Future Measurements of the Nucleon Elastic Electromagnetic Form Factors at Jefferson Lab

G.P. Gilfoyle University of Richmond, Richmond, VA 23173

Outline

- Scientific Motivation
- 2. Necessary Background
- 3. What we hope to learn.
- 4. The Measurements
- 5. Summary and Conclusions

Iglesia de la Matriz

Scientific Motivation - What We Hope to Learn.

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- Reveal the internal landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative regime.
 - Nuclear models, constituent quarks,...
 - Iattice QCD.
- Map the transition from the hadronic picture to QCD.

Scientific Motivation - What We Hope to Learn.

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- Reveal the internal landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative regime.
 - Nuclear models, constituent quarks,...
 - Iattice QCD.
- Map the transition from the hadronic picture to QCD.

EEFFs have played an essential role in nuclear and nucleon structure for more than a half century.

Some Necessary Background

ullet EEFFs cross section described with Dirac (F_1) and Pauli (F_2) form factors

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left[\left(F_1^2 + \kappa^2 \tau F_2^2 \right) + 2\tau \left(F_1 + \kappa F_2 \right)^2 \tan^2 \left(\frac{\theta_e}{2} \right) \right]$$

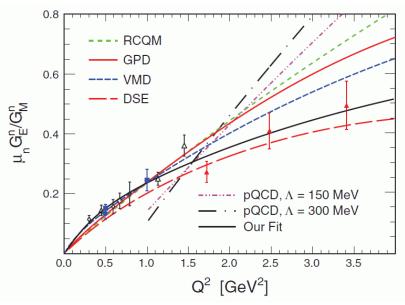
where

$$\sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta_e}{2})}{4E^3 \sin^4(\frac{\theta_e}{2})}$$

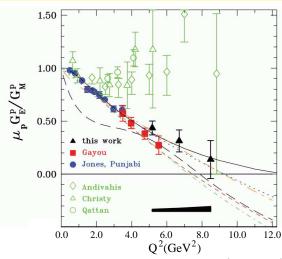
and κ is the anomalous magnetic moment, $E\left(E'\right)$ is the incoming (outgoing) electron energy, θ is the scattered electron angle and $\tau=Q^2/4M^2$.

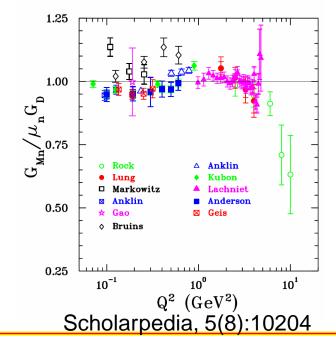
For convenience use the Sachs form factors.

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left(\frac{(G_E^n)^2 + \tau(G_M^n)^2}{1 + \tau} + 2\tau \tan^2 \frac{\theta_e}{2} (G_M^n)^2 \right)$$

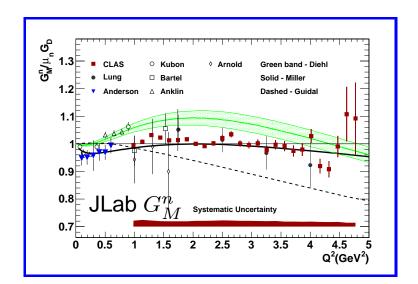

where

$$G_E = F_1 - \tau F_2$$

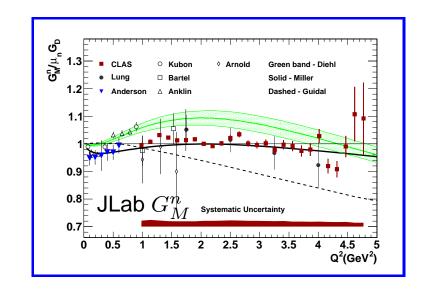

$$G_M = F_1 + F_2$$

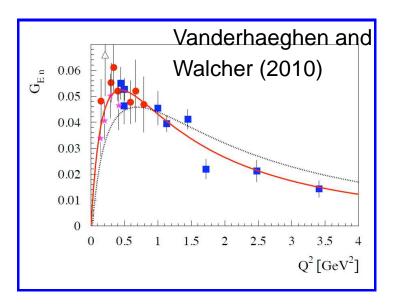

- ullet The ratio G_E^p/G_M^p from recoil polarization measurements diverged from previous Rosenbluth separations.
 - Two-photon exchange (TPE).
 - Effect of quark orbital angular momentum (OAM).
- Neutron magnetic FF G_M^n still follows dipole.
- ullet High- \mathbf{Q}^2 G_E^n opens the door to flavor decomposition.

PRL 104, 242301 (2010)



1.50 The ratio G_E^p/G_M^p from recoil polarization measurements diverged from previous Rosenbluth separations. $\mu_{\mathrm{p}}^{\mathrm{GP}}/\mathrm{G}_{\mathrm{M}}^{\mathrm{p}}$ Two-photon exchange (TPE). Effect of quark orbital angular momentum (OAM). Gayou Jones, Punjabi ♦ Andivahis Neutron magnetic FF G_M^n Advances driven by: 10.0 4.0 8.0 High- ${f Q}^2$ G_E^n opens the do $Q^2(GeV^2)$ PRL **104**, 242301 (2010) high luminosity beams RCQM GPD large acceptance 0.6 -- VMD detectors polarized beams, 0.2 □ Markowitz targets, detectors ■ Anklin ♦ Bruins 1.5 2.0 0.5 1.0 0.25 Q² [GeV²] 10¹ $Q^2 (GeV^2)$ PRL 105, 262302 (2010) Scholarpedia, 5(8):10204


The EEFFs emerge from Quantum Chromodynamics (QCD), but calculations here require non-perturbative methods.


- Vector Meson Dominance and dispersion analyses fit all four EEFFs, but use many parameters.
- Constituent Quark Models highlight relativity, but don't capture all of QCD.
- Generalized Parton Distributions (GPDs) connect valence quarks in transverse space and longitudinal momentum.
- EEFFs are the first moments of the GPDs.

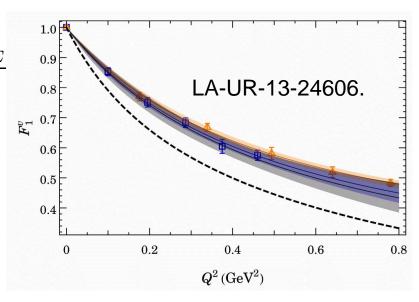
The EEFFs emerge from Quantum Chromodynamics (QCD), but calculations here require non-perturbative methods.

- Vector Meson Dominance and dispersion analyses fit all four EEFFs, but use many parameters.
- Constituent Quark Models highlight relativity, but don't capture all of QCD.
- Generalized Parton Distributions (GPDs) connect valence quarks in transverse space and longitudinal momentum.
- EEFFs are the first moments of the GPDs.

Where We Are Now - Lattice QCD

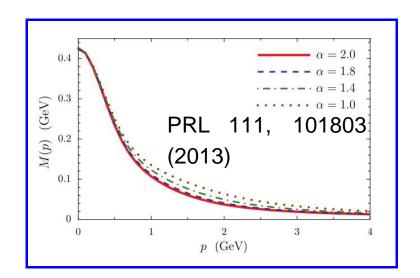
- Lattice gauge theory is the only means of ab initio QCD calculations in the non-perturbative regime.
- Computationally challenging.
- EEFFs are an early test of IQCD.
 - The isovector form of the EEFFs is

$$F_{1,2}^V = \frac{F_{1,2}^p - F_{1,2}^n}{2}$$



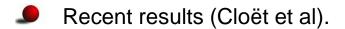
where

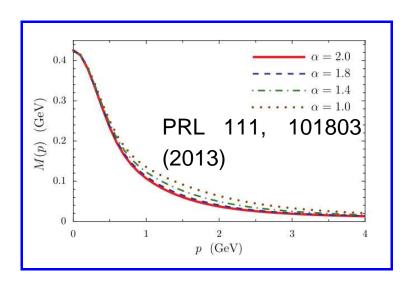
$$F_1 = \frac{\tau G_M + G_E}{1 + \tau}$$
 $F_2 = \frac{G_M - G_E}{1 + \tau}$

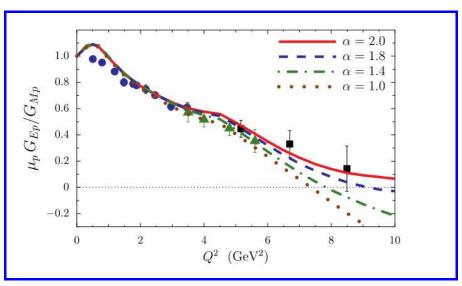

where
$$\tau = Q^2/4M^2$$
.

- This form of the EEFFs does not have disconnected diagrams which are computationally intensive.
- Expect EEFF calculation in the next decade.

Where We Are Going - Dyson-Schwinger Eqs

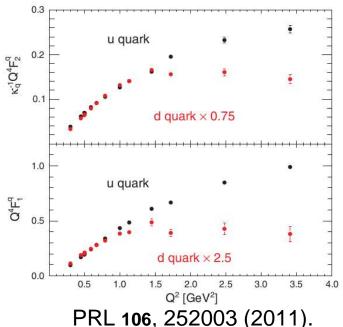

- Equations of motion of quantum field theory.
 - Infinite set of coupled integral equations.
 - Inherently relativistic, non-perturbative, connected to QCD.
 - Deep connection to confinement, dynamical chiral symmetry breaking.
 - Infinitely many equations, gauge dependent → Choose well!
- Recent results (Cloët et al).
 - Model the nucleon dressed quark propagator as a quark-diquark.
 - Damp the shape of the mass function M(p).


Where We Are Going - Dyson-Schwinger Eqs


- Equations of motion of quantum field theory.
 - Infinite set of coupled integral equations.
 - Inherently relativistic, non-perturbative, connected to QCD.
 - Deep connection to confinement, dynamical chiral symmetry breaking.
 - Infinitely many equations, gauge dependent → Choose well!

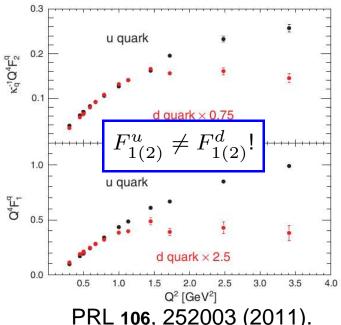
- Model the nucleon dressed quark propagator as a quark-diquark.
- Damp the shape of the mass function M(p).

Position of zero in $\mu_p G_E^p/G_M^p$ sensitive to shape of M(p)!



- With all four EEFFs we can unravel the contributions of the \boldsymbol{u} and \boldsymbol{d} quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))

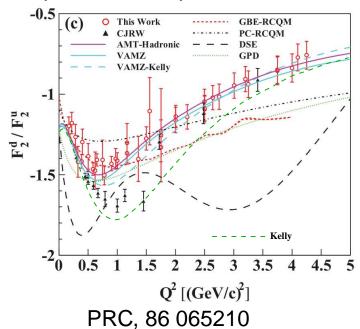
$$F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n$$
 $F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p$

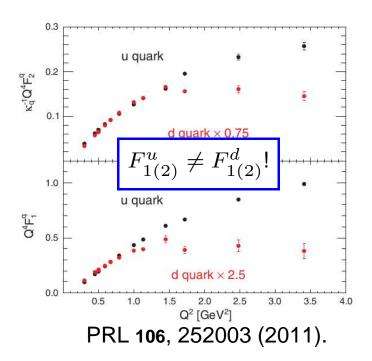

PRL 106, 252003 (2011).

- With all four EEFFs we can unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))

$$F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n$$
 $F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p$

Evidence of di-quarks? *d*-quark scattering probes the diquark.

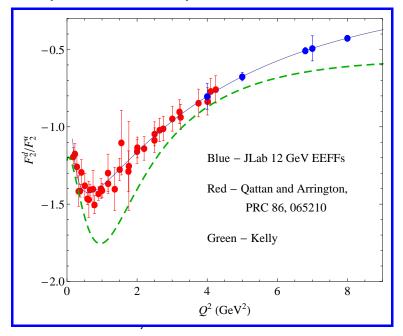

PRL 106, 252003 (2011).

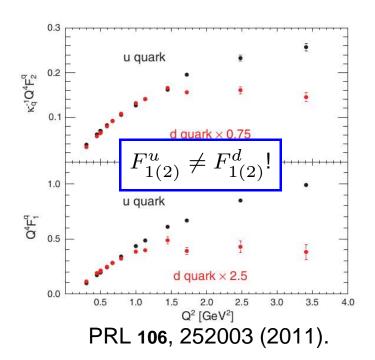


- With all four EEFFs we can unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))

$$F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n$$
 $F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p$

Evidence of di-quarks? d-quark scattering probes the diquark.


 F_2^f/F_2^u ratio not well reproduced by any models \rightarrow good test bench.



- With all four EEFFs we can unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))

$$F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n$$
 $F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p$

Evidence of di-quarks? d-quark scattering probes the diquark.

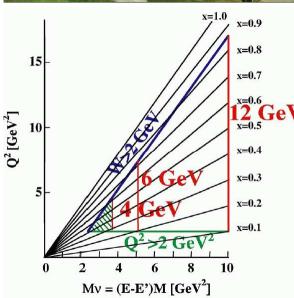
• F_2^f/F_2^u ratio not well reproduced by any models \rightarrow good test bench.

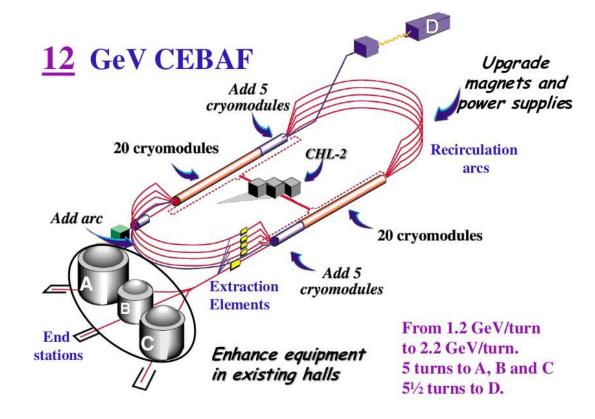
The JLab program will double our reach in Q^2 here.

Where We Are Going - New Experiments.

The JLab Lineup

Quantity	Method	Target	$Q^2(GeV^2)$	Hall	Beam Days
G_M^p	Elastic scattering	LH_2	7 - 15.5	Α	24
G_E^p/G_M^p	Polarization transfer	LH_2	5 - 12	Α	45
G_M^n	E-p/e-n ratio	$LD_2 - LH_2$	3.5 - 13.0	В	30
G_M^n	E-p/e-n ratio	LD_2, LH_2	3.5 - 13.5	Α	25
G_E^n/G_M^n	Double polarization	polarized $^3{ m He}$	5 - 8	Α	50
	asymmetry				
G_E^n/G_M^n	Polarization transfer	LD_2	4 - 7	С	50

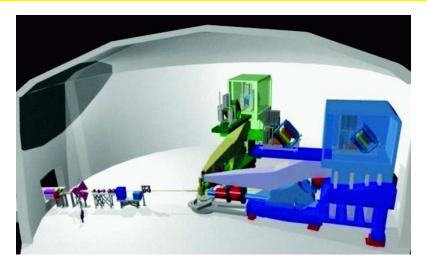

All are extensions of 6 GeV era experiments.

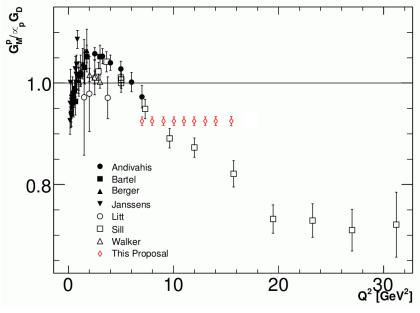

PAC approval for 224 days of running in the first five years.

How We Will Get There: Jefferson Lab.

Continuous Electron Beam Accelerator Facility (CEBAF)

- Superconducting Electron Accelerator, 100% duty cycle.
- $E_{max}=11~{
 m GeV}$ (Halls A, B, and C) and $12~{
 m GeV}$ (Hall D), $\Delta E/E\approx 2\times 10^{-4}$, $I_{summed}\approx 90~\mu A$, $P_e\geq 80\%$.



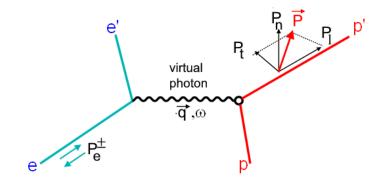

Proton Magnetic Form Factor - G_M^p

- E12-07-108 in Hall A (Gilad, Moffitt, Wojtsekhowski, Arrington).
- Precise measurement of ep elastic cross section and extract G_M^p .
- Both HRSs in electron mode.
- Beamtime: 24 days.
- Arr Q² = 7.0-15.5 GeV² (1.0, 1.5 GeV² steps).
- Significant reduction in uncertainties:

	$d\sigma/d\Omega$	G_M^p
Point-to-Point	1.0-1.3	0.5-0.6
Normalization	1.0-1.3	0.5-0.6
Theory	1.0-2.0	0.5-1.0

- Two-Photon Exchange is a major source of uncertainty \rightarrow vary ϵ to constrain.
- Sets the scale of other EEFFs.

Proton Form Factor Ratio G_E^p/G_M^p


- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using $H(\vec{e}, e'\vec{p})$:

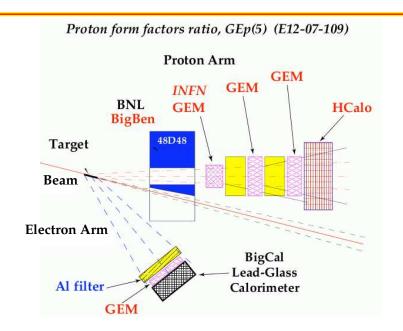
$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

- Electron arm: EM calorimeter (BigCal).
- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

$Q^2 (GeV^2)$	5.0	8.0	12.0
$\Delta[\mu G_E/G_m]$	0.025	0.031	0.069

Combined with GEp(4).

Proton Form Factor Ratio G_E^p/G_M^p


- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using $H(\vec{e}, e'\vec{p})$:

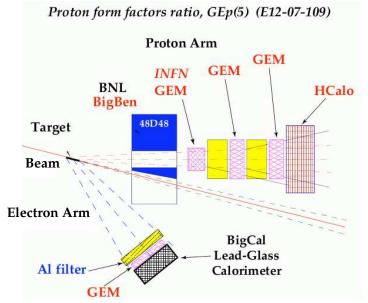
$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

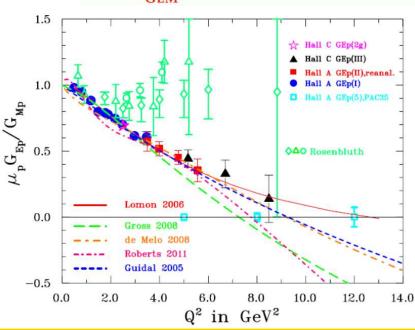
- Electron arm: EM calorimeter (BigCal).
- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

$Q^2 (GeV^2)$	5.0	8.0	12.0
$\Delta[\mu G_E/G_m]$	0.025	0.031	0.069

Combined with GEp(4).

Proton Form Factor Ratio G_E^p/G_M^p

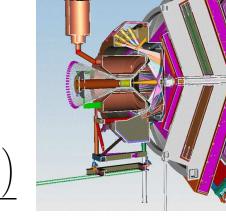

- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using $H(\vec{e}, e'\vec{p})$:


$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

- Electron arm: EM calorimeter (BigCal).
- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

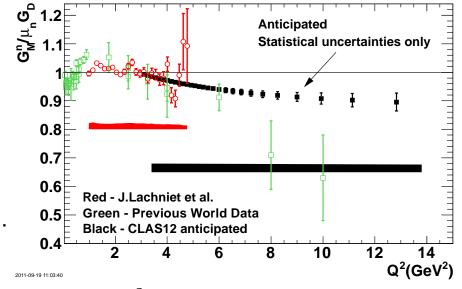
$Q^2 (GeV^2)$	5.0	8.0	12.0
$\Delta[\mu G_E/G_m]$	0.025	0.031	0.069

Combined with GEp(4).



Neutron Magnetic Form Factor G_M^n - 1

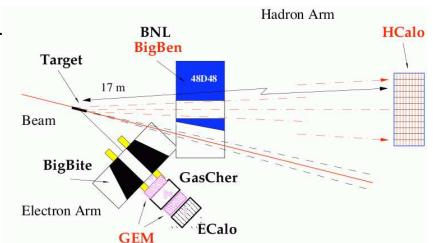
- E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).
- Patio Method on Deuterium $({}^{2}\mathrm{H}(e,e'p)n$ and ${}^{2}\mathrm{H}(e,e'n)p)$:

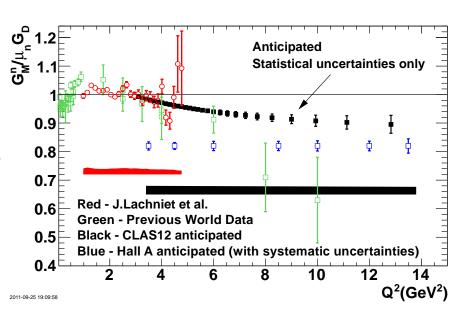

$$R = \frac{\frac{d\sigma}{d\Omega}[^{2}H(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega}[^{2}H(e,e'p)_{QE}]}$$

$$= a \times \frac{\sigma_{Mott}\left(\frac{(G_{E}^{n})^{2} + \tau(G_{M}^{n})^{2}}{1+\tau} + 2\tau\tan^{2}\frac{\theta_{e}}{2}(G_{M}^{n})^{2}\right)}{\frac{d\sigma}{d\Omega}[^{1}H(e,e')p]}$$

where a is nuclear correction.

- Precise neutron detection efficiency needed to keep systematics low.
 - tagged neutrons from $p(e, e'\pi^+n)$.
 - Dual $LD_2 LH_2$ target for *in situ* calibrations.
- Kinematics: $Q^2 = 3.5 13.0 \, (\text{GeV/c})^2$.
- Beamtime: 30 days.
- Systematic uncertainties less than 2.5% across full Q^2 range.

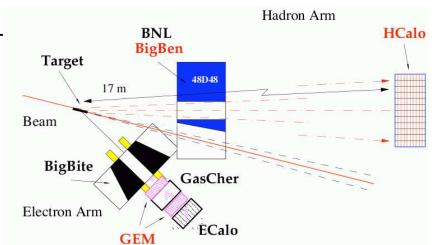


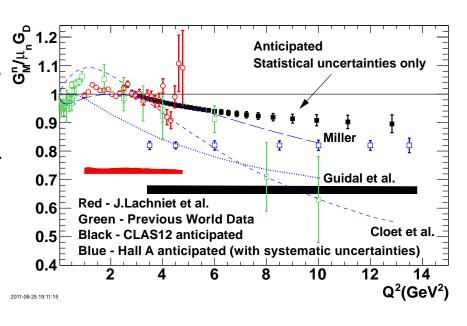

Neutron Magnetic Form Factor G_M^n - 2

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:

$$R = \frac{\frac{d\sigma}{d\Omega}[^{2}H(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega}[^{2}H(e,e'p)_{QE}]}$$

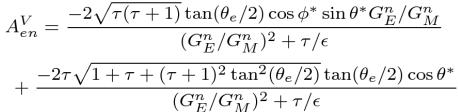
- Electron arm: SuperBigBite spectrometer.
- Hadron arm: hadron calorimeter (HCal).
- Neutron detection efficiency:
 - lacksquare Use $p(\gamma, \pi^+)n$ for tagged neutrons. $\frac{1}{5}$
 - End-point method.
- Kinematics: $Q^2 = 3.5 13.5 \, (\text{GeV/c})^2$.
- Beamtime: 25 days.
- Systematic uncertainties < 2.1%.
- lacksquare Two G_M^n measurements 'allow a better control for the systematic error' (PAC34).

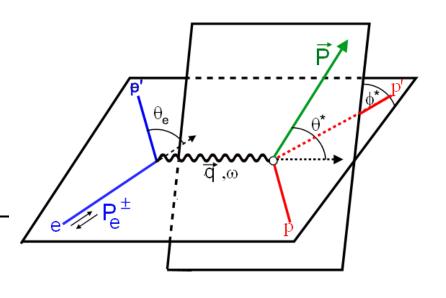



Neutron Magnetic Form Factor G_M^n - 2

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:

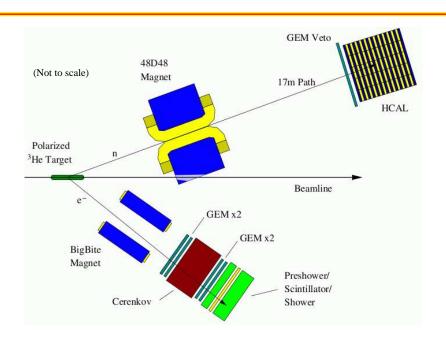
$$R = \frac{\frac{d\sigma}{d\Omega}[^{2}H(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega}[^{2}H(e,e'p)_{QE}]}$$


- Electron arm: SuperBigBite spectrometer.
- Hadron arm: hadron calorimeter (HCal).
- Neutron detection efficiency:
 - ightharpoonup Use $p(\gamma, \pi^+)n$ for tagged neutrons.
 - End-point method.
- Kinematics: $Q^2 = 3.5 13.5 \, (\text{GeV/c})^2$.
- Beamtime: 25 days.
- Systematic uncertainties < 2.1%.
- lacksquare Two G_M^n measurements 'allow a better control for the systematic error' (PAC34).



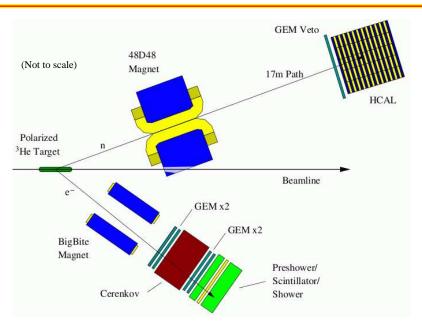
- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A_{en}^V from ${}^3\vec{\mathrm{He}}(\vec{e},e'\vec{n})pp$.
- Longitudinally polarized electron beam.
- ³He target polarized perpendicular to the momentum transfer.
- Electron arm: SuperBigBite.
- Power of the Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G_M^n).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

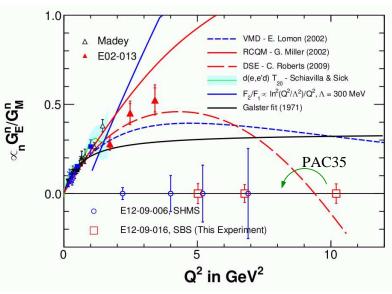
$Q^2 (GeV^2)$	5.0	6.8	8.0
$\Delta \left[rac{\mu G_E}{G_M} ight]_{stat}$	0.027	0.022	0.032
$egin{aligned} \Delta \left[rac{\mu G_E}{G_M} ight]_{stat} \ \Delta \left[rac{\mu G_E}{G_M} ight]_{syst} \end{aligned}$	0.018	0.021	0.013



where
$$\epsilon = 1/\left(1+2(1+\tau)\tan^2(\frac{\theta_e}{2})\right)$$

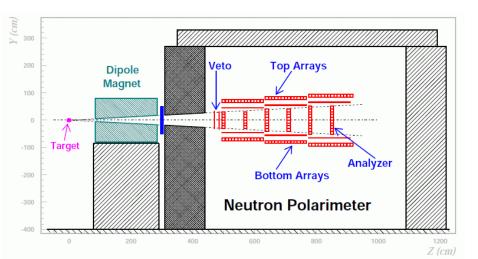
- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A_{en}^V from ${}^3\vec{\mathrm{He}}(\vec{e},e'n)pp$.
- Longitudinally polarized electron beam.
- ³He target polarized perpendicular to the momentum transfer.
- Electron arm: SuperBigBite.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G_M^n).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

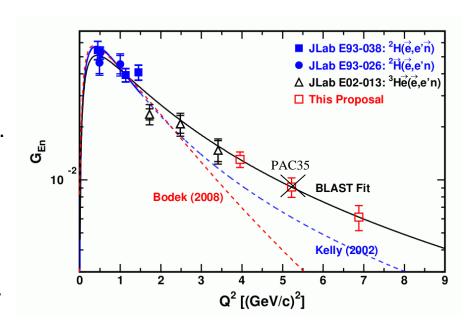

$Q^2 (GeV^2)$	5.0	6.8	8.0
$\Delta \left[rac{\mu G_E}{G_M} ight]_{stat}$	0.027	0.022	0.032
$\Delta \left[rac{\mu G_E}{G_M} ight]_{stat} \ \Delta \left[rac{\mu G_E}{G_M} ight]_{syst}$	0.018	0.021	0.013



- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A_{en}^V from ${}^3\vec{\mathrm{He}}(\vec{e},e'n)pp$.
- Longitudinally polarized electron beam.
- ³He target polarized perpendicular to the momentum transfer.
- Electron arm: SuperBigBite.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G_M^n).
- Beamtime: 50 days.
- Minematics and Uncertainties:

$Q^2 (GeV^2)$	5.0	6.8	8.0
$\Delta \left[rac{\mu G_E}{G_M} ight]_{stat}$	0.027	0.022	0.032
$egin{aligned} \Delta \left[rac{\mu G_E}{G_M} ight]_{stat} \ \Delta \left[rac{\mu G_E}{G_M} ight]_{syst} \end{aligned}$	0.018	0.021	0.013



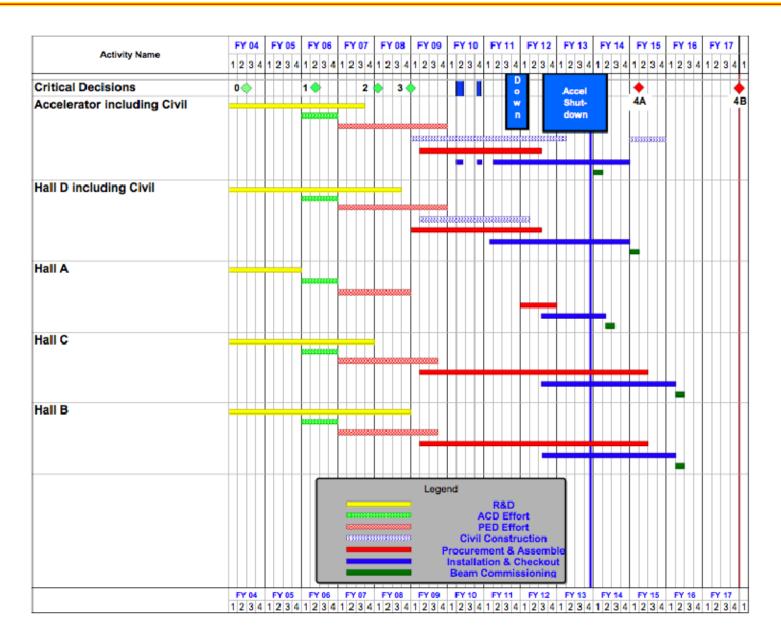


- E12-11-009 in Hall C (Anderson, Arrington, Kowalski, Madey, Plaster, Semenov).
- Polarization transfer using ${}^{2}\mathrm{H}(\vec{e},e'\vec{n})p$:

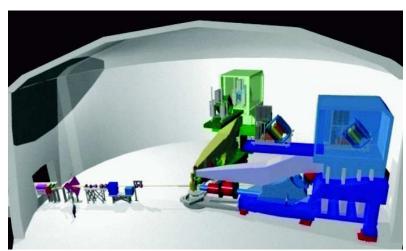
$$\frac{G_E^n}{G_M^n} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

- Electron arm: Super High Momentum Spectrometer (SHMS).
- Neutron arm: neutron polarimeter with tapered-gap neutron-spin-precession magnet and proton recoil detection.
- Kinematics: $Q^2 = 3.95, 6.88 \, (GeV/c)^2$.
- Beamtime: 50 days.
- Systematic uncertainties about 2-3%.
- Statistical uncertainties about 10-16%.
- Complementary to the ³He experiment.

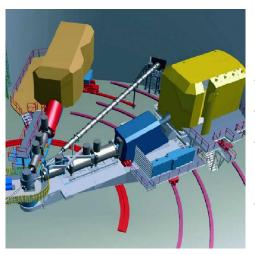
Summary and Conclusions

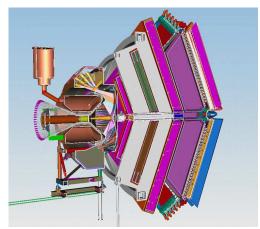

- Large gains over the last decade or so in physics understanding of the EEFFs built on new technologies and capabilities.
- Major changes in our understanding of nucleon structure.
- Jefferson Lab will mount a broad assault on the EEFFs and will significantly expand the physics reach of our understanding.
- Discovery potential in mapping out nucleon structure and understanding QCD.

Additional Slides

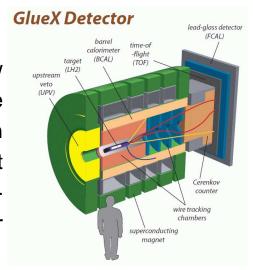


Jefferson Lab 12 GeV Upgrade Schedule

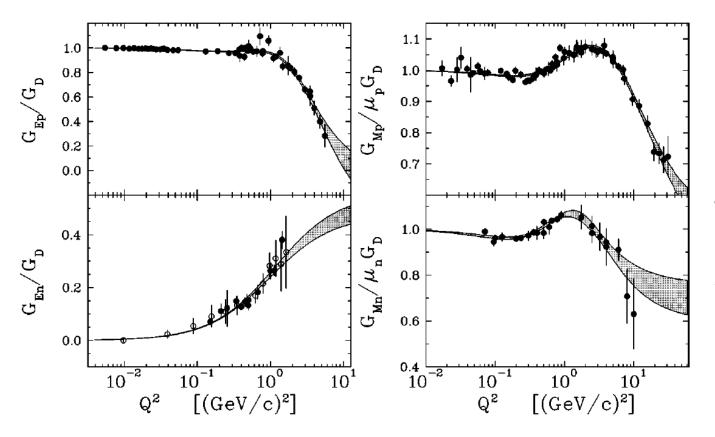



The Experiments - New Detectors

Hall A - High Resolution Spectrometer (HRS) pair, SuperBigBite, neutron detector, and specialized installation experiments.



Hall C - New Super High Momentum Spectrometer to be used with the existing High Momentum Spectrometer.

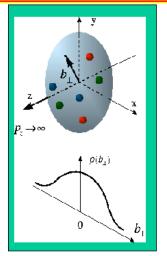

Hall B - CLAS12 large acceptance spectrometer operating at high luminosity with toroid (forward detector) and solenoid (central detector).

Hall D - A new large acceptance detector based on a solenoid magnet for photon beam experiments is under construction.

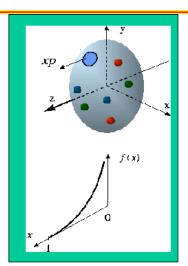
Current World Data on EEFFs

J.J.Kelly, Phys. Rev.C, 068202, 2004.

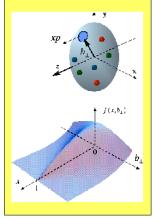
- ullet Proton form factors have small uncertainties and reach higher Q^2 .
- Neutron form factors are sparse and have large uncertainties.
- Significant deviations from the dipole form factor.


Where We Are Now - Nucleon Structure and GPDs

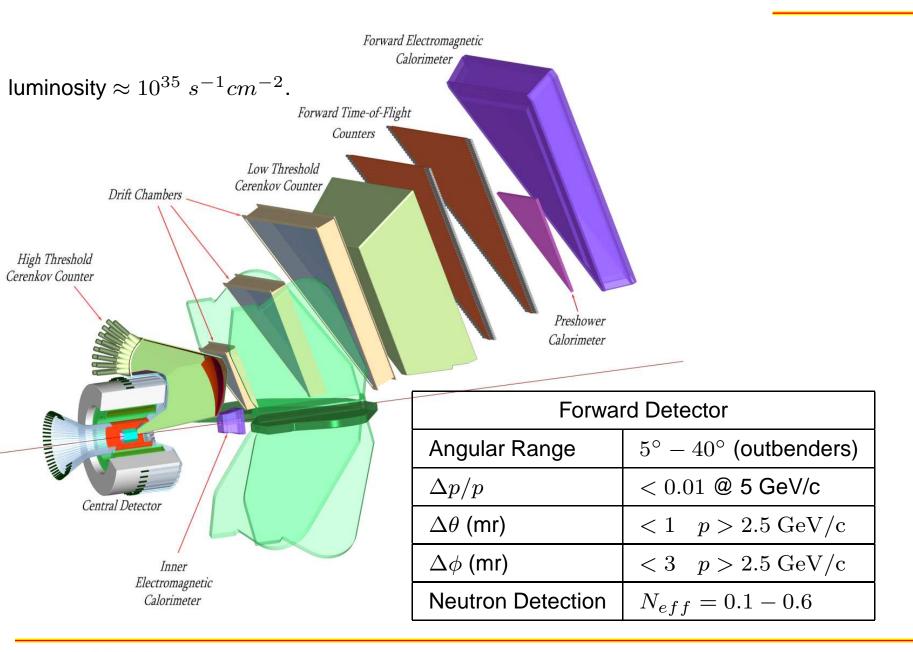
- Generalized Parton Distributions (GPDs) connect the valence quark distributions in transverse space and longitudinal momentum.
- EEFFs are the first moments of the GPDs and provide an important constraint.


$$\int dx \sum H^q(x,\zeta,t) = F_1(t) \quad \text{Dirac FF}$$

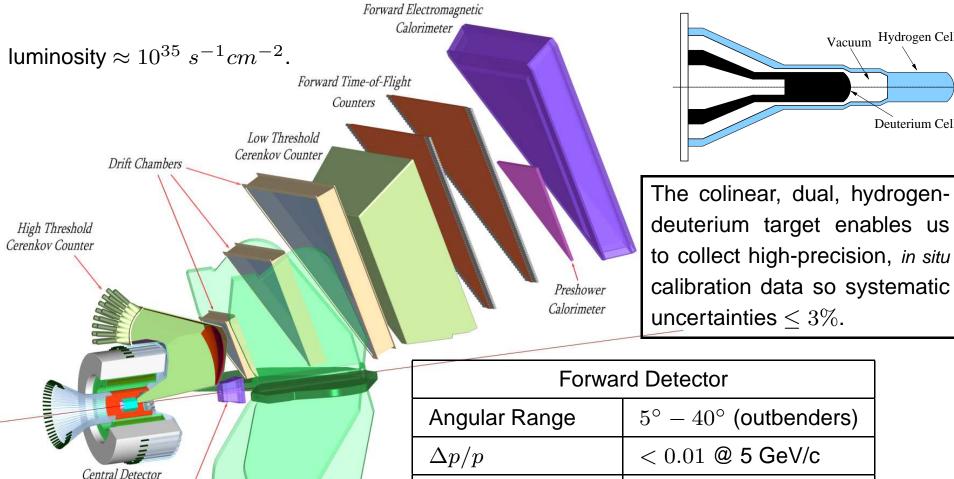
$$\int dx \sum E^q(x,\zeta,t) = F_2(t) \quad \text{Pauli FF}$$

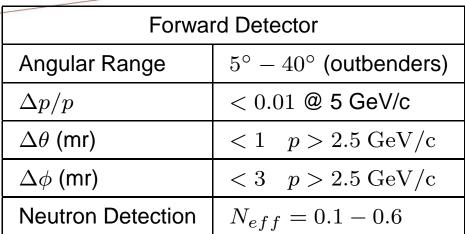

- Unravel the mass M(t), angular momentum J(t), and force and pressure $d_1(t)$.
- Nucleon form factor measurements complement the Semi-Inclusive Deep Inelastic Scattering program.

Transverse spatial distributions.


Longitudinal momentum distributions.

Correlated spatial and momentum distributions.




CLAS12 Detector and G_{M}^{n} Target

CLAS12 Detector and G_M^n Target

Inner Electromagnetic

Calorimeter

Hydrogen Cell

Deuterium Cell

Vacuum

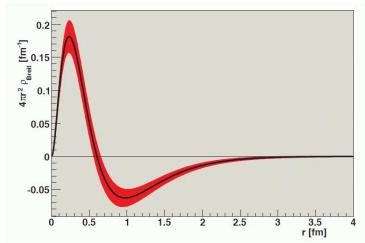
More on the CLAS12 Detector

	Forward	Central
	Detector	Detector
Angular Range		
Charged Particles	$5^{\circ} - 40^{\circ}$	$40^{\circ} - 135^{\circ}$
Photons	$2^{\circ} - 40^{\circ}$	N/A
Resolution		
$\Delta p/p$	< 0.01 @ 5 GeV/c	< 0.03 @ 0.5 GeV/c
$\Delta heta$ (mr)	< 0.5	< 10
$\Delta\phi$ (mr)	< 0.5	< 6
Neutron Detection		
N_{eff}	0.1-0.6	0.1

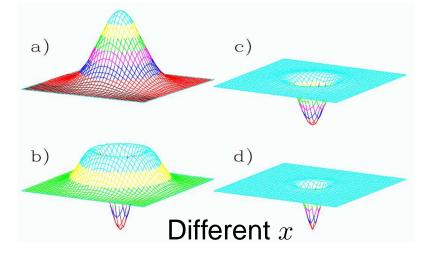
Beyond Elastic Form Factor Measurements

Additional form factor studies after the 12 GeV Upgrade.

Experiment	Spokesperson	Title	Hall	Beamtime
PR12-06-101	G. Huber	Measurement of the charged pion form factor to high ${\bf Q}^2$	С	52 days
PR12-09-003	R. Gothe	Nucleon resonance studies with CLAS12	В	40 days


Some More Background - Interpreting the EEFFs

• At low momentum transfer ($Q^2 \ll M_N^2$) G_E and G_M are the Fourier transforms of the densities of charge and magnetization.


$$G_E(Q^2) = \int \rho(r)e^{-i\vec{q}\cdot\vec{r}}d^3r$$

where \vec{q} is the 3-momentum transferred by the electron.

ullet At high Q^2 relativistic effects make the interpretation more interesting!

NSAC Long Range Plan

Arrington et al., J.Phys.Conf.Ser. 299 (2011) 0120

