Allowed parameter region in NMSSM with a long-lived slepton from a 125 GeV Higgs boson and light elements abundances

Shingo Ohta (Siatama U.)

— Collaborators —

Kazunori Kohri (KEK), Masafumi Koike (Utsunomiya U.), Yasufumi Konishi (Saitama U.), Joe Sato (Saitama U.), Takashi Shimomura (Niigata U.), Kenichi Sugai (Saitama U.), Masato Yamanaka (Nagoya U.)

based on Phys.Rev. D86 (2012) 095024 and an ongoing project

High Energy Physics in the LHC Era @ Valparaiso, CHILE 17th Dec. 2013

Motivation

MSSM ✓ Light element abundances ✓ Dark Matter relic density

T. Jittoh et al.(2010, 2011), K. Kohri et al.(2012)

NMSSM

Light element abundances
 Dark Matter relic density
 Higgs boson mass

Introduction -DM candidate in MSSM-

Stau coannihilation

(Next-to-Lightest one)

DM candidate

LSP: Bino-like neutralino $\tilde{\chi}^0 (\simeq \tilde{B}^0)$ (Lightest SUSY Particle) NLSP: Stau $\tilde{\tau}$

... degenerated in mass

NLSP annihilations are also contribute to LSP DM annihilation.

Suitable relic density can be obtained.

 $\checkmark \delta m$ must satisfy $\delta m/m_{\tilde{\chi}^0} < 1\%$.

✓ If $\delta m < m_{\tau}$ stau becomes *long-lived*.

Introduction - long-lived stau -

Introduction - flavor mixing of the stau -

> Generalize the stau to be mixed state, 'slepton'

$$\tilde{\tau} \rightarrow \tilde{l} = \sum_{f=e,\mu,\tau} c_f \tilde{f} \qquad \tilde{f} = \cos\theta_f \tilde{f}_L + \sin\theta_f e^{i\gamma_f} \tilde{f}_R, \quad c_e^2 + c_\mu^2 + c_\tau^2 = 1$$

flavor violating 2-body decays are allowed!

 $\sim \mathcal{O}(10^3)$ sec to form bound states

... reduce resultant abundance of ⁷Li

T. Jittoh et al., PRD76, 125023 (2007)

bound state

 \tilde{l} must have enough long lifetime and sufficient relic density. ... at least, $\tau_{\tilde{l}} \sim 10^3 \text{sec}$ and $Y_{\tilde{l}} = n_{\tilde{l}}/s \sim 10^{-13}$ for $\delta m \sim 100 \text{MeV}$

Allowed region in MSSM

MSSM ✓ Light element abundances ✓ Dark Matter relic density

T. Jittoh et al.(2010, 2011), K. Kohri et al.(2012)

NMSSM

Light element abundances
 Dark Matter relic density
 Higgs boson mass

With flavor mixing

NMSSM (Z₃-invariant)

Superpotential and soft SUSY breaking terms

$$W = W_{\text{MSSM}} + \lambda \hat{S} \hat{H}_u \cdot \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3$$
$$-\mathcal{L}_{\text{soft}} = -\mathcal{L}_{\text{soft}}^{\text{MSSM}} + m_S^2 |S|^2 + \lambda A_\lambda H_u \cdot H_d S + \frac{1}{3} \kappa A_\kappa S^3 + h.c.$$

★ Higgs boson mass

$$m_{h}^{2} = m_{Z}^{2} \cos^{2} 2\beta + \lambda^{2} v^{2} \sin 2\beta - \frac{\lambda^{2}}{\kappa^{2}} v^{2} (\lambda - \kappa \sin 2\beta)^{2} + \frac{3m_{t}^{4}}{16\pi^{2} v^{2}} \left\{ \log \frac{m_{s}^{2}}{m_{t}^{2}} + \frac{X_{t}^{2}}{m_{s}^{2}} \left(1 - \frac{X_{t}^{2}}{12m_{s}^{2}} \right) \right\} + \cdots \left(X_{t} \equiv A_{t} - \mu \cot \beta, \ m_{s} \equiv \sqrt{m_{\tilde{t}_{1}} m_{\tilde{t}_{2}}} \right)$$

✓ Parameters in the Higgs sector $\lambda, \kappa, A_{\lambda}, A_{\kappa}, \tan \beta \equiv \langle H_u \rangle / \langle H_d \rangle, \mu_{\text{eff}} \equiv \lambda s \ (s = \langle S \rangle)$

Neutralinos in NMSSM

> Mass eigenstates

 $\tilde{\chi}_{i}^{0} = N_{i\tilde{B}^{0}}\tilde{B}^{0} + N_{i\tilde{W}^{0}}\tilde{W}^{0} + N_{i\tilde{H}_{d}^{0}}\tilde{H}_{d}^{0} + N_{i\tilde{H}_{u}^{0}}\tilde{H}_{u}^{0} + N_{i\tilde{S}^{0}}\tilde{S}^{0}$

> Mass matrix

$$\mu_{\text{eff}} = \lambda s, \ \mu_{\lambda} = \lambda v, \ \mu_{\kappa} = 2\kappa s$$

\checkmark We consider two cases;

- Singlino-like neutralino LSP ... not exist in MSSM
- Bino-like neutralino LSP ... almost same as one in MSSM

Singlino-like neutralino LSP

> Interaction relevant to the slepton decay

$$-\mathcal{L}_{\tilde{\chi}_{1}^{0}-l-\tilde{l}} = \tilde{l}^{*} \overline{\tilde{\chi}_{1}^{0}} (G_{L1}P_{L} + G_{R1}P_{R})l + \text{h.c.}$$
$$G_{L1} = \frac{m_{l}g_{2}}{\sqrt{2}m_{W}\cos\beta} \sin\theta_{l}e^{i\gamma_{l}}N_{1\tilde{H}_{d}^{0}},$$
$$G_{R1} = \frac{m_{l}g_{2}}{\sqrt{2}m_{W}\cos\beta}\cos\theta_{l}N_{1\tilde{H}_{d}^{0}},$$

• G_{L1} and G_{R1} are typically small comparing to those in the case of bino-like neutralino LSP.

Solution $(\tau_{\tilde{l}})$

Solution \bullet Longer timescale of Internal Conversion ($au_{
m IC}$)

✓ Parameters : λ , κ , tan β

Bino-like neutralino LSP

> Interaction relevant to the slepton decay

include NMSSM parameters (do not depend on κ)

$$-\mathcal{L}_{\tilde{\chi}_{1}^{0}-l-\tilde{l}} = \tilde{l}^{*}\overline{\tilde{\chi}_{1}^{0}}(G_{L1}P_{L} + G_{R1}P_{R})l + \text{h.c.}$$

$$G_{L1} = \frac{g_{2}}{\sqrt{2}}\tan\theta_{W}\cos\theta_{l} - \frac{m_{l}g_{2}}{\sqrt{2}m_{W}\cos\beta}\sin\theta_{l}e^{i\gamma_{l}}N_{1\tilde{H}_{d}^{0}},$$

$$G_{R1} = \sqrt{2}g_{2}\tan\theta_{W}\sin\theta_{l}e^{i\gamma_{l}} + \frac{m_{l}g_{2}}{\sqrt{2}m_{W}\cos\beta}\cos\theta_{l}N_{1\tilde{H}_{d}^{0}}$$

The second terms are typically small comparing to the first terms in G_{L1} and G_{R1} .

 $(N_{1\tilde{H}_d^0} \to 0 \implies \text{same as in bino neutralino in MSSM})$

✓ Parameters : λ , tan β , s

Strategy

1. Search for allowed region on λ - κ plane

✓ Theoretical constraints :

- *lifetime of the slepton* $\tau_{\tilde{l}}$
- timescale of the internal conversion processes $au_{
 m IC}$

2. Select several points allowed from phenomenology

Phenomenological constraints :

- the Higgs boson mass m_h
- *DM relic density* $\Omega_{\rm DM}h^2$

etc.

NMSSMTools U. Ellwanger, C.Hugonie

3. Confirm the points to give suitable light element abundances

✓ Nuclear network calculation (show the results on δm - $Y_{\tilde{l}^-}$ plane)

NMSSM
✓ Light element abundances
✓ Dark Matter relic density
✓ Higgs boson mass

Theoretical constraints

• Lifetime of the slepton

 $10^{3} \sec < \tau_{\tilde{l}} < 10^{5} \sec$ ("He'l")
... to avoid over-production of ⁶Li.
... to form bound state with nuclei for IC.

A solution of the ⁶Li problem (theor. < obs.)

*** Catalyzed Fusion** $\tau_{\rm CF} \sim \mathcal{O}(10^4) {\rm sec}$

 $(^{4}\text{He}\ \tilde{l}^{-}) + \text{D} \rightarrow {}^{6}\text{Li} + \tilde{l}^{-}$

Timescale of the Internal Conversion

 $\tau_{\rm IC} < 0.1 \tau_{\tilde{l}}$... to reduce enough amount of ⁷Li.

Rate of dominant component in the LSP neutralino

 $N_{1\tilde{S}}^2 > 0.9$... for singlino-like LSP

 $N_{1\tilde{B}}^2 > 0.9$... for bino-like LSP

Phenomenological constraints

• Dark matter relic density

 $0.1118 \le \Omega_{\rm DM} h^2 \le 0.1280 \ (3\sigma)$

by Planck Collaboration

• Higgs boson mass

 $m_h = 125.0 \pm 3 \text{ GeV}$

... uncertainty among calculation codes (NMSSMTools, SPheno, etc..)

We also check $(g-2)_{\mu}$, and branching ratios of rare decays $B_s \rightarrow \mu^+ \mu^-$ and $b \rightarrow s\gamma$ calculated by NMSSMTools.

Results

Case 1. Singlino-like LSP, small λ - κ region

1. The region allowed from theoretical constraints

✓ Larger κ , and/or $\tan \beta$, smaller λ → larger G_{L1} → shorter $\tau_{\tilde{l}}$ and τ_{IC}

2. The points which satisfy phenomenological constraints

Input	PS-1, PS-2	PS-3	PS-4	
M_2	1000.0	1000.0	1000.0	
A_t	-7200.0	-7200.0	-7200.0	
$A_{ au}$	-7200.0	-1000.0	-400.00	
$m_{ ilde{L}_3}$	409.72	416.69	416.16	
$m_{ ilde{E}_3}$	383.90	388.08	387.75	
λ	0.0050	0.0050	0.0085	
κ	0.0020	0.0 012	0.0020	
A_λ	800.00	800.00	800.00	
A_κ	-100.00	-100.00	-100.00	0
$\mu_{ ext{eff}}$	426.39	714.61	728.81	0.
aneta	30.000	30.000	30.000	
Output				
h_1^0	125.30	124.82	124.55	0.
h_2^0	315.13	317.05	317.06	
h_3^0	3512.5	4512.6	5424.1	
a_1^0	226.20	226.83	226.81	0
a_2^0	3512.6	4512.6	5424.1	
H^{\pm}	3511.2	4501.2	5411.7	, ×
$ ilde{b}_1$	3093.1	3089.9	3089.8	0
$ ilde{b}_2$	3108.0	3111.2	3111.3	0.
$ ilde{t}_1$	2932.3	2932.1	2932.1	
$ ilde{t}_2$	3265.3	3265.5	3265.5	0
$ ilde{ au}_1$	350.10	350.10	350.10	0.
$ ilde{ au}_2$	443.35	453.37	452.59	
${ ilde g}$	3193.7	3193.7	3193.7	
$ ilde{\chi}_1^0$	350.00	350.00	350.00	
$ ilde{\chi}^0_2$	418.18	485.45	485.76	
$ ilde{\chi}^0_3$	-440.50	722.15	735.99	
$ ilde{\chi}_4^0$	502.72	-731.60	-746.16	
$ ilde{\chi}^0_5$	1035.9	1040.8	1041.8	
$ ilde{\chi}_1^\pm$	433.78	719.76	733.82	St
$ ilde{\chi}_2^\pm$	1035.9	1040.8	1041.8	
$\Omega_{ ilde{\chi}_1^0} h^2$	0.12306	0.11354	0.11509	1
$\sigma_{ m SI}[m cm^2]$	$4.3172 imes 10^{-51}$	8.6107×10^{-52}	$6.0035 imes 10^{-51}$	
δa_{μ}	$1.1604 \times 10^{-9} (2\sigma)$	$9.0488 \times 10^{-10} (3\sigma)$	$8.9167 imes 10^{-10} (3\sigma)$	
${ m Br}(B^0_s o\mu^+\mu^-)$	$3.4352 \times 10^{-9} (1\sigma)$	$3.4450 imes 10^{-9} (1\sigma)$	$3.4727 \times 10^{-9} (1\sigma)$	
${ m Br}(b o s \gamma)$	$3.0310 \times 10^{-4} (2\sigma)$	$3.0086 \times 10^{-4} (3\sigma)$	$3.0029 \times 10^{-4} (3\sigma)$	*NMS

Assumption:

$$m_{Q_{1,2}} = m_{Q_3}, m_{U_{1,2}} = m_{U_3}, m_{D_{1,2}} = m_{D_3}, m_{L_{1,2}} = m_{L_3}, m_{E_{1,2}} = m_{E_3}, M_1 = M_2/2, M_3 = 3M_2, A_{e,\mu} = A_\tau$$

PS-2 PS-3
0.005
0.004
 $m_{H} = 30$
 $m_{H} = 30$
 $m_{H} = 30$
 $m_{H} = 50$
 $m_{H} = 100p$ contribution
(same as MSSM)
*NMSSMTools ver.4.1.1, *GeV

3. Results of BBN calculation

3. Results of BBN calculation

Results

Case 2. Singlino-like LSP, large λ - κ region

1. The region allowed from theoretical constraints

2. The points which satisfy phenomenological constraints

Input	PS-5 , PS-6	PS-7	PS-8
M_2	1000.0	1000.0	1000.0
A_t	-1500.0	-1500.0	-1500.0
$A_{ au}$	-1500.0	-1500.0	-1500.0
$m_{ ilde{L}_3}$	356.97	357.38	357.40
$m_{ ilde{E}_3}$	353.31	353.53	353.55
$m_{ ilde{O}_3}$	1000.0	1000.0	1000.0
$m_{ ilde U_2}$	1000.0	1000.0	1000.0
$m_{ ilde{D}_3}$	1000.0	1000.0	1000.0
λ	0.6300	0.7000	0.6600
κ	0.2300	0.2300	0.2150
A_λ	1050.0	1080.0	1150.0
A_κ	-10.000	-50.000	-100.00
$\mu_{ m eff}$	479.78	527.45	531.54
aneta	2.5000	2.5000	2.5000
Output			
h_1^0	124.33	126.41	125.95
h_2^0	365.73	361.55	347.64
h_3^0	1306.0	1384.4	1428.4
a_1^0	142.35	204.78	256.15
a_2^0	1304.6	1383.5	1427.5
H^{\pm}	1299.0	1375.8	1420.7
${ ilde b_1}$	822.97	822.79	822.77
$ ilde{b}_2$	830.40	830.58	830.60
${ ilde t_1}$	703.40	701.86	701.68
$ ilde{t}_2$	953.20	954.76	954.89
$ ilde{ au}_1$	350.10	350.10	350.10
$ ilde{ au}_2$	364.09	364.70	364.75
${ ilde g}$	2881.7	2881.7	2881.7
$ ilde{\chi}_1^0$	350.00	350.00	350.00
$ ilde{\chi}^0_2$	456.22	472.39	472.62
$ ilde{\chi}^0_3$	-498.62	-548.29	-550.81
$ ilde{\chi}_4^0$	528.51	556.97	558.88
$ ilde{\chi}_5^0$	1011.7	1013.2	1013.4
$ ilde{\chi}_1^\pm$	476.01	522.67	526.66
$ ilde{\chi}_2^\pm$	1011.7	1013.1	1013.3
$\Omega_{ ilde{\chi}_1^0} h^2$	0.11220	0.11939	0.12643
$\sigma_{ m SI}[m cm^2]$	$3.3230{ imes}10^{-45}$	1.9286×10^{-45}	$6.6097 { imes} 10^{-46}$
δa_{μ}	$1.2586 \times 10^{-10} (> 3\sigma)$	$1.2364 \times 10^{-10} (> 3\sigma)$	$1.2299 \times 10^{-10} (> 3\sigma)$
${ m Br}(B^0_s o\mu^+\mu^-)$	$3.5365{ imes}10^{-9}(1\sigma)$	$3.5368{ imes}10^{-9}(1\sigma)$	$3.5370{ imes}10^{-9}(1\sigma)$
${ m Br}(b o s \gamma)$	$3.1812{ imes}10^{-4}(2\sigma)$	$3.1743{ imes}10^{-4}(2\sigma)$	$3.1677{ imes}10^{-4}(2\sigma)$

3. Results of BBN calculation

Results

Case 3. Bino-like LSP, large λ - κ region

Results

Case 3. Bino-like LSP, large λ - κ region

 \checkmark G_{L1} and G_{R1} are almost independent from λ , κ , and $\tan \beta$.

✓ We choose points at which suitable DM relic density and the Higgs boson mass without taking the theoretical conditions into account.

2. The points which satisfy phenomenological constraints

Input	PB-1	PB-2	PB-3	PB-4
M_2	713.14	713.25	713.36	712.97
A_t	-1500.0	-1500.0	-1500.0	-1500.0
$A_{ au}$	-1500.0	-1500.0	-1500.0	-1500.0
$m_{ ilde{L}_3}$	359.32	359.32	359.32	359.32
$m_{ ilde{E}_2}$	354.76	354.76	354.76	354.76
$m_{\tilde{O}_3}^{-3}$	1000.0	1000.0	1000.0	1000.0
$m_{ ilde{U}_2}$	1000.0	1000.0	1000.0	1000.0
$m_{ ilde{D}_2}$	1000.0	1000.0	1000.0	1000.0
λ^{-3}	0.6000	0.6800	0.6800	0.6000
κ	0.2000	0.2000	0.3200	0.3200
A_{λ}	1500.0	1480.0	1000.0	1500.0
A_{κ}	-100.00	-100.00	-100.00	-100.00
$\mu_{ m eff}$	900.00	900.00	900.00	900.00
$\tan\beta$	2.0000	2.0000	2.0000	2.0000
Output				
h_1^0	124.19	126.51	125.23	124.35
h_2^0	609.68	552.89	844.57	960.06
h_3^0	2014.2	1983.6	1793.5	2115.8
a_1^0	304.76	289.22	372.60	379.68
a_2^0	2014.3	1983.7	1792.3	2114.5
H^{\pm}	2007.0	1974.3	1783.8	2108.5
$ ilde{b}_1$	988.74	988.71	988.67	988.80
\widetilde{b}_2	996.89	996.85	996.82	996.95
$ ilde{t}_1$	853.45	853.41	853.37	853.51
$ ilde{t}_2$	1132.2	1132.1	1132.1	1132.2
$ ilde{ au}_1$	350.10	350.10	350.10	350.10
$ ilde{ au}_2$	367.13	367.13	367.13	367.13
$ ilde{g}$	2068.2	2068.5	2068.8	2067.7
$ ilde{\chi}_1^0$	350.00	350.00	350.00	350.00
$ ilde{\chi}^0_2$	602.38	534.28	696.36	697.51
$ ilde{\chi}^0_3$	699.76	699.36	842.69	-906.34
$ ilde{\chi}_4^0$	-907.56	-909.78	-908.00	914.24
$\widetilde{\chi}_5^0$	934.51	934.66	944.68	984.08
$ ilde{\chi}_1^\pm$	697.54	697.56	697.21	697.60
$ ilde{\chi}_2^\pm$	929.52	929.50	929.28	929.61
$\Omega_{ ilde{\chi}_1^0} h^2$	0.11964	0.11964	0.11956	0.11968
$\sigma_{ m SI}[m cm^2]$	$7.7946 imes 10^{-46}$	$7.5748 imes 10^{-46}$	7.3740×10^{-46}	7.4233×10^{-46}
δa_{μ}	$1.3321 \times 10^{-10} (> 3\sigma)$	$1.3370 \times 10^{-10} (> 3\sigma)$	$1.3398 \times 10^{-10} (> 3\sigma)$	$1.3296 \times 10^{-10} (> 3\sigma)$
${ m Br}(B^0_s o \mu^+ \mu^-)$	$3.5382 \times 10^{-9}(1\sigma)$	$3.5382 \times 10^{-9}(1\sigma)$	$3.5381 \times 10^{-9}(1\sigma)$	$3.5383 \times 10^{-9}(1\sigma)$
$Br(b \rightarrow s\gamma)$	$3.1732 \times 10^{-4} (2\sigma)$	$3.1754 \times 10^{-4} (2\sigma)$	$3.1907 \times 10^{-4} (2\sigma)$	$3.1668 \times 10^{-4} (2\sigma)$

Assumption:
$m_{Q_{1,2}} = m_{Q_3}, \ m_{U_{1,2}} = m_{U_3}, \ m_{D_{1,2}} = m_{D_3},$
$m_{L_{1,2}} = m_{L_3}, \ m_{E_{1,2}} = m_{E_3},$
$M_1 = M_2/2, \ M_3 = 3M_2, \ A_{e,\mu} = A_{\tau}$

Parameters	PB-1	PB-2	PB-3	PB-4
c_e	0	0	0	0
λ	0.6	0.68	0.68	0.6
κ	0.2	0.2	0.32	0.32

... suitable m_h and $\Omega_{\rm DM}h^2$ are obtained. realized by large tree contribution (different from MSSM)

*NMSSMTools ver.4.1.1, *GeV

3. Results of BBN calculation

3. Results of BBN calculation

Summary

> Motivation

MSSM ✓ Light element abundances ✓ Dark Matter relic density

NMSSM

Light element abundances
Dark Matter relic density
Higgs boson mass

> Strategy

- ✓ Search for allowed region on λ - κ plane (theoretical constraints; $\tau_{\tilde{l}}$, $\tau_{\rm IC}$, and $N_{1\tilde{S}}^2(N_{1\tilde{B}}^2)$)
- ✓ Select several points allowed from phenomenology $(\Omega_{\tilde{\chi}_1^0} h^2 \text{ and } m_h)$
- \checkmark Confirm the points to give suitable light element abundances

> **Results**

We have found several points where suitable light element abundances (including ⁷Li and ⁶Li), DM relic density, and Higgs boson mass are obtained;

(1) Singlino-like neutralino LSP, small λ-κ , (2) Singlino-like neutralino LSP, large λ-κ ,
 (3) Bino-like neutralino LSP, large λ-κ .

Backup

Bing-Bang Nucleosynthesis (BBN)

... primordial synthesis of light elements nuclei.

 $T \sim (1 - 0.01) \text{MeV} \Leftrightarrow t \sim (1 - 10^3) \text{sec}$

Standard BBN theory

... based on the SM

 \checkmark Predicts light element abundances from only one parameter, η .

 $\eta \equiv \frac{n_{\text{baryon}}}{n_{\text{photon}}} = (6.225 \pm 0.170) \times 10^{-10}$

Consistent predictions with obs.
 in most species of light elements.

D, ${}^{4}\text{He} \rightarrow \text{OK!}$

Bing-Bang Nucleosynthesis (BBN)

... primordial synthesis of light elements nuclei.

 $T \sim (1 - 0.01) \text{MeV} \Leftrightarrow t \sim (1 - 10^3) \text{sec}$

Standard BBN theory

... based on the SM

Lithium problems

✓ Lithium-7 (⁷Li) problem theory > observation $\log_{10}(^{7}Li/H): -9.35 \pm 0.006 -9.63 \pm 0.06$

T. Jittoh et al., PRD 84, 035008 (2011),J. Melendez and I. Ramirez, Astrophys. J. 615, L33 (2004)

✓ Lithium-6 (⁶Li) problem theory < observation $^{6}Li/^{7}Li: ≤ 10^{-4} 0.046 \pm 0.022$

Vangioni-Flam E et al., New Astron 4:245(1999) M. Asplund et al., Astrophys. J. 644, 229 (2006)

Bing-Bang Nucleosynthesis (BBN)

... primordial synthesis of light elements nuclei.

M. Asplund et al., Astrophys. J. 644, 229 (2006)

Relic stau density at the BBN

Total number density of the SUSY particles

... annihilation and creation processes of SUSY particles, $\tilde{\chi}^0$ and $\tilde{\tau}$, are frozen out at $T_f \ (m_{\tilde{\chi}^0}/T_f \simeq 25)$

 $n_{ ilde{\chi}^0} + n_{ ilde{ au}^\pm}$ is fixed

... this sum is the relic number density of the Dark Matter, n_{DM} . *all SUSY particles eventually decay into the LSP

Stau relic density

✓ Even after the freeze out, stau number density is not yet fixed! $n_{\tilde{\chi}^0}$, $n_{\tilde{\tau}^-}$ and $n_{\tilde{\tau}^+}$ are still evolving (with fixed n_{DM}) as the termperature of the Universe drops.

Relic stau density at the BBN

- Evolution of the stau number density until the BBN era ... described by Boltzmann equations for the stau
 - > Exchange processes of $\tilde{\tau}$ and $\tilde{\chi}^0$

- \checkmark In thermal equilibrium, $Y_{\tilde{\tau}}/Y_{\tilde{\chi}^0} \sim e^{-\delta m/T}$ $(Y_i = n_i/s)$
- \checkmark The exchange processes are frozen out at $T_{f(\text{ratio})}$
 - ... compete between the reaction rates and the Hubble expansion rate.

Relic stau density at the BBN

Evolution of the stau number density until the BBN era ... described by Boltzmann equations for the stau

