Insights from d+Au in PHENIX

Barbara Jacak HEP 2013 December 19, 2013 <image>

Outline

- Hydrodynamic flow in Au+Au and d+Au Flow in d+Au? What does this say about thermalization?
- Heavy quark production

Cold nuclear matter affects initial production Bound state suppessed by color screening in plasma

Direct photons

Nuclear gluon distribution we start out with

i.e. what does plasma thermalize *from*?

Future prospects

Measuring the collective flow (v₂) in A+A

Quark gluon plasma flows like a liquid

- huge pressure buildup
- large anisotropy → it all happens fast
- efficient equilibration mechanism??

Hydrodynamics reproduces elliptic flow of q-q and 3q states Mass dependence requires *QGP - NOT gas of hadrons Low viscosity/entropy ratio*

So how about p/d + A and p+p?

- Hydrodynamics needs approximate equipartition of particle momenta to be usable (~local equilibrium)
 And a system of sufficient volume to call it "matter"
- Can these conditions be satisfied in small systems? i.e. do they also evolve hydrodynamically?
- Until a few years ago, everyone thought "no"

Two-particle angular correlations

86

C. Loizides

How about at RHIC?

• To quantify the Fourier expansion must remove the jet

Do by subtraction: (central d+Au – peripheral d+Au)
 i.e. high multiplicity – low multiplicity

Di-hadrons in thePHENIX central arms $0.48 < |\Delta \eta| < 0.7$

Central - peripheral to remove remaining jet

Looks awfully flow-like!

Opposite sign enhances jet contribution; subtraction works!

> arXiv: 1303.1794 Accepted in PRL ⁸

v₂ value

arXiv:1303.1794

 $v_2 > v_2$ at LHC, but note that $ε_2$ d+Au > $ε_2$ p+Au v_2 agrees w/hydro if η/s ≤ 0.08 $v_3 \sim 0$

 v_2/ε_2 vs multiplicity

• \rightarrow approximate scaling of v₂/ ϵ_2 with dN/dη

a common relationship between geometry and v₂?

Long range correlations in d+Au at RHIC!

PH*ENIX "ridge" a large η NB: jets not removed; $v_3 \sim 0$ ¹²

Even larger rapidity gap

Should be radial expansion, too

- Radial velocity boost -> mass dependent momentum boost
 Mass splitting seen; smaller than at LHC... less dense & less flow Or maybe LHC p_T increase is not all due to radial flow?
 How can small systems thermalize so quickly???
 - Insufficient quark-gluon scatterings to get there!
- Maybe we don't start with totally independent gluons??

PH

Heavy Flavor

Production of c+cbar and b+bbar **Probes nuclear gluon distribution in d+Au** initial state effects: gluon saturation shadowing, anti-shadowing 25 parton energy loss 20 parton multiple scattering ^ل 15 P⁴⁹Np * quarkonia, open heavy flavor Quarkonia survival 10 Screening in QGP breaks them up Sensitivity to medium in d+Au * J/ψ vs. ψ' vs. Y different radius & binding energy

Shadowing, breakup & Cronin effect PRC87, 034911 (2013)

PH^{*} ENIX

Larger, less tightly bound c-cbar: ψ'

arXiv: 1305.5516

- + Clearly more suppressed than J/ψ
- Cannot be shadowing or parton energy loss
 These are initial state effects

- ψ'/ J/ψ decreases
 linearly with dN_{ch}/dη
- + Break-up of some sort! early or late?

Vs dependence is a key tool!

- Time in nucleus is short at Vs = 200 GeV
 Shorter than bound state formation time! Late final state effect?
- Suppression vs. dN_{ch}/dη suggests breakup by comoving hadrons
 dN_{ch}/dη=15 in central d+Au; ψ' easier to break up than J/ψ (R. Vogt)

Open heavy flavor: mid-rapidity e[±]

PRL109, 242301 (2012)

- + R_{dA}=1 for peripheral collisions
- Enhancement at low p_T in central collisions
 Recall J/ψ p_T evidence for parton multiple scattering
 "classic" reason for Cronin Effect

Rapidity dependence of open heavy flavor

PHENIX measures:
non-photonic single leptons
also intermediate

mass lepton pairs

- Clear enhancement in Au-going direction sensitive to high-x in Au (Anti-shadowing regime)
- Suppression in d-going direction sensitive to low-x (shadowing)
- Enhancement also at mid-rapidity
 PIMENIA

• Los Alamos

HF e-µ pair yields

Fit p+p yield with shapes from generators:

PYTHIA: $\sigma_{cc} = 340 \pm 29 \pm 114$

POWHEG: $\sigma_{cc} = 511 \pm 44 \pm 198$

MC@NLO: $\sigma_{cc} = 764\pm64\pm284$ g radiation broadens $\Delta\phi$

In d+Au, peak @ $\Delta \phi = \pi$ is GONE

-Parton scattering/energy loss after cc production affects angular correlation
-Shadowing at forward y reduces charm yield
-Charmed baryon enhancement in dA reduces HF lepton yields

Consistent with previous measurements... NB: rapidity acceptance effects PH*ENIX

We've learned

- Gluons are suppressed at small x (deep in nucleus)
 Therefore *production* of heavy quarks also suppressed
 Scattering/energy loss before & after hard collision??
- At larger x no such suppression
 See effects expected from multiple scattering Shift particles to larger p_T...
- Some of the J/ψ suppression in Au+Au is due to Au nucleus Make fewer charm-anticharm pairs to begin with Gluons lose some energy *before* producing c-cbar pair Some J/ψ *break up* by colliding with surrounding particles Looser bound ψ' is more easily broken up

What is the initial gluon distribution?

FUTURE PROSPECTS

Untangling the initial state Quantifying properties of the quark gluon plasma

MPC-EX upgrade

PH Reconstruct prompt γ and π^0 to 80 GeV: low & high x!

sPHENIX upgrade

- Jet, di-jet and γ-jet physics
- * Additional inner tracking (RIKEN)
 - high-z fragmentation fn.
- Add pre-shower to EMCAL
 π⁰ R_{AA} to 40 GeV/c; γ_{dir}
 eID for Υ states
 tag c,b jets
- Add forward detectors for p+A
- Fits on a truck!

Evolution: sPHENIX -> ePHENIX for eIC

- For p+A: add EM and hadron calorimeter endcap + tracking to sPHENIX barrel
- Further GEM trackers forward, TPC mid-y, and RICH/DIRC/ Aerogel for forward PID to produce "ePHENIX"

e+A and e+p

Cleanest way to study initial gluon & quark distribution deep inside the nucleus
 What is it that thermalizes so fast??
 Do we really need a tiny black hole to drive thermalization?? (as expected in ∞ coupling approximation)

• Exciting opportunity to find spin carriers inside the proton

Add electrons to RHIC (via an energy recovery linac)
 Or add hadrons to CEBAF

Evolve sPHENIX to measure particles from e+A & e+p

Rapidity dependence is coming

Forward vertex detector FVTX improves mass resolution → Ψ' at forward rapidity!

Di-electrons from thermal γ conversions in Au+Au

Initial State: are gluons shadowed or saturated?

Many types of strongly coupled matter

Quark gluon plasma is like other systems with strong coupling - all flow and exhibit phase transitions

Cold atoms: coldest & hottest matter on earth are alike!

Dusty plasmas &

In all these cases have a competition: Attractive forces ⇔ repulsive force or kinetic energy High T_c superconductors: magnetic vs. potential energy Result: many-body interactions, not pairwise! QCD is a great test lab: we know the Lagrangian!

Another handle on c & b: di-electrons

p_Tvs. mass provides b/c separation

Sensitive to c-cbar opening angle **D.** Sharma

	C	Acceptance	PYTHIA e^+e^- pairs	MC@NLO e^+e^- pairs
⁵ _10 ⁻⁶ (رد ²)			from $c\bar{c} [F_{BR}^{c\bar{c}-1}]$	from $c\bar{c} [F_{BR}^{c\bar{c}}]^{-1}$
<u>(9)</u> 10 ⁻⁸		4π	1	1
//dmee		$ y_{e^+} \& y_{e^-} < 0.5$	0.042	0.035
ਓ 10 ⁻¹⁰	d+Au, √s,,,, = 200 G	$ y_{e^+} \& y_{e^-} < 0.5$	0.0047	0.00022
⊊ 10 ⁻¹²		$m_{e^+e^-} > 1.16 \text{GeV}/c^2$		
⁵ _01 (²)	C C	$y_e + \& y_e - _{PHENIX}$	0.0023	0.0016
<u>ق</u> 10 ⁻⁸ ي			PYTHIA e^+e^- pairs	MC@NLO e^+e^- pairs
шруур 10 ⁻¹⁰			from $b\bar{b} [F_{BR}^{b\bar{b}}]^{-1}$]	from $b\overline{b} [F_{BR}^{c\overline{c}}]^{-1}$]
ຊ [®] 10 ⁻¹²		$ y_{e}+\&y_{e}- _{PHENIX}$	0.0084	0.0080
st8				•
99)] 10 10 ⁻¹	e+		• If $m_q >> p$, the randomizes the	e^+e^- decay pair correlation of $q\bar{q}$ pair.
Ž 10			• For a very heavy	y quark, the decay electron

- ٢
 - If $m_q >> p$, the e^+e^- decay pair randomizes the correlation of $q\bar{q}$ pair.
 - For a very heavy quark, the decay electron has no directional preference.

The number of e^+e^- pairs from $c\bar{c}$ in 1 unit of rapidity differ by 1.2, that increases to 2.2 if one restricts the mass range above 1 $\text{GeV}c^2$.

For *bb*, the two simulations yield similar results within 5%.

J/ψ (c-cbar bound state) melts in QGP

Suppressed by ~ 5 at RHIC, less at LHC how much is due to cold nuclear matter effects?

<u>ıt time</u>

Study jets with strong medium interaction

Conclusions

- Di-hadron correlations look hydrodynamic at RHIC
 As at LHC. v₂/ε₂ slope vs. dN/dy reflects viscous effects?
- Evidence for (expected) shadowing & antishadowing
 Suppression of J/ψ and di-h beyond shadowing at low x!!
- Heavy Flavor indicates
 parton multiple scattering (Cronin effect)
 parton energy loss; interplay w/other initial state effects?
 sensitivity to fluctuations?
 final state effects break up quarkonia, too
- No strong evidence for direct photon modification at mid-y Need forward rapidity to probe low-x and pin down nPDFs

NEED data vs. y, p_{\tau}, centrality, \sqrt{s}, species to sort it all out!

Extraction of double ridge structure C. Loizides

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - It is assumed that the 60-100% class is free of non-jet like correlations
 - The near-side ridge is accompanied by an almost identical ridge structure on the away-side
 - Similar analysis strategy by ATLAS (PRL 110 (2013) 182302)

88

Di-hadrons in d+Au: initial or final state effect?

Jet correlations

High p_{T_1} maximize jet signal/minimize combinatorial bkgd Near side/same jet produces small $\Delta \eta$ correlation

Correlations in underlying event
 ≥1 low p_T particle for sensitivity to underlying event
 Select maximum Δη

In PHENIX central arms: 0.48 < $|\Delta \eta|$ < 0.7

MPC-central correlations: 3.0 < $|\Delta \eta|$ < 4.0

Control the geometry: ³He + Au

increase the triangularity of the initial state! what happens to v₃?

d+Au & He³+Au in 2015 increased acceptance relative to previous d+Au run (VTX/FVTX) compare with p+A

PH * ENIX

VTX & FVTX

NEED y, p_T, b, Vs, species to understand J/\psi

48

The big question in p+A physics

• Then (the pre-RHIC era):

What do subsequent p-nucleon collisions in p+A have to do with one another?

• Now (the RHIC and LHC era):

What do gluons at small x inside a nucleus have to do with one another?

To answer this: PHENIX studies

Heavy flavor production:
 g+g → c + cbar

Jet and di-jet production:
 g+g → di-jet

Direct photon production:
 (QCD Compton process)
 q+g → γ + hadrons

Turn now to jets and direct photons

arXiv 1205.5359 Hellenius, Eskola, et al

Fit data, including PHENIX $\pi^0 R_{dAu}$

Get b-dependent nPDFs

- Enhancement in peripheral, slight suppression in central Surprisingly strong centrality dependence in nuclear PDFs
- Competing cold nuclear matter effects? Auto-correlations between high p_T processes & centrality measure?

0.0	0	
0.8 0.6	0	52
1		50

Do the π^0 and jets agree?

- Scale π⁰ by 1/0.7
 i.e. 1/<Z_{leading}>
- Agreement is excellent

R_{cp} shows strong
 centrality dependence

Autocorrelation?

How does the presence of a jet with p_T>10 GeV/c modify definition of a "peripheral d+Au collision"?

<u>J/ψ in d+Au</u>

PRL107, 142301 (2011)

forward rapidity probes low-x in Au saturation predicts suppression forward data: non-linear suppression vs. density weighted longitudinal thickness $\Lambda(r_T) \equiv \frac{1}{\rho_0} \int dz \rho(z, r_T)$

- EPS09 nPDF's: linear
- break-up w/fixed $\sigma_{\rm br}$: exponential
- data: ~quadratic

increased suppression at forward rapidity also expected from initial state parton energy loss...

PH

Dense gluonic matter effects observed

Another handle: di-electrons

NB: Classic does not always mean right!

"old" problem with "Cronin effect = parton multiple scattering" How does the parton know it will produce a proton?

