_{\textit{irr}}}} - \frac{\textit{N}_{\textit{yield},m}}{\textit{N}_{\textit{g}0} \cdot \left(1 - e^{-\lambda_{\textit{g}} \cdot t_{\textit{irr}}}\right)} \left(1 - \frac{\lambda_{\textit{m}} \cdot e^{-\lambda_{\textit{g}} \cdot t_{\textit{irr}}} - \lambda_{\textit{g}} \cdot e^{-\lambda_{\textit{m}} \cdot t_{\textit{irr}}}}{\lambda_{\textit{m}} - \lambda_{\textit{g}}}\right)$$

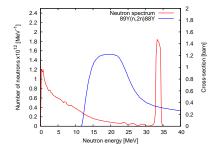
$$N_{yield,g} = N_{g0} \cdot C_{irr}$$

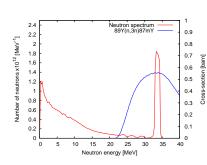
Fast neutron source


- Source based on reaction Li⁷(p,n)Be⁷
- Neutron energy range 10-37 MeV
- Source intensity $\sim 10^8 \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$
- Spectrum is simulated using MCNPX

Model of the neutron source with samples

Two yttrium samples for each irradiation, each irradiated with gold foil:

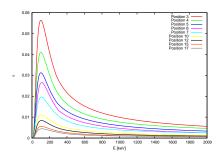

- YN 25×25×0.64 mm solid foil, distance 123 mm
- YO \bigcirc 9×1.5 mm pill, distance 103 mm



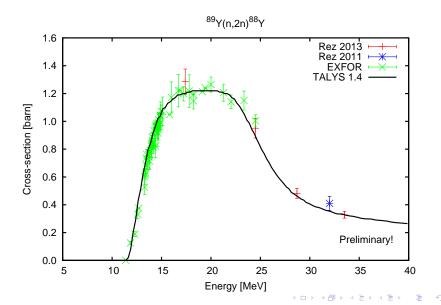
Background subtraction

- Neutron source is not monoenergetic
- Neutron background subtraction based on folding of neutron spectrum and cross-section

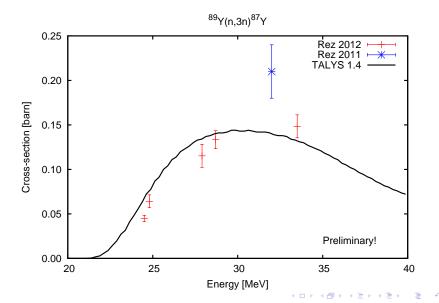
$$C_{bgr} = \frac{\int\limits_{Peak} \sigma(E) \cdot N(E) dE}{\int\limits_{Spectrum} \sigma(E) \cdot N(E) dE} \longrightarrow C_{bgr} = \frac{\sum\limits_{i \in Peak} \sigma_i \cdot N_i}{\sum\limits_{i} \sigma_i \cdot N_i}$$

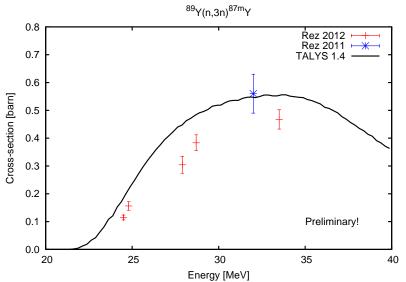


Measurement equipment

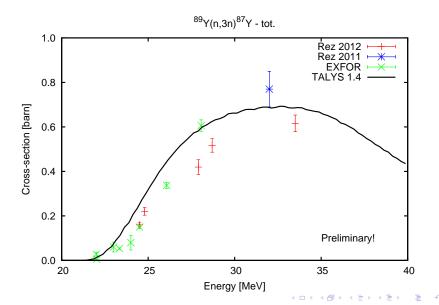

HPGe spectrometer CAN35

- Relative efficiency 35%
- Calibration points from 53 to 1836 keV
- Calibrated positions 3, 4, 5,6, 7, 10, 12, 15, 17 cm
- Complete shielding



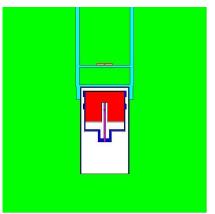

Cross-section of 89 Y(n,2n) 88 Y reaction, $E_{thr} = 11.6$ MeV

Cross-section of 89 Y(n,3n) 87 Y reaction, $E_{thr} = 21.1$ MeV



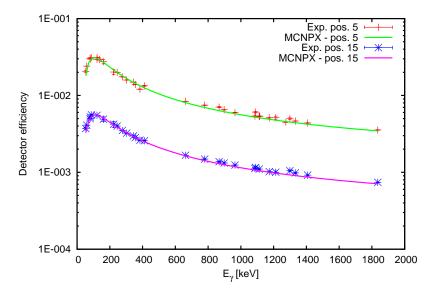
Cross-section of 89 Y(n,3n) 87 mY reaction, $E_{thr} = 21.6$ MeV

Total cross section of ⁸⁹Y(n,3n)⁸⁷Y reaction

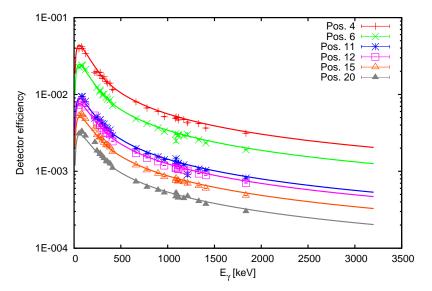


What to do next?

The data are still preliminary, but there should not be significant changes. Now we are going to concentrate on:


- Neutron spectra determination method
- \bullet γ -spectroscopic corrections accuracy improvement

Detector efficiency simulations



Comparison between experiment and simulation

Comparison between experiment and simulation

Thank you for your attention

The experiment was supported by ERINDA^1 and $\mathsf{CANAM}^2.$

¹http://www.erinda.org

²http://canam.ujf.cas.cz