

A Large Ion Collider Experiment

UNIVERSITY of HOUSTON

European Organization for Nuclear Research \nearrow

Recent Results obtained with ALICE at the LHC

Rene Bellwied for the ALICE Collaboration

Valparaiso, Chile 16-20 December 2013 Universidad Técnica Federico Santa María High Energy Physics in the LHC Era

5th International Workshop

- 1. ALICE detector and data taking
- 2. Lessons from bulk production in PbPb collisions
- 3. Intriguing results for pPb collisions
- 4. Puzzles from correlations and quenching measurements
- 5. Puzzles from flavor behavior
- 6. Summary & Conclusions

The Obligatory: the detector **HOUSTON**

a high resolution tracking device in a small magnetic field with superior particle identification capabilities

ALICE

What this detector can do better than any other

UNIVERSITY of HOUSTON

- Particle Identification ! Why ?
- For the bulk (low momentum): Flavor behavior in the QCD crossover region
- For the hard probes (high momentum): Hadro-chemistry in medium and in vacuum

ALICE Data Samples

UNIVERSITY of HOUSTON

Year	System	Energy √s _{NN} (TeV)	Delivered Integrated Iuminosity	 ❑ Two Pb-Pb runs ✓ In 2010 - commissioning and first data taking ✓ In 2011 – Second run, factor 10 increase in
2010	Pb-Pb	2.76	10 µb ⁻¹	Iuminosity □ p-Pb occurred this year ✓ LHC delivered target Iuminosity
2011	Pb-Pb	2.76	0.1 nb ⁻¹	In addition p-p runs at √sNN ₌ 0.9, 2.76, 7 and 8 TeV
2013	p-Pb Pb-p	5.02	15 nb ⁻¹ 15 nb ⁻¹	 Long shutdown now (LS1) Various upgrades and maintenance in progress

p-Pb and Pb-p samples

UNIVERSITY of HOUSTON

Dp-Pb

 proton going towards muon arm p (4 TeV)

y_{см} = 0.465 in the p-beam direction

DPb-p

 Pb nucleus going towards muon arm

Lessons from the bulk in PbPb (I)

UNIVERSITY of HOUSTON

- ❑ Volume twice as large as at RHIC
- Lifetime 20% longer than at RHIC

Multiplicity twice as large as at RHIC
 Energy density three times that of RHIC

Lessons from the bulk in PbPb (II)

UNIVERSITY of HOUSTON

The famous Guiness Book of Records entry: $T_{LHC} = 1.4 T_{RHIC}$ T_{av} for thermal photons = 304+-51 MeV $T_{init} = 500-600$ MeV

Lessons from the bulk in PbPb (III)

FOPI

10³

 $\sqrt{s_{NN}}$ (GeV)

🛄 ALICE, PRL 105 (2010) 252302 🛄 ALICE, PRL 109 (2012) 252301 $1/N_{ev} \ 1/2\pi p_T \ d^2 N/(dp_T dy) \ (GeV/c)^2$ 0.08 10⁶ 10⁵ 0.06 ę 🖞 —— PHENIX, Au-Au, √s_{NN} = 200 GeV $\overline{\mathbf{Q}} \xrightarrow{\mathbf{Q}} \overline{\mathbf{Q}}$ 0.04 10³ ^π π⁺ + π⁻ (× 100) 0.02 ALICE 10 **STAR** + K⁻ (× 10) 0 PHOBOS 10⁻¹ Blast Wave Fit p+p(×1) PHENIX VISH2+1 -0.02 NA49 HKM 10⁻³ O CERES Kraków 0-5% Central collisions -0.04 E877 2 Data/Model × EOS $\pi^{+} + \pi^{-}$ -0.06 E895

0 2

0

2

0

0

Larger flow than at RHIC

10

For anisotropic flow: larger pT integrated v2

10²

For radial flow: 10% larger expansion velocity ($<\beta_T > = 0.65c$, $T_{kin} = 80-95$ MeV)

10⁴

3

2

 $K^+ + K^-$

 $p + \overline{p}$

4

5

9

*p*_{_} (GeV/*c*)

UNIVERSITY of

HOUSTON

-0.08

1

2

Lessons from the bulk in PbPb (IV)

UNIVERSITY of HOUSTON

Lessons from the bulk in PbPb (V)

UNIVERSITY of HOUSTON

□ So dynamics are 'as expected'. Is there anything exciting in the bulk ?

Proton yield does not follow the results from statistical hadronization model when assuming a common chemical freeze-out temperature

Lessons from the bulk in PbPb (VI)

- Possible explanations include an increased proton annihilation cross section in the hadronic phase (but model generates some tension with strange baryon annihilation, centrality dependence and lattice results for transition temperature)
- Potentially more intriguing: separate chemical freeze-out temperature for separate flavors a flavor hierarchy in the freeze-out, which might be evident in high resolution, continuum extrapolated lattice QCD calculations for flavor susceptibilities (see talk by C. Ratti, Tuesday, 17:25)

Hadron-hadron correlations in p-Pb

UNIVERSITY of HOUSTON

ALICE

Hints of collectivity in cold nuclear matter?

h - π,K,p correlations

v₂ extracted from twoparticle correlations

- Mass ordering at low $p_{\rm T}$
- Crossing at p_T≈2 GeV/c
- Qualitatively similar to Pb-Pb

ALI-PREL-62026

- Double ridge seen also in the correlation of heavy-flavour decay electrons with hadrons
 - Suggests that the mechanism generating the double ridge is at work also for heavy flavours

More hints: hydro describes spectra

Models:

 Blast-wave fit = locally thermalized medium expanding with collective flow velocity

UNIVERSITY

HOUSTON

of

- EPOS LHC = full event generator including hydrodynamical evolution
- Krakow = 3+1 viscous hydrodynamics (expected to work at low p_T)
- DPMJET = PHOJET pp +nuclei via Glauber-Grybov approach

Models including hydrodynamics give a better description of the spectra

More hints: Radial flow in p-Pb collisions **HOUSTON**

D Resembles Pb-Pb: $< p_T >$ increases with centrality and mass

- ✓ Blast wave fits $<\beta_T > ~ 0.5c$ central p-Pb
- ✓ Similar values observed in pp

UNIVERSITY of $< p_T > in pp, pPb and PbPb$ HOUSTON

only centrality bias

ALI-PUB-55941

Baryon/meson ratio in pPb and PbPb

□ Similar evolution of baryon/meson ratios vs. p_T with multiplicity

- Enhancement at intermediate p_T
- Pb-Pb results commonly understood in terms of collective radial expansion and hadronization via quark recombination
- Magnitude of the effect significantly different in p-Pb and Pb-Pb
- -~ In a given p_T bin, the ratio as a function of dN_{ch}/dh follows a power-law behavior with same exponent in pPb and PbPb

Nuclear modification factor HOUSTON

Charged particle spectra strongly modified in PbPb compared to pp

p-Pb results confirm that jet quenching is a final state effect

Identified particle R_{AA}

UNIVERSITY of HOUSTON

I For $p_T > 8$ GeV/c π , k and p are equally suppressed within uncertainties

- Particle composition at high- p_T not affected by the medium

ALICE

 Hadro-chemistry not modified (excludes certain theoretical hadronization models based on enhanced gluon splitting, early formation time, and Schwinger di-quark mechanism

see R. Bustamante's talk, today at 15:00 20

Jet suppression and structure in PbPb

UNIVERSITY of HOUSTON

ALICE

- Strong suppression of jet yield in most central Pb-Pb collisions
- Ratio σ(R=0.2)/σ(R=0.3) of jet cross sections in Pb-Pb compatible with fragmentation in vacuum (PYTHIA)
 - Sensitive to the profile of the jet energy density
 - No evidence of jet shape modification in jet core

Jet suppression and structure in pPb

UNIVERSITY of HOUSTON

□ No modification of jet cross section in pPb relative to pp □ Ratio σ (R=0.2)/ σ (R=0.4)

- compatible in pPb and pp (and PYTHIA)
 - NOTE: comparison between different \sqrt{s}

No indication of jet structure modification due to CNM effects

Open charm R_{AA} and v_2 in PbPb HOUSTON

Simultaneous description of open charm R_{AA} and v₂ is a challenge for theoretical models

- 🚇 Aichelin et al.:PRC79 (2009) 044906, J. Phys. G37 (2010) 094019
- BAMPS: Fochler et al., J. Phys. G38 (2011) 124152
- **L** TAMU: Rapp, He et al., PRC 86 (2012) 014903
- UrQMD: Lang et al, arXiv:1211.6912, arXiv:1212.0696

Flavor hierarchy in energy loss? HOUSTON

□ Expectation from radiative energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$ □ Could be reflected in an hierarchy of R_{AA} : $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$

ALICE

$$\square R_{AA}(D) \sim R_{AA}(\pi)$$

(but different fragmentation and p_T spectra)

(but different fragmentation and p_T spectra)

 $R_{AA}(B) > R_{AA}(D)$

ALICE, submitted to arXiv

Liu, Qiu, Xu,Zhuang, PLB678(2009) 72
 Zhao, Rapp, NPA859(2011) 114
 Andronic et al., arXiv:1210.7724

J/ψ in Pb-Pb Houston

- Different dependencies of J/ψ R_{AA} at RHIC and LHC
- As expected in a scenario with recombination
- Regeneration contribution important at low p_T

Summary & Conclusions

UNIVERSITY of HOUSTON

1 PbPb collisions

- Bulk production shows the expected strongly collective medium similar to RHIC
- ✓ Intriguing hints of a flavor hierarchy in the QCD transition
- ✓ Jet quenching has little effect on hadro-chemistry and jet structure
- ✓ Heavy and light quark energy loss very similar, hints of a b/c difference
- ✓ J/ ψ p_T and centrality dependencies can be explained with dissociation/ recombination model.

2 pPb collisions

- Significant double ridge structure in angular hadron correlations, which can be explained with hydrodynamics (v_2) or CGC approach
- ✓ More hints of collective behavior in pPb from spectra (radial expansion, <pT>) and mass dependence of v_2 term
- ✓ Jets in pPb are not quenched and similar in pp jets in their structure
- 3 Characterising the deconfined phase and the crossover
 - The system shows less flavor dependence in the deconfined phase than the crossover region

