Chiral magnetic effect in QED $_{3}$

Cristian Villavicencio

UDP

V $^{\text {th }}$ High Energy Physics in the LHC era - December 17, 2013
colibri collaboration: with Ana Julia Mizher and Alfredo Raya arXiv:1312.3274 [hep-ph]

Chiral magnetic effect in relativistic HIC

Topological charge + magnetic field $\rightarrow P$ and $C P$ violation

- induces chiral charges and an electric current in the \boldsymbol{B} direction (helicities alignment)
- In Heavy-lon collisions, $e B \sim 10^{4} \mathrm{MeV}^{2} \sim 10^{18}$ Gauss
- topological charge fluctuations could be observed \ln in high T QCD
- It should be manifest in $\pi^{+} \pi^{-}$imbalance

Problems

- short time life of B
- fast screening
- statistical fluctuations

No significant evidence yet

QCD at high $T \longleftrightarrow$ QED in $(2+1)$ dimensions

- QCD At high temperature is dimensionally reduced
- QCD at high T abelianizes for large N_{f}

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QED}_{3}}= & \bar{\psi}\left[\not \partial-\mathrm{e} \mathcal{A}-m_{e}+m_{o} \tau\right] \psi \\
& -\frac{1}{2 \xi}(\partial \cdot \mathcal{A})^{2}-\frac{1}{4} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}-\frac{\theta}{4} \epsilon^{\mu \nu \rho} \mathcal{A}_{\mu} \partial_{\nu} \mathcal{A}_{\rho}
\end{aligned}
$$

with indexes $\mu=(0,1,2)$.

- Is invariant under $\psi \rightarrow \psi e^{i \alpha \tau}$, with $\tau=i \gamma_{3} \gamma_{5}$
- dynamical chiral symmetry breaking
- Confinement
- Chern-Simons term naturally arise

QED $_{3}$ and graphene physics

QED_{3} is the best candidate for the description of fermion interactions in graphene

- quasi-electrons are relativistic (v_{F} is the speed of light)
- massless fermions propagates over the Fermi surface
- low temperature

field theory and graphene

Interchange of effects in particle behavior high T QCD \leftrightarrow graphene

Other example: Gravitation techniques \rightarrow metric

Chiral magnetic effect analog in QED $_{3}$

The most simple way to introduce CME in QED_{3}

$$
\begin{aligned}
\mathcal{L} & =\bar{\psi}\left[i \not \partial+\mu_{A} \gamma^{0} \gamma^{5}-e A_{3} \gamma^{3}\right] \psi \\
& =\bar{\psi}_{+}\left[i \not \partial+\mu_{A} \gamma^{0}-e A_{3} \gamma^{3}\right] \psi_{+}+\bar{\psi}_{-}\left[i \not \partial-\mu_{A} \gamma^{0}-e A_{3} \gamma^{3}\right] \psi_{-}
\end{aligned}
$$

- $A_{3}=B x_{2}$ an external field
- μ_{A} axial chemical potential
- $\psi_{ \pm}=\frac{1}{2}\left(1 \pm \gamma^{5}\right) \psi$

Schwinger propagator

$$
\begin{aligned}
G\left(x, x^{\prime}\right)= & \int_{0}^{\infty} d s\langle x| e^{-i H s}\left[\gamma^{\bar{\mu}} \Pi_{\bar{\mu}}+m\right]\left|x^{\prime}\right\rangle \\
\Pi_{\mu} & =i \partial_{\mu}-e A_{\mu} \\
\Pi_{3} & =-e A_{3} \\
H & =\left(\gamma^{\bar{\mu}} \Pi_{\bar{\mu}}\right)^{2}-m^{2}
\end{aligned}
$$

$e^{-i H s}$ is the time evolution operator.

- cannot use the Schwinger method correctly
- We need to add a fourth spatial state, confine the system to a plane and normalize propperly

extended Schwinger propagator

We add a new state ζ

$$
\begin{gathered}
\Pi_{3} \rightarrow \alpha \frac{\partial}{\partial \zeta}-e A_{3} \\
G\left(x, x^{\prime}\right) \rightarrow \int_{0}^{\infty} d s \mathcal{N}\langle x, \zeta| e^{-i H s}\left[\gamma^{\bar{\mu}} \Pi_{\bar{\mu}}+m\right]\left|x^{\prime}, \zeta\right\rangle
\end{gathered}
$$

- α is a constant that will be set to cero at the end
- the normalization \mathcal{N} avoids divergences $\langle\zeta \mid \zeta\rangle=\delta(0)$ through the condition

$$
\lim _{s \rightarrow 0}\left\langle x(s), \zeta(s) \mid x^{\prime}, \zeta\right\rangle=\delta^{3}\left(x-x^{\prime}\right), \quad \Rightarrow \quad \mathcal{N} \sim \sqrt{s}
$$

Chemical potential and temperature

If $\mu>m$, the Shwinger propagator must be regularized differently. If electric fields are absent \Rightarrow Fourier transform of 0-component $\int_{0}^{\infty} d s \rightarrow \int_{-\infty}^{\infty} d s\left\{\theta(s) \theta\left[k_{0}\left(k_{0}+\mu\right)\right] e^{-s \epsilon}-\theta(-s) \theta\left[-k_{0}\left(k_{0}+\mu\right)\right] e^{s \epsilon}\right\}$

At finite temperature

$$
\begin{gathered}
k_{0} \rightarrow i \omega_{n}=i(2 n+1) \pi T, \quad \int \frac{d k_{0}}{2 \pi} \rightarrow i T \sum_{n} \\
\int_{0}^{\infty} d s \rightarrow \int_{-\infty}^{\infty} d s\left\{\theta(s) \theta\left(\omega_{n} \mu\right)-\theta(-s) \theta\left(-\omega_{n} \mu\right)\right\}
\end{gathered}
$$

Final propagator

In momentum space with $B^{i}=B \delta^{i 1}$

$$
S(p)=\frac{1}{2}\left(1+\gamma_{5}\right) S_{+}(p)+\frac{1}{2}\left(1-\gamma_{5}\right) S_{-}(p)
$$

$$
\begin{aligned}
S_{ \pm}(k)= & \int_{-\infty}^{\infty} d s\left\{\theta(s) \theta\left[k_{0}\left(k_{0}+\mu\right)\right] e^{-s \epsilon}-\theta(-s) \theta\left[-k_{0}\left(k_{0}+\mu\right)\right] e^{s \epsilon}\right\} \\
& \exp \left\{i s\left[\left(k_{0} \pm \mu_{A}\right)^{2}-k_{1}^{2}-k_{2}^{2} \tan (e B s) / e B s\right]\right\} \\
& \left\{\left(k_{0} \pm \mu_{A}\right) \gamma_{0}-k_{1} \gamma_{1}-k_{2}\left[\gamma_{2}+\gamma_{3} \tan (e B s)\right]\right\} \\
& {\left[1-\gamma_{2} \gamma_{3} \tan (e B s)\right][e B s / \tan (e B s)]^{1 / 2} }
\end{aligned}
$$

Induced topological term

Polarization tensor $\Pi^{\mu \nu}=\Pi_{A}^{\mu \nu}+\Pi_{S}^{\mu \nu}$

$$
\Pi_{A}^{\mu \nu}(p)=\epsilon^{\mu \nu \alpha} \int_{k, s, s^{\prime}} \Theta_{\alpha}\left(s, k ; s^{\prime}, p+k ; \mu_{A}\right) F(s, k) F\left(s^{\prime}, p+k\right)
$$

Expanded in external momentum

$$
\mathcal{L}_{\theta} \sim \theta_{0}\left(\mu_{A}, B\right) \epsilon^{0 \mu \nu} \mathcal{A}_{\mu} \partial_{2} \mathcal{A}_{\nu}+\theta_{2}\left(\mu_{A}, B\right) \epsilon^{2 \mu \nu} \mathcal{A}_{\mu} \partial_{0} \mathcal{A}_{\nu}
$$

Induced current

The chiral number density $n_{A}=n_{+}-n_{-}=\left\langle\psi^{\dagger} \gamma^{5} \psi\right\rangle$ and the induced electric current $j=\left\langle\bar{\psi} \gamma^{1} \psi\right\rangle$ are

$$
\begin{aligned}
n_{A} & =j+\frac{e B}{\pi} \sum_{l=1}^{\infty}\left[n_{F}\left(m_{l}-\mu_{A}\right)-n_{F}\left(m_{l}+\mu_{A}\right)\right] \\
j & =\frac{e B}{2 \pi} \tanh \left(\beta \mu_{A} / 2\right) .
\end{aligned}
$$

with $m_{l}=\sqrt{2 e B l}$. At zero temperature

$$
\begin{aligned}
n_{A} & =j+\operatorname{sign}\left(\mu_{A}\right) \frac{e B}{\pi} \sum_{l=1}^{\infty} \theta\left(\left|\mu_{A}\right|-m_{l}\right) \\
j & =\operatorname{sign}\left(\mu_{A}\right) \frac{e B}{2 \pi}
\end{aligned}
$$

\ln QCD: $\quad j=\left(N_{c} \sum_{f} q_{f}^{2}\right) \mu_{A} \frac{e B}{2 \pi^{2}}$

Conclusions and outlook

- The chiral magnetic effect analog is possible in QED 3
- Interesting link between Heavy ion physics and graphene
- Start with a Chern-Simons term to see the induced currents
- Improve the system \rightarrow electric chemical potential
- look forward for reciprocal results to be applied in Heavy Ion physics
- An experiment to measure the induced current?

THANKS!

