

Electromagnetic Calorimeter (ECAL)

Search for the SM Higgs boson decaying to t pairs in CMS

High Energy Physics in the LHC Era Inner vacuum Tube Valparaiso, Chile

Tracker

ÉCOLE

POLYTECHNIQUE

ParisTech

Ivo Nicolas Naranjo Fong MagrELR-Ecole Polytechnique on behalf of the CMS collaboration Hadronic Calorimeter (HCAL) 19-12-2013

Motivation

New Higgs boson discovered at LHC with a mass around 125 GeV in 2012.

Higgs search at the LHC

• Higgs production modes at LHC :

Different production modes lead to different topologies for the signal events.

BR(SM $H_{125} \rightarrow \tau \tau$) ~ 6 %

- Favorable branching ratio at low mass
- The only channel available today able to probe the Higgs couplings to leptons

$H \rightarrow \tau \tau$ channel

Final states

• **Analysis strategy** : Look for an excess in the reconstructed di-τ mass distribution.

• Key ingredients :

- \circ Hadronic τ reconstruction
- Missing energy estimation (presence of neutrinos)
- \circ Di- τ mass reconstruction
- Event categorization

τ lepton reconstruction in CMS

charged

hadrons

19/12/13

Tracks

<u>E</u>

HCAL

ECAL Clusters

particle-flow

Hadron Plus Strips Algorithm

• π° s candidates

form clusters in the ECAL ($\pi^{\circ} \rightarrow \gamma \gamma$).

• $\pi \pm$ candidates : track + Energy deposit in the ECAL + HCAL.

• Combine Charged hadrons ($\pi \pm s$) and $\pi^{\circ}s$ for each decay mode.

- Jet $\rightarrow \tau$ fake rate in the order of ~3% for 70 % efficiency.
- Dedicated cut based isolation.
- Lepton $(e/\mu) \rightarrow \tau$ fake rate in the order of per mil level.
- Dedicated anti-muon (cut based) and anti-electron (MVA based) discriminators.

I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Missing transverse energy

$$\vec{p}_T^{miss} = -\sum_{\text{all PF particles}} \vec{p}_T$$

- Uses Particle Flow to determine jet constituents contribution.
- ME_T resolution degrades with Pile-up
- MVA ME_T regression corrects for the pile-up contribution.
- ➢ Pile-up robust.
- Key ingredient for the di-τ mass reconstruction.

Di-τ mass reconstruction

- Maximum Likelihood method
- Estimate the tau decay kinematics using : $E_T^{miss}_{x,y}$, $P_t^{vis}(\tau_{1,2})$ observables.
- **Test hypothesis :** $M_{\tau\tau}$ from M_{τ} to 2 TeV \Rightarrow maximisation of $L(M_{\tau\tau})$.

Tau decays phase-space Expected ME_T resolution

• 15-20% resolution of the reconstructed mass.

$H \rightarrow \tau \tau$ candidate selections

- Here we focused in the semileptonic $H \rightarrow \tau \tau \rightarrow e/\mu + \tau$ channels.
- Lepton selection : electron (muon) \circ Pt > 24(20) GeV $|\eta^*| < 2.1$
- Tau selection

 Pt > 30 GeV, |η| < 2.3
- Event selection

 Opposite sign between lepton and Tau

M_T(lep+ME_T) < 30 GeV
(W+jets Bkg rejection)

• Third lepton veto

I. N. Naranjo Fong-HEP in the LHC Era 2013

Topologies/Categories

HIG-13-004

g 000000000 H		000000000 P	Фн	q q/q' W/Z P p/p'		
0-jet		1-jet (bo	osted Higgs)	2-jet (VB	Fenhanced)	
			p _T ^{ττ} > 100 GeV	m _{jj} > 500 GeV Δη _{jj} > 3.5	$p_T^{\tau \tau} > 100 \text{ GeV} \ m_{jj} > 700 \text{ GeV} \ \Delta \eta_{jj} > 4.0$	
$p_{\rm T}(\tau_{\rm h}) > 45 {\rm ~GeV}$	high $p_T(\tau_h)$	high p _T (τ _h) (μτ _h only)	high $p_T(\tau_h)$ boost	1	tight	
Baseline $p_T(\tau_h) > 30 \text{ GeV}$	low $p_T(\tau_h)$	low $p_T(\tau_h)$		VBF tag	(2012 only)	

• Calibration of backgrounds.

- Jet Pt > 30 GeV
- Improved resolution of mass reconstruction.
- 2 "tag" jets Pt > 30 GeV
- Central jet veto

Systematic uncertainties

HIG-13-004

	Uncertainty	Affected samples	Change in acceptance
	Tau energy scale	signal & sim. backgrounds	shape
	Tau ID & trigger	signal & sim. backgrounds	8–19%
	e misidentified as τ_h	$Z \rightarrow ee$	20–74%
	μ misidentified as τ_h	$Z \rightarrow \mu \mu$	30%
	Jet misidentified as τ_h	Z boson plus jets	20-80%
Evnorimontal	Electron ID & trigger	signal & sim. backgrounds	2–6%
	Muon ID & trigger	signal & sim. backgrounds	2–4%
-	Electron energy scale	signal & sim. backgrounds	shape
	Jet energy scale	signal & sim. backgrounds	0–20%
	$E_{\rm T}^{\rm miss}$ scale	signal & sim. backgrounds	1–12%
	ε_{b-tag} b jets	signal & sim. backgrounds	0–8%
	ε_{b-tag} light-flavoured jets	signal & sim. backgrounds	1–3%
L L	Norm. Z production	Z	3%
	$Z \rightarrow \tau \tau$ category	$Z \rightarrow \tau \tau$	2–14%
	Norm. W+jets	W+jets	10–100%
Bly a actimation -	Norm. t ī	tī	8–35%
	Norm. diboson	diboson	15-45%
-	Norm. QCD multijet	QCD multijet	6–70%
	Shape QCD multijet	QCD multijet	shape
	Luminosity 7 TeV (8 TeV)	signal & sim. backgrounds	2.2% (2.6%)
	PDF (qq)	signal & sim. backgrounds	4%
Theory	PDF (gg)	signal & sim. backgrounds	10%
	Scale variation	signal	3–41%
l	Underlying event & parton shower	signal	2–10%
	Limited number of events	all	bin-by-bin

- Perform a simultaneous binned maximum likelihood fit in all channels /categories.
- Treat the uncertainties as nuisance parameters to the fit.

I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Mass plots $e\tau_h$

HIG-13-004

g

I. N. Naranjo Fong-HEP in the LHC Era 2013

300

m_{ττ} [GeV]

bkg. uncertainty

0-jet low $p_{\tau}(\tau_h)$

 e_{τ_h}

200

100

300

200

100

0

0

Mass plots $\mu \tau_h$

g ~000000000 H

Weighted distributions

- Weighted S/S+B mass distribution.
- Combined distribution for all final states.
- Ordered in log(S/S+B) shows **clear excess** of events in the most sensitives bins.

Results : Evidence for a Higgs boson

HIG-13-004

- Observed significance at 125 GeV = 3.38σ
- Observed significance at 115 GeV = 3.59σ
- Excess > 3 σ for 110 < M_H < 130 GeV.

I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Results : signal strength modifier

- Best fit $\mu = \sigma / \sigma_{SM} = 0.87 \pm 0.29$
- Compatible with the SM Higgs boson (125 GeV) prediction.

Results : mass measurement

- Likelihood scan gives $m_H = 115_{-2}^{+8}$ GeV.
- Compatible with the measurements in high resolution channels ($\gamma\gamma$, ZZ). m_H = 125.7±0.3(stat) ±0.3(syst) GeV
- Best fit of μ shows compatibility with H₁₂₅. I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Combination with H \rightarrow bb at m_H = 125 GeV

- H \rightarrow bb observed (expected) significance at 125 GeV = 2.1 (2.3) σ
- $H \rightarrow \tau \tau$ observed (expected) significance at 125 GeV = 3.4 (3.6) σ
- **Combination** observed (expected) significance at 125 GeV = 3.9 (4.3) σ

I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Summary

- $H \rightarrow \tau \tau$ analysis successful thanks to Particle Flow, τ lepton, ME_T and di- τ mass reconstruction.
- Excess of more than 3 σ for 110 < M_H < 130 GeV.
- Significance at 125 GeV = 3.38σ
- Best fit $\mu = \sigma / \sigma_{SM} = 0.87 \pm 0.29$
- H→ττ analysis shows compatibility with SM H(125). Evidence that the new boson discovered couples to τ leptons.
- Combination with $H \rightarrow bb$ leads to 3.9 σ evidence of fermionic Higgs decays.

Thank you. Questions?

CMS Experiment at the LHC, CERN

Data recorded: 2012-jun-05 09:58:43.400262 GMT(11:58:43 CEST) Run / Event: 195552 / 61758463

I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Back up Material

Yields $\mu \tau_h$

Event category	ggH	VBF	VH	tot Signal	tot. Background	Data	S/(S+B)	H125 width [GeV]
0-jet low $p_T^{ au}$ 7 TeV	21.9	0.2	0.1	22.3 ± 3.3	11969 ± 716	11959	0.002	17.4
0-jet low $p_T^{ au}$ 8 TeV	82.9	0.8	0.4	84.1 ± 11.6	40839 ± 2316	40353	0.003	16.2
0-jet high $p_T^{ au}$ 7 TeV	16.6	0.2	0.2	17.0 ± 2.5	1595 ± 95	1594	0.021	15.1
0-jet high $p_T^{ au}$ 8 TeV	65.4	0.7	0.7	66.8 ± 9.3	6000 ± 302	5789	0.020	15.2
1-jet low $p_T^{ au}$ 7 TeV	8.7	1.6	0.8	11.0 ± 1.6	2021 ± 133	2047	0.012	18.8
1-jet low $p_T^{ au}$ 8 TeV	36.0	6.2	3.1	45.3 ± 6.0	9035 ± 430	9010	0.010	18.6
1-jet high p_T^{τ} 7 TeV	7.3	1.1	0.6	9.0 ± 1.2	796 ± 45	817	0.032	19.1
1-jet high $p_T^{ au}$ 8 TeV	29.6	4.4	2.5	36.5 ± 4.7	3182 ± 153	3160	0.029	19.7
1-jet high $p_T^{ au}$, higgs boosted 7 TeV	2.4	0.7	0.5	3.6 ± 0.6	282 ± 19	269	0.052	17.7
1-jet high $p_T^{ au}$, higgs boosted 8 TeV	11.3	3.0	2.1	16.5 ± 2.6	1264 ± 73	1253	0.071	17.2
VBF tag 7 TeV	0.2	1.3	-	1.5 ± 0.2	22 ± 2	23	0.14	19.6
loose VBF tag 8 TeV	1.2	3.5	-	4.7 ± 0.4	80 ± 7	76	0.18	17.0
tight VBF tag 8 TeV	0.4	2.1	-	2.5 ± 0.2	15 ± 2	20	0.51	18.1

Yields $e\tau_h$

Event category	ggH	VBF	VH	tot Signal	tot. Background	Data	S/(S+B)	H125 width [GeV]
0-jet low $p_T^{ au}$ 7 TeV	11.7	0.1	0.1	11.9 ± 1.8	6153 ± 368	6238	0.002	16.4
0-jet low $p_T^{ au}$ 8 TeV	35.0	0.4	0.2	35.6 ± 4.9	16825 ± 879	17109	0.003	15.8
0-jet high $p_T^{ au}$ 7 TeV	11.0	0.1	0.1	11.2 ± 1.7	1169 ± 69	1191	0.015	14.3
0-jet high $p_T^{ au}$ 8 TeV	32.7	0.3	0.3	33.4 ± 4.7	4393 ± 194	4536	0.010	15.4
1-jet low $p_T^{ au}$ 7 TeV	3.1	0.6	0.3	4.0 ± 0.6	368 ± 27	385	0.028	19.6
1-jet low $p_T^{ au}$ 8 TeV	9.6	1.9	1.1	12.6 ± 1.7	1208 ± 64	1214	0.026	16.5
1-jet high p_T^{r} , higgs boosted 7 TeV	1.2	0.3	0.2	1.8 ± 0.3	151 ± 10	167	0.088	15.4
1-jet high $p_T^{\mathrm{ au}}$, higgs boosted 8 TeV	5.4	1.5	1.0	7.9 ± 1.2	500 ± 30	476	0.11	15.5
VBF tag 7 TeV	0.2	0.7	-	0.9 ± 0.1	14 ± 2	13	0.23	15.9
loose VBF tag 8 TeV	0.6	1.8	-	2.5 ± 0.2	45 ± 4	40	0.15	16.8
tight VBF tag 8 TeV	0.3	1.3	-	1.6 ± 0.1	9 ± 1	7	0.52	16.1

Yields $\tau_h \tau_h$ and $e \mu$

Event category	ggH	VB	= VH	l tot Signa	I tot. Background	Data	S/(S+B)	H125 width [GeV]
1-jet boost 8 TeV	7.3	2.1	1.0) 10.4 ± 1.7	7 1130 ± 56	1120	0.055	15.2
1-jet large-boost 8 TeV	5.6	1.6	1.2	8.4 ± 1.2	375 ± 26	366	0.14	13.1
VBF tag 8 TeV	0.5	2.5	-	3.1 ± 0.3	29 ± 4	34	0.33	14.3
Event category	ggH	VBF	VH	tot Signal	tot. Background	Data	S/(S+B)	H125 width [GeV]
0-jet low p_T^μ 7 TeV	21.4	0.2	0.2	21.8 ± 3.1	11320 ± 324	11283	0.002	24.4
0-jet low p_T^μ 8 TeV	72.3	0.7	0.7	73.7 ± 9.9	40496 ± 1085	40381	0.002	23.6
0-jet high p_T^μ 7 TeV	7.8	0.1	0.1	8.0 ± 1.1	1638 ± 60	1676	0.007	22.7
0-jet high p_T^μ 8 TeV	24.6	0.2	0.5	25.4 ± 3.4	6005 ± 178	6095	0.006	20.7
1-jet low p_T^μ 7 TeV	8.6	1.6	1.0	11.2 ± 1.4	2470 ± 83	2482	0.007	23.7
1-jet low p_T^μ 8 TeV	40.4	6.5	3.7	50.6 ± 6.1	10910 ± 299	10926	0.006	23.8
1-jet high p_T^μ 7 TeV	4.4	1.0	0.6	6.0 ± 0.8	918 ± 39	901	0.012	23.4
1-jet high p_T^μ 8 TeV	18.1	3.4	2.6	24.0 ± 3.0	4039 ± 120	4050	0.011	23.1
VBF tag 7 TeV	0.2	0.9	-	1.1 ± 0.1	18 ± 1	12	0.10	22.8
loose VBF tag 8 TeV	0.6	2.6	-	3.2 ± 0.3	97 ± 6	112	0.050	23.5
tight VBF tag 8 TeV	0.2	1.4	-	1.6 ± 0.1	14 ± 1	17	0.18	17.9

Results : 95% CL_s upper limits on σ

- After a binned maximum likelihood fit in all channels / categories
- Excess of events over a broad range vs mH hypothesis.
- Excess compatible with the SM Higgs boson (125 GeV) prediction.

I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Fermion/Vector couplings

HIG-13-004

- Likelihood scans as a function of κ_V and κ_F .
- $H \rightarrow WW$ contribution is considered as part of the signal.
- Compatible with the SM ($\kappa_V = \kappa_F = 1$)

I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Channels/categories sensitivity

- VBF tag most sensitive category followed by 1jet.
- $\mu \tau_h$ most sensitive channel followed by $e \tau_h$ and $\tau_h \tau_h$.

Combined distributions

- Combined distribution ordered in log(S/S+B) shows clear excess of events in the most sensitives bins.
- Separately for category (left) and channel (right).

Channel compatibility

HIG-13-004

• All channels are fairly compatible.

H₁₂₅ as background

DiTau mass reconstruction

 Determine invariant mass of di-τ system with maximum likelihood method.

- Estimate for di-τ system, to be real for given value of m_π.
- Free parameters: φ, θ^{*}, (m_{νν}) per τlepton (4-6 parameters).
- Full integration of kernel. Scan of m₁ from m₁ up to 2TeV.
- 15-20% resolution of the reconstructed m_π mass.

6

CMS detector

Limits

Explanatory figure (not actual data)

Mass plots 8 TeV

Mass plots $\mu \tau_h$

g ~000000000 H

Mass plots $\mu \tau_h$

g ~000000000 H

 $\mu \tau_{h}$

200

19/12/13

100

1-jet low p_τ(τ_h)

300

m_{ττ} [GeV]

q ______q/q' W/Z _____H W/Z _____H

Mass plots $e\tau_h$

HIG-13-004

g

q/q q. W/Z --H W/Z p/p

I. N. Naranjo Fong-HEP in the LHC Era 2013

300

m_{ττ} [GeV]

bkg. uncertainty

0-jet low $p_{\tau}(\tau_h)$

 e_{τ_h}

200

100

300

200

100

0

0

Mass plots eµ

HIG-13-004

electroweak

misidentified e/u

mertainty bkg. uncertainty

0-jet low p₁(µ)

300

m_{ττ} [GeV]

eμ

200

100

600

400

200

0

0

g

g

dN/dm_{tt} [1/GeV]

-0000000

70

60

50

40 E

30

20

10

Q

CMS Preliminary, 19.7 fb⁻¹ at 8 TeV

---H

---- SM H(125 GeV)→ττ

SM H(125 GeV)→WW

- observed

Ζ→ττ

electroweak

bkg. uncertainty

1-jet high p_(µ)

misidentified e/µ

🔲 tĩ

eμ

Mass plots $\tau_h \tau_h$

g сососососо Н

Mass plots µµ

HIG-13-004

I. N. Naranjo Fong-HEP in the LHC Era 2013

0.4

0.6

19/12/13

0.8

1.0

D

Mass plots ee

HIG-13-004

I. N. Naranjo Fong-HEP in the LHC Era 2013

19/12/13

D

Mass plots 7 TeV

Mass plots $\mu \tau_h$

Mass plots $\mu \tau_h$

Mass plots $e\tau_h$

HIG-13-004

m_{ττ} [GeV]

I. N. Naranjo Fong-HEP in the LHC Era 2013

19/12/13

m_{ττ} [GeV]

Mass plots eµ

HIG-13-004

m_{ττ} [GeV]

Mass plots µµ

HIG-13-004

I. N. Naranjo Fong-HEP in the LHC Era 2013

Q ·---·H 2000 - 2000 - 1 CMS Preliminary, 4.9 fb⁻¹ at 7 TeV ----- SM H(125 GeV)→ττ -1-jet high p_(μ) = observed Z→μμ **Ζ**→ττ 🗆 tī ÖCD electroweak bkg. uncertainty 0.2 0.4 0.6 0.8 1.0 D CMS Preliminary, 4.9 fb⁻¹ at 7 TeV ----- SM H(125 GeV)→ττ - observed 1-jet low p_(μ) Z→μμ **Ζ**→π 🔲 tī 🗏 ÖCD electroweak 🗱 bkg. uncertainty 0.8 0.2 0.4 0.6 1.0 D

19/12/13

Mass plots ee

HIG-13-004

I. N. Naranjo Fong-HEP in the LHC Era 2013

Q ·---·H CMS Preliminary, 4.9 fb⁻¹ at 7 TeV ---- SM H(125 GeV)→τ -- observed 1-jet high p_(e) Z→ee **Ζ**→π 🗆 tī ÖCD electroweak bkg. uncertainty 0.4 0.6 0.8 1.0 D CMS Preliminary, 4.9 fb⁻¹ at 7 TeV ----- SM H(125 GeV)→ττ - observed 1-jet low p_(e) I Z→ee **Ζ**→π 🗾 tī ÖCD electroweak I bkg. uncertainty

0.4

0.6

19/12/13

0.8

1.0

D

Moriond'13

Fopologies/Categories Moriond'13						
g -00000000 g -00000000	H	g .000000000 H	q q/q' W/Z p p/p'			
	0-jet	1-jet	2-jet			
			m _{jj} > 500 GeV Δη _{jj} > 3.5			
$p_{\rm T}(\tau_{\rm h}) > 45 { m GeV}$	high $p_T(\tau_h)$	high $p_T(\tau_h)$	VRE to a			
baseline	low $p_T(\tau_h)$	low $p_T(\tau_h)$	v Dr tag			

• Calibration of backgrounds.

- Jet Pt > 30 GeV
- Improved resolution of mass reconstruction.
- 2 "tag" jets Pt > 30 GeV
- Central jet veto

Results

Moriond'13

- 1 jet and VBF categories of similar power.
- Driving channel $H \rightarrow \tau \tau \rightarrow \mu + \tau$. Then semileptonic : e + τ .

Expected Limits injecting Higgs signal with mH=125 GeV

Moriond'13

Best fit for signal strength

Moriond'13

 Signal strength µ =1.1+-0.4, obtained in the global fit combining all channel

I. N. Naranjo Fong-HEP in the LHC Era 2013 19/12/13

Best fit for signal strength

Moriond'13

- Signal strength **µ** =1.1+-0.4
- Log likelihood versus SM Higgs boson fit mass, combining all search channels. mH = 120⁺⁹-7(stat+syst) GeV

Yields

Moriond'13

Process	0-Jet	1-Jet high p_T	VBF
$Z \rightarrow \tau \tau$	84833 ± 1927	4686 ± 232	109 ± 11
QCD	18313 ± 478	481 ± 38	48 ± 7
EWK	8841 ± 653	1585 ± 153	63 ± 9
tť	11 ± 1	155 ± 11	5 ± 1
Total Background	111998 ± 2090	6908 ± 281	225 ± 16
$H \rightarrow \tau \tau$	- ± -	73 ± 13	11 ± 2
Observed	112279	7011	240

Table 3: Observed and expected event yields, and expected signal efficiency in the $\mu \tau_h$ channel.

Signal Eff.

$gg \rightarrow H$	-	$1.99 \cdot 10^{-3}$	8.51 .10-5
$qq \rightarrow H$	-	$4.09 \cdot 10^{-3}$	3.46 .10-3
$qq \rightarrow Ht\bar{t} \text{ or } VH$	-	$3.00 \cdot 10^{-3}$	$1.60 \cdot 10^{-5}$

Table 4: Observed and expected event yields, and expected signal efficiency in the $e\tau_h$ channel.

Process	0-Jet	1-Jet high p_T	VBF
$Z \rightarrow \tau \tau$	25161 ± 708	792 ± 62	47 ± 6
QCD	7706 ± 307	3 ± 0.3	17 ± 4
EWK	9571 ± 510	365 ± 53	44 ± 6
tī	4 ± 0.5	47 ± 4	4 ± 1
Total Background	42443 ± 924	1207 ± 82	113 ± 9
$H \rightarrow \tau \tau$	- ± -	15 ± 3	5 ± 1
Observed	42481	1217	117

Signal Eff.

$gg \rightarrow H$	-	$3.94 \cdot 10^{-4}$	3.33 .10-5
$qq \rightarrow H$	-	$1.10 \cdot 10^{-3}$	$1.78 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or } VH$	-	$8.30 \cdot 10^{-4}$	$1.46 \cdot 10^{-6}$

I. N. Naranjo Fong-HEP in the LHC Era 2013

19/12/13

MSSM

Standard Model and Supersymmetry

- SM describe physics at weak scale, but Hierarchy problem in Higgs sector.
 - There are no high-mass particles which couple to the Higgs field (even indirectly)
 - $\circ~$ Striking cancellation are needed in high-order loop corrections to $m_{\rm H}$
- SUSY solution to hierarchy problem at TeV scale
 - Introduces super-partners of SM particles and cancels problematic loop corrections
- MSSM
 - 2 Higgs doublets \rightarrow 5 physical Higgs states: **H**[±], **h**, **A**, **H**.
 - \circ Result interpretation in the m_h^{max} scenario where :
 - $m_h {\sim} 130 \text{ GeV}$ and $m_H {\sim} m_A$.
 - \circ 2 free parameters m_A and tan $\beta = v_2/v_{1.}$

MSSM Neutral Higgs→ττ search

- 2 main production modes
- Specific analysis categories :

gg→bbφ

No b-tag category

No b-tag jets with $p_T > 20 \text{ GeV}$

MSSM Neutral Higgs→ττ search results

- No excess observed.
- Large m_A -tan β plane excluded.