medium-induced gluon radiation: an update

Stéphane Peigné SUBATECH, Nantes peigne@subatech.in2p3.fr

High Energy Physics in the LHC Era Valparaiso, December 16-20, 2013

• Bjorken estimated collisional energy loss

 parton energy loss should be relevant when partonic subprocess occurs in *any* nuclear medium
 nuclear medium = hot QGP or cold nucleus

♦ usually, one calls «anomalous nuclear effects» those responsible for R_{pA} , $R_{AA} \neq 1$

 $R_{AA}(p_T, y, \ldots) = \frac{\text{yield in AA}}{n_{coll}^{AA} \cdot (\text{yield in pp})}$

 $\implies R_{\rm pA}, R_{\rm AA}$ sensitive to medium-induced loss $\Delta E = \Delta E_{\rm med} - \Delta E_{\rm vac}$ *★* radiative loss might be dominant Gyulassy & Wang (1993) *↓* in following, basics of ΔE_{rad} in QCD medium:
• law ΔE_{rad} ∝ L² (for static medium) is valid for specific case of particle suddenly produced in medium

• for a parton prepared long before the target and scattered to small angle, ΔE_{rad} arises from *fully coherent gluon radiation*

♦ although simple to evaluate, coherent energy loss is a *non-trivial* effect:

- looks higher-twist: $\Delta E_{\rm coh}$ is suppressed by a power of $Q_{\rm hard}$ and process-dependent
- but $\Delta E_{\rm coh}$ suppressed by *odd* power of $Q_{\rm hard}$

♦ at large energy, $\Delta E_{\rm coh} \propto E$ can have drastic consequences on phenomenology

for instance: quarkonium nuclear suppression

generalization of LPM effect to QCD (Baier *et al*, 94) 'asymptotic color charge'

$$\Rightarrow \Delta E \sim \underbrace{\alpha_s E \log\left(\frac{q_\perp^2(L)}{\Lambda^2}\right)}_{-} + \underbrace{\mathcal{O}\left(\alpha_s \frac{\mu^2}{\lambda}L^2\right)}_{-}$$

fully coherent ($t_f \gg L$) LPM ($t_f \lesssim L$)

the log arises from k_{\perp} -integral:

 $t_f \gg L \Rightarrow$ whole medium acts as single effective scatterer

 $\Rightarrow \omega dI/d\omega$ obtained from Gunion-Bertsch spectrum induced by single scattering:

Why is fully coherent term ΔE_{coh} rarely discussed?

• main focus has been on parton ΔE through QGP:

does ΔE_{coh} cancel in *medium-induced* loss? $\Delta E_{ind} \equiv \Delta E(L_A) - \Delta E(L_p) \stackrel{?}{=} \alpha_s \frac{\mu^2}{\lambda} (L_A^2 - L_p^2)$

it does in a specific setup Brodsky & Hoyer 93 QED and $q_{\perp}^2(L_A) = q_{\perp}^2(L_p) \Rightarrow \Delta E \propto E^0$ when $E \to \infty$ 'bound on energy loss' • ΔE_{coh} does not cancel in QCD:

in practice, $\sigma_{\rm pA}$ and $\sigma_{\rm pp}$ are either inclusive in p_T or compared in some $\,p_T\,{\rm -bin}\,$

$$\delta p_T|_{\text{bin}} \sim 1 \,\text{GeV} \gtrsim \mu_{eff}(L) \sim \sqrt{\hat{q} \,L} \quad (\hat{q} \equiv \frac{\mu^2}{\lambda})$$

(take $\hat{q}_{cold} \simeq 0.08 \,\text{GeV}^2/\text{fm}$)

 \rightarrow sufficiently inclusive to have, within a p_T -bin:

$$q_{\perp}^2(L_A) \simeq q_{\perp}^2(L_p) + \hat{q}(L_A - L_p)$$

 $\Rightarrow \Delta E_{coh, ind} \propto \alpha_s E \log \left(\frac{q_{\perp}^2(L_A)}{q_{\perp}^2(L_p)} \right) = \alpha_s E \log \left(1 + \frac{\Delta q_{\perp}^2}{q_{\perp}^2(L_p)} \right)$ remark:

suppression $\sim 1/q_{\perp}^2(L_p)$ is specific to above model: 'asymptotic parton' undergoing soft rescatterings QCD: asymptotic charges do not exist color charge must be resolved via hard PQCD process does $\Delta E_{coh} \propto E$ extend to realistic QCD situation? Arleo, S.P., Sami 2011; Arleo, S.P. 2012;

high-energy p-A collision in nucleus rest frame

• tag energetic hadron with $p'_{\perp}|_{hard} \gg \sqrt{\hat{q}L}$ $(\hat{q} \equiv \frac{\mu^2}{\lambda})$

- energetic parent parton suffers:
 - *single* hard exchange $q_{\perp} \simeq p'_{\perp}$
 - soft rescatterings: $\ell_{\perp}^2 = (\sum \vec{\ell}_{i\perp})^2 \sim \hat{q}L \ll q_{\perp}^2$

use opacity expansion (Gyulassy, Levai & Vitev 2000) to derive $\omega \frac{dI}{d\omega}\Big|_{ind}$ (S.P., Arleo & Kolevatov, work in progress) • order n = 1 in opacity ($L \ll \lambda$) (focus on $t_f \gg L$)

$$\begin{split} \omega \frac{\mathrm{d}I}{\mathrm{d}\omega} \Big|_{L \ll \lambda} &\sim \alpha_s \frac{L}{\lambda} \log \left(1 + \frac{\mu^2 E^2}{q_{\perp}^2 \omega^2} \right) \\ \Delta E \Big|_{L \ll \lambda} &\sim \alpha_s \frac{L}{\lambda} \cdot \frac{\mu}{q_{\perp}} E \end{split}$$

• all orders in opacity ($L \gg \lambda$) ($t_f \gg L$)

$$\begin{split} \omega \frac{\mathrm{d}I}{\mathrm{d}\omega} \Big|_{L \gg \lambda} &= \frac{N_c \alpha_s}{\pi} S[\Omega; r]; \quad \Omega \equiv \frac{xq_\perp}{\mu}; \quad r \equiv \frac{L}{\lambda_g} \\ S[\Omega; r] &= \int_0^\infty \frac{\mathrm{d}B^2}{B^2} \operatorname{J}_0(\Omega B) \left\{ 1 - \exp\left[-r\left(1 - B\operatorname{K}_1(B)\right)\right] \right\} \end{split}$$

a simple approximation can be inferred from n = 1 result

$$\begin{split} \omega \frac{\mathrm{d}I}{\mathrm{d}\omega} \Big|_{L \ll \lambda} &= \frac{N_c \alpha_s}{\pi} \frac{L}{\lambda} \log \left(1 + \frac{\mu^2 E^2}{q_\perp^2 \omega^2} \right) \\ \text{by replacing } \frac{L}{\lambda} \to 1 \text{ and } \mu^2 \to \mu^2 \frac{L}{\lambda} \\ &\Rightarrow \omega \frac{\mathrm{d}I}{\mathrm{d}\omega} \Big|_{L \gg \lambda, \ appr} \simeq \frac{N_c \alpha_s}{\pi} \log \left(1 + \frac{\hat{q}L E^2}{q_\perp^2 \omega^2} \right) \end{split}$$

(color factor corresponds to fast gluon)

 $S[\Omega; r]$ (solid lines) compared to $S_{appr}[\Omega; r]$ (dashed lines)

$$\Delta E|_{L\gg\lambda} \propto N_c \alpha_s \, \frac{\sqrt{\hat{q}L}}{q_\perp} \, E$$

in this case radiation is purely from initial state, and $t_f \gg L$ cancels out, giving $\Delta E_{\text{initial}} \sim L^2$

(S.P., Arleo, Kolevatov)

♦ ΔE_{coh} suppressed by *odd* power of Q_{hard} ⇒ cannot be reached in standard twist expansion Qiu & Sterman

no such effect is expected in Drell-Yan process:

At high energy in the target rest frame: DY ~ bremsstrahlung of γ^* and $\sigma_{DY} \leftrightarrow \sigma_{dipole}$ Kopeliovich 95; Brodsky, Hebecker, Quack 96 as in DIS, the DY cross section is dominated by:
 * 'aligned-jet' configuration: 1 - z ~ Λ²/Q² in this region there *might* be some coherent energy loss in DY, but bounded by 1/Q²

$$\frac{\Delta E}{E} < 1 - z \sim \frac{\Lambda^2}{Q^2} \ll \frac{\sqrt{\hat{q}L}}{Q}$$

* symmetric region: $z \sim 1 - z$ in this region $\frac{\Delta E}{E} \sim \mathcal{O}(1)$ is possible, but there is a factor $1/Q^2$ to pay for each dipole rescattering $\Delta E_{coh} \propto E$ has been widely ignored, probably due to: • $\Delta E_{coh} = 0$ for a parton created in a medium belief that Brodsky-Hoyer bound is universal when partonic subprocess is equivalent to small angle scattering of fast color charge, $\Delta E_{\rm coh}$ is the dominant contribution to ΔE -> crucial in phenomenology (François Arleo's talk)