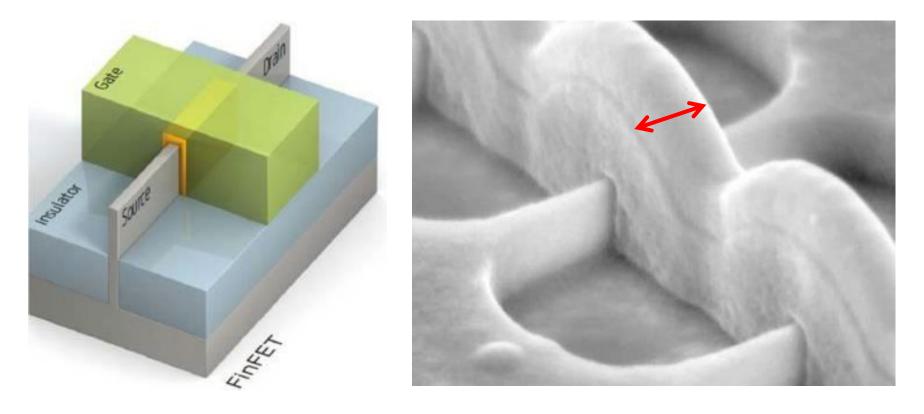
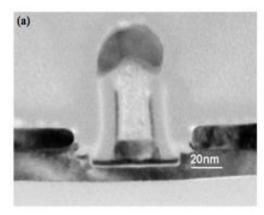
IC Design and Technologies for HL-LHC

A. Marchioro / CERN-PH-ESE

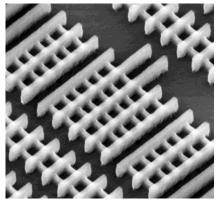
Outline


- Background and motivation
- Technical roadmap
- Requirements
- Organizational issues
- Summary

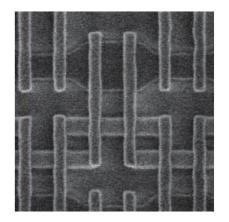
Background


- Modern HEP experiments depend on IC technology as much as they depend on powerful new accelerators.
- There is no distinction any more between detector and electronics, they are inseparable parts of the same instrument.
- COTS ICs are not sufficient because of unique radiation and functionality requirements.
- It is the functionality built into ICs that can add new "capabilities" to the detectors.

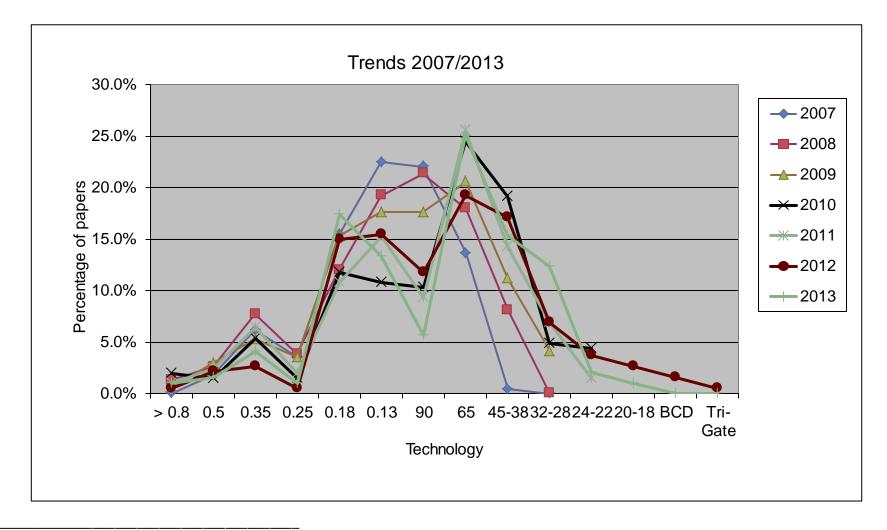
State of the art 2013: 16 nm FINFET


16 nm

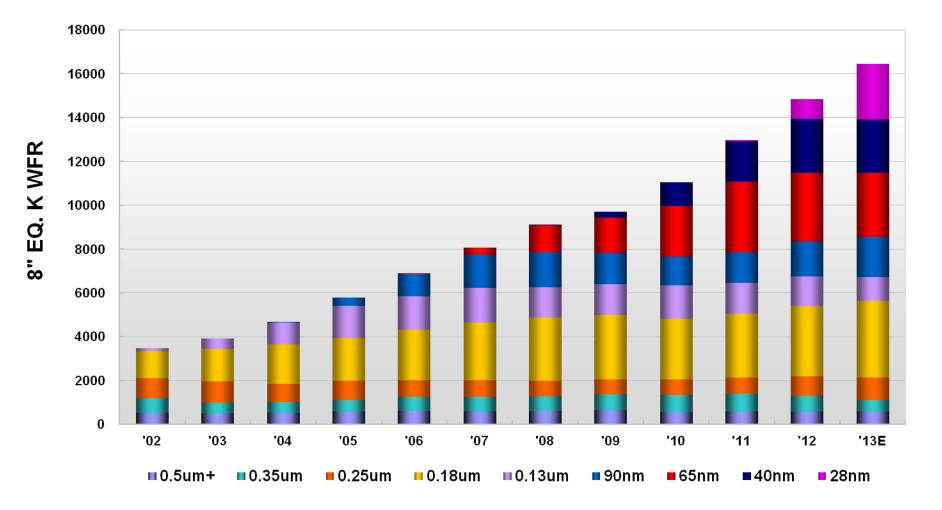
Some advanced devices


20 nm FDSOI from ST

22 nm TriGate from Intel



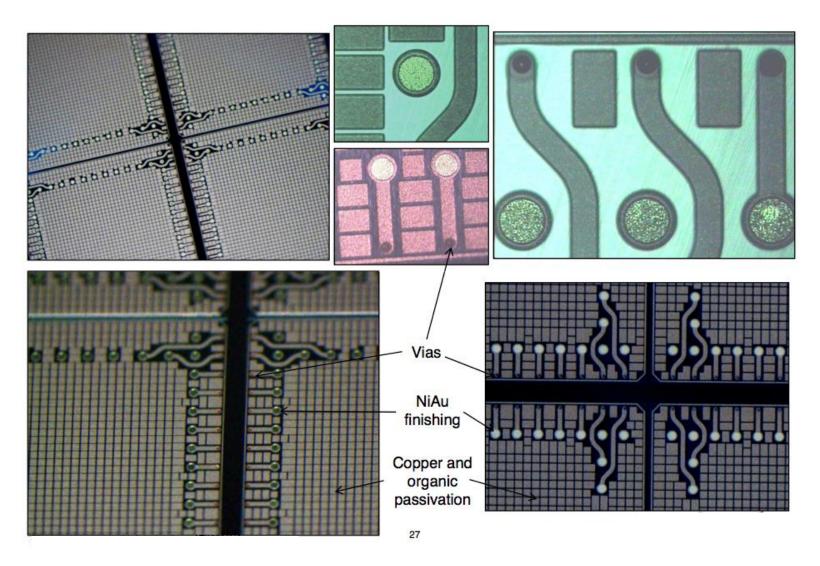
28 nm planar from TSMC


32 nm SOI from IBM

Technologies used in ISSCC^[\$] papers

^[\$] ISSCC: International Solid State Circuits Conference

Installed Capacity by Technology


Expected Requirements: CMOS

	.35 um Power	250 nm	180 nm	130 nm	65 nm	< 65 nm
Pixels (Hybrids)				1	1	1
Pixels (Monolithic)			\checkmark	\checkmark	1	
Si Trackers				1	1	
Calorimeters		\checkmark		\checkmark		
ТРС				1	1	
MPGD				1		
Links (Electrical and Optical)				1	1	1
Embedded Power	\checkmark		1			

Interconnects

- New High-Density-Interconnect technologies are required:
 - To manufacture large area, fully sensitive detectors
 - To allow new functionalities to be implemented: mainly stacks of sensor-analog-digital chips with lower dead-material budgets
 - For reducing assembly costs of detectors (today's this is the dominating cost)

HDI Example: TSV

Requirements: High Density Interconnect

	Low Density Bump Bonding	High Density Bump Bonding (< 100 um)	LD TSV	HD TSV (< 25 um)
Pixels	\checkmark	\checkmark	\checkmark	1
Si Tracker	\checkmark		\checkmark	
Calorimeters	✓			
Links	\checkmark		\checkmark	
ТРС	\checkmark		\checkmark	
MPGD	\checkmark		\checkmark	
Powering	✓		\checkmark	

Organizational issues

• There is a large discrepancy between industrial and HEP projects cycles:

	Product Design Cycle	Technology Cycle
Industry	6-9 m	< 2 y
HEP	> 3 y	> 5 y

- Large and complex SoC design require large and hierarchical engineering design teams
 - Productivity of teams is a non-linear function of their size
- Many IP blocks can be purchased from external suppliers
 - ADC macros, PLLs, SRAMs, IO libraries etc.
- "Routine tasks" can also be purchased
 - Chips assembly, P&R services etc.
- Pure R&D is necessary only in relatively few domains
 - Under the excuse of "too expensive", HEP rarely uses external design services and duplicates efforts often

Examples of complexities accompanying technology scaling

- Technical:
 - with shrinking the following issues become progressively more important:
 - matching, planarity, proximity effects, short channel effects, wide channel effects, NBTI, hot-electron, number of model parameters, on-chip signal coupling, lower intrinsic transistor gain, number of technology options, lower supply voltage, higher gate leakage, atomic variability, line-edge-roughness...
- Thickness of technology design manual:
 - 250 nm: ~ 200 pages
 - 130 nm: ~ 500 pages
 - 65 nm: > 1500 pages

Costs/Performance^[\$]

Generation	Cost / mask	Cost / 8"	Cost	Density	Design	Power per
[nm]	set	wafer	Proto/mm2	gates/[unit A]	Complexity	gate
250	1.0	1.0	1.0	1	1	1.00
130	2.9	0.9	6.0	5	3-5	0.36
65	5.3	1.1	10.8	27	10-25	0.18
28	15.0	2.4	36.3	50	25-125	0.09

^[\$] Normalized to 250nm generation

μ Technologies in HEP

- New technologies open up many new possibilities for creative physicists/engineers
 - There is no doubt that commercial microelectronics technologies available today are well ahead of most requirements foreseen for the HL-LHC generation
- New technologies can only be exploited if:
 - The design groups organizations are matched to the challenges and risks accompanying these technologies
 - Minimum group sizes to be increased
 - Project and personnel continuity to be preserved
 - Duplications to be avoided
 - The HEP community manages to keep a "privileged" (i.e. non strictly \$ based) access to advanced foundries

Summary

- Advanced IC technologies are available to satisfy HL-LHC needs
 - NRE Costs are high but not out of reach with respect to the size of the HL-LHC upgrade projects
 - Radiation robustness to be validated and monitored
 - HDI: TSVs may or may not become available for "small" customers
- To use these technologies successfully and efficiently, substantial engineering investments are necessary
 - Adapt and evolve our design teams to the structure needed to manage these complex technologies
 - Keep resources matched to the ambitions
 - Strengthen collaborative support and shared services inside community