

²⁴¹Am: a difficult actinide for (n,γ) cross section measurement

M. Rossbach¹, C. Genreith¹, T. Belgya², Zs. Revay³

¹Institute for Energy and Climate Research, IEK-6, Forschungszentrum Jülich GmbH, 52424 Jülich, Germany
²Centre for Energy Research, Budapest, Hungary
³Heinz Maier-Leibnitz Zentrum (MLZ), TUM, Garching, Germany

Content:

- ²⁴¹Am: Importance in the nuclear fuel cycle
- Sample preparation for PGAA
- Irradiation and spectrum evaluation
- Thermal neutron capture cross sections
- Conclusions and future plans

²⁴¹Am: Importance in the nuclear fuel cycle

1 ton of nuclear fuel contains:

- 955.4 kg U
- 8.5 kg Pu

Minor actinides (MA):

- 0.5 kg ²³⁷Np (t_{1/2}= 2.14 10⁶ y)
- 0.6 kg ²⁴¹⁺²⁴²Am (²⁴¹Am: t_{1/2} = 432 y)
- 0.02 kg Cm (²⁴⁵Cm: t_{1/2}= 8500 y)

Long lived Fission Products:

•	0.2 kg ¹²⁹ l	(t _{1/2} = 1.57 10 ⁷ y)
•	0.8 kg ⁹⁹ Tc	(t _{1/2} = 2.1 10 ⁵ y)
•	0.7 kg ⁹³ Zr	(t _{1/2} = 1.5 10 ⁶ y)
•	0.3 kg ¹³⁵ Cs	(t _{1/2} = 2.0 10 ⁶ y)

Stable Isotopes:

- 10.1 kg Lanthanides
- 21.8 kg other stable lsotopes

Production and decay of ²⁴¹Am in nuclear fuel

9/30/2013

²⁴¹Am: Importance in the nuclear fuel cycle

Spent fuel toxicity, from: RED-Impact, Synthesis Report, Jülich, 2008

Sample preparation for PGAA

²⁴¹Am samples of 4-5 MBq have been prepared by PTB-Braunschweig

These samples were sealed in 0.2 mm quartz blades with epoxy and additionally sealed in Teflon[©] bags.

Sample preparation for PGAA

Samples are placed at an angle of 45° with the neutron beam in the sample chamber in front of the detector.

Measurement Facilities

FRM II

Budapest

Experimental setup

GEANT4 simulation Final ERINDA User Meeting and Scientific Workshop, CERN, Geneva N Energy spectrum

Spectrum evaluation

thermal equivalent neutron flux in the sample is: $\Phi_n = \frac{P_{411}}{N_{Au} \times \sigma_{411} \times t_{irr}}$, hermal equivalent neutron flux in the sample is: $\Phi_n = \frac{P_{411}}{N_{Au}} \times \sigma_{411} \times t_{irr}$, $\overline{P_{10}} = \frac{10^5}{10^4}$ partial gamma ray production cross section is: $\sigma_{\gamma} = \frac{P_{\gamma}}{N \cdot \Phi_n \cdot t_{irr}}$, $\overline{P_{10}} = \frac{10^5}{10^2}$

Monte Carlo simulations using the Geant4 code were carried out to account for self-shielding effects in the sample.

P is the corrected peak area, σ the corresponding partial gamma ray production cross section , N the number of atoms and t_{irr} the irradiation time.

gamma ray spectra were evaluated using Hypermet-PC

Thermal cross sections calculated using the ²⁴²Pu X-Ray emission at 99 and 103 keV after ^{242g}Am decay to ²⁴²Pu Final ERINDA User Meeting and 9/30/2013

Why ²⁴²Pu x-rays?

Mitglied in der Heimholtz-Gemeinschaft

Thermal neutron capture cross section of ²⁴¹Am

Thermal neutron capture cross section of ²⁴¹Am

Mitglied der Helmholtz-Gemeinschaft

Problems in ²⁴¹Am cross section determination

- Preparation of samples is awkward due to self-radiation of ²⁴¹Am.
- Branching ration for ^{241g}Am and ^{241m}Am crucial for σ_0 ²⁴¹Am (Fioni, 2001: 0.914 ± 0.007)
- Evaluation based on x-rays from decay of ²⁴²Am requires a LED.
- Low energy resonances influence thermal cross section determin.
- Uncertainty is dominated by emission probability of x-rays.
- Low abundance of prominent prompt gamma lines make σ_{γ} determination difficult.

We need stronger samples

Thank You!

- Petra Kudejova, Heinz Maier-Leibnitz Zentrum (MLZ), TUM, Garching, Germany
- Laszlo Szentmiklosi, Centre for Energy Research, Hungarian Academy of Sciences
- Peter Schillebeeckx, Nuclear Physics Unit, EC-JRC-IRMM, Geel
- "This work was supported by the European Commission within the Seventh Framework Programme through Fission-2010-ERINDA (project no.269499)."