

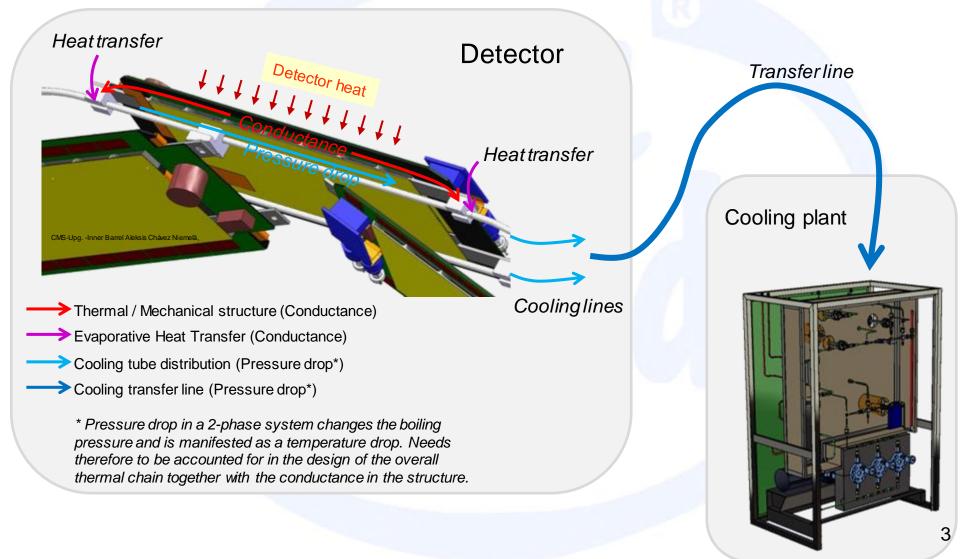
Novel technologies and materials for thermal management

ECFA High Luminosity LHC Workshop Session: Tracking Systems and Associated Electronics and Readout

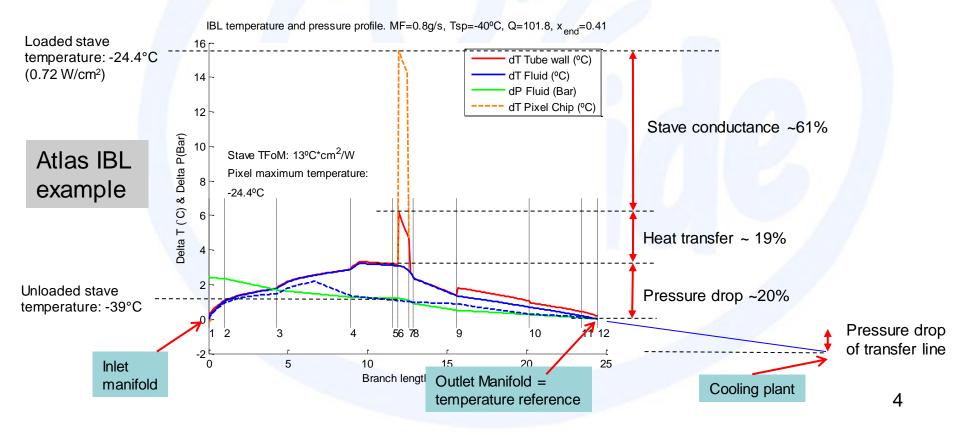
Aix les Bains, 2 October 2013

Bart Verlaat (Nikhef/CERN) on behalf of all my colleagues contributing to thermal management development in HEP

Introduction



- Thermal management is more important for HL-LHC detectors than ever before
- High radiation doses requires silicon detectors to be cold
 - To avoid thermal runaway
 - To avoid reversed annealing
 - General $T_{silicon} < -5^{\circ}C$
 - Cooling between -20°C and -40°C
- Whole thermal chain from detector towards cooling plant needs to be optimized
 - Construction materials with low radiation length and high thermal conductance
 - Reduced cooling pipe sizes and distribution piping


A typical Detector thermal path

Detector Technologies Design of thermal structures: From source to sink

- Thermal management optimization is evaluating the whole thermal chain
 - Conductance of thermal-mechanical support structure towards cooling
 - Optimization of cooling pipe dimensions
 - Optimization of coolant transfer system (From detector to cooling plant)

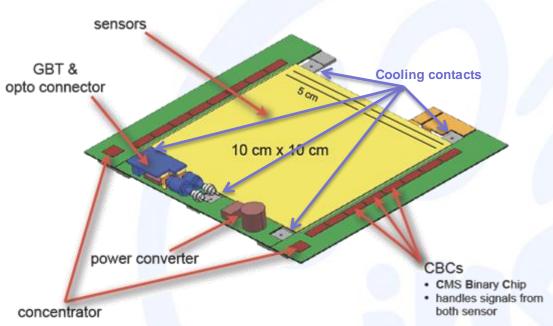
- From source (silicon) to sink (cooling plant)

- Three area's of expertise can be distinguished:
 - A. Thermal mechanical support structures design (mechanical and materials engineering)
 - B. Geometry and lay-out optimization of the cooling lines (thermodynamics)
 - C. Development of cooling stations including fluid transfer (thermodynamics)

EF

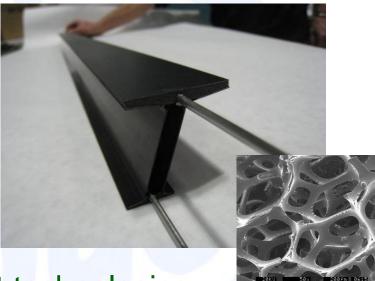
A. Thermal mechanical support structures design (1)

- Optimization of the thermal/mechanical support structures of the silicon detectors
- Materials engineeering focused on the following properties:
 - Low radiation length
 - High thermal conductivity
 - High stiffness
 - Low CTE (Coefficient of Thermal Expansion)
 - Radiation resistant
 - Low temperature resistant
- Examples of candidate materials fulfilling above properties
 - Carbon based materials in several appearances
 Carbon foam
 TPG (Thermal Pyrolytic Graphite)
 Carbon fleece
 Diamond
 - Titanium cooling pipes (Light weight / low CTE metal)
 - High conductive glues and resins
 - Silicon or polymer micro-channels plates
- Interesting new technologies are being explored; known technologies need to be re-qualified for higher radiation and lower temperatures
- These technologies are the core of the future detector structures; developments are carried out within the detector collaborations, in close connection with the specific details of the detector design



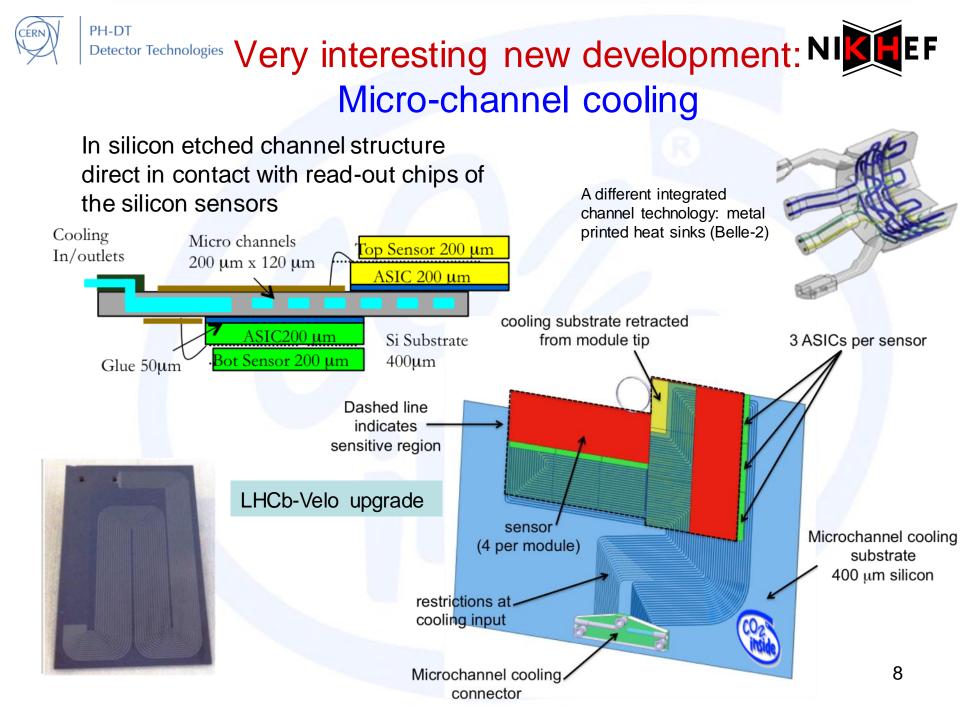
A. Thermal mechanical support structures design (2)

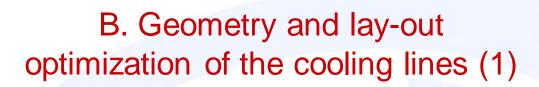
CMS-Thermal path oriented structures


PH-DT

Detector Technologies

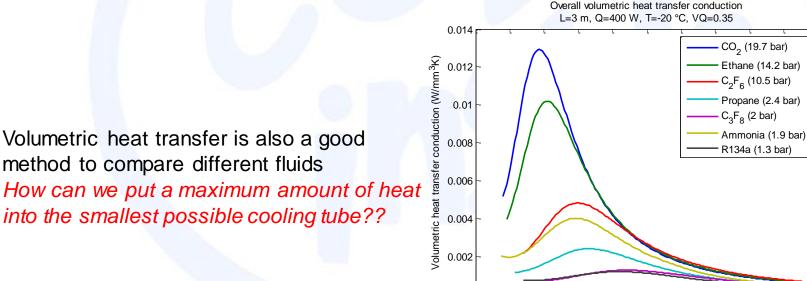
Atlas- Carbon foam filled staves embedded in carbon fiber


NIKEF



Different experiments with different technologies

Alice: Very lightweight space frame structures



- Detectors require low mass cooling.
 - CO₂ has the best properties for efficient cooling in small tubes for the working temperature range of silicon detectors
 - +20°C (Commissioning) down to -40°C
 - What is the secret of CO₂?

PH-DT

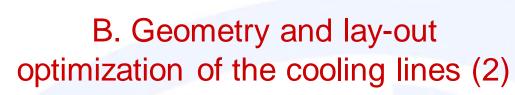
Detector Technologies

- Low viscosity, high pressure, high latent heat
- CO₂ cooling has been proven to work for AMS and LHCb-Velo.
 - CO₂ cooling foreseen for most new silicon detectors.

05

2

3

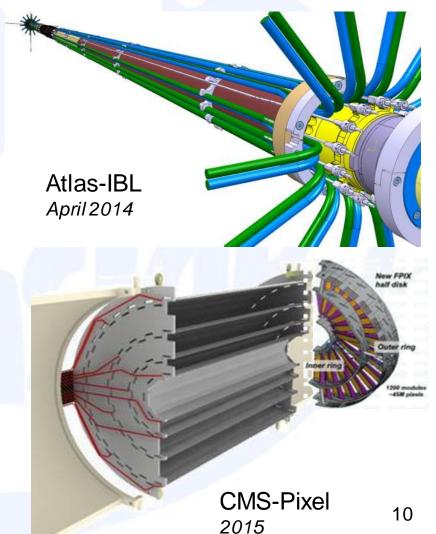

5

Tube diameter (mm)

Interesting: Performance almost linear with fluid pressure.

10

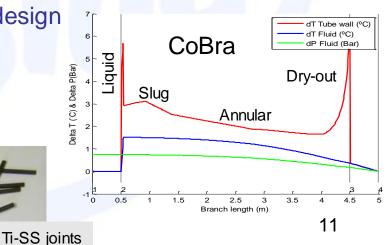
8


Operational CO₂ cooling (With good track record)

PH-DT

Detector Technologies

CO₂ cooling under construction:



B. Geometry and lay-out optimization of the cooling lines (3)

- Future detectors have a complex cooling infrastructure inside.
 - Many different cooling lines (wrt power and geometry)
 - Good understanding of fluid flow behavior is needed
 - Development of calculation models is crucial
 - · Verification of models by experiments
 - Cooling lines are part of the thermal/mechanical support structure design and optimization
 - The detector performance does not stop at the pipe wall!
 - This most complex part of the cooling system is in general under estimated
- Needs close collaboration between cooling experts and detector development groups
- Is important in the early stage of a detector design
 - Integration through the whole detector
 - Is related to the segmentation in the detector
- New promizing technologies
 - Flexible vacuum insulated cooling tubes
 - 2-phase flow modeling like CoBra
 - Special joining techniques
 - Brazing and orbital welding of new materials

PH-DT

Detector Technologies

C: Development of cooling stations NIC including fluid transfer (1)

- Cooling plant development is based on LHCb-Velo cooling concept
 - Many new systems built based on LHCb design
 - Currently scaling from 1 kW (LHCb) to 15 kW (CMS)
 - In future scaling to 100 kW +
 - Modular approach of smaller systems, enhancing redundancy (E.G. 5x20kW)
- CO₂ cooling is developed for commercial refrigeration as a green refrigerant
 - Benefit from industry product development
 - But: the way we operate our systems is significantly different.
 - Need continuous development to satisfy our own specific needs.
- Standardization of design, control and maintenance for different experiments
- Centralized development ongoing in CERN PH-DT
 - Need to strengthen team to be ready for large future systems

EF

From LHCb to:

PH-DT

Cloning LHCb-concept for new systems

C: Development of cooling stations including fluid transfer (3)

- A large demand from detector development groups for CO₂ test equipment.
- A compact CO₂ cooler called Traci is developed by CERN PH-DT & Nikhef
- User friendly system for non CO₂ experts.
- Currently suffering from an unreliable pump
 - Need vigorous R&D effort for the development of small CO₂ pumps
 - Small CO₂ pump not on the market
 - R&D is urgent
 - Lack of resources for development

NIKEF

Conclusions

- The development of detector cooling for the HL-LHC upgrades presents substantial challenges
 - To achieve optimal performance the thermal chain needs to be optimized with an integral perspective
- The design of mechanical structures and thermal contacts will profit from novel material and technologies
 - Promote initiatives to share knowledge and experience
 - E.g. Forum on Tracking Detector Mechanics http://www.physics.ox.ac.uk/forum2013/index.asp
- The realization of the cooling systems requires a common center of expertise for design, construction and operation
 - Ensure coherent and cost-effective developments, with standardized components
 - Maintain and evolve the necessary technical competencies
 - Simulation
 - Thermodynamics (materials, piping, fluids, plants)
 - System construction & operation (including controls)
 - The required competencies exist in the experimental teams in the collaborations and the CERN PH-DT cooling team
 - Further strengthen the common cooling project to build on current experience and the operation phase ahead, and to establish partnerships for future R&D
- Significant resources and funding needed for developments addressed above