Measurements of the Spin and Parity Properties of the Higgs Boson Using the ATLAS Detector

Andrew S. Hard

University of Wisconsin Madison

On behalf of the ATLAS Collaboration

HEP 2013, Valparaiso, Chile December 19, 2013

Introduction

Discovered a boson, must establish spin and parity (J^P) quantum numbers Test alternative J^P against the SM (0⁺) and observe which the data favors

Several alternative models:

 Appearance of boson in di-photon channel strongly disfavors spin 1 according to Landau-Yang. Can test in WW^(*) and ZZ^(*) anyway

J^P=2⁺

Graviton-like tensor

- minimal couplings to SM particles
- Test production via combinations of gg fusion and qq annihilation (beyond the minimal coupling model, which gives 96% gg, 4% qq at LO)

J=1 models have signal produced via *qq* annihilation (*gg* forbidden by Landau Yang)

 $J^{P}=0^{-}$ models from gg production (qq negligible)

Bosonic decay channels

Find observables in bosonic channels sensitive to spin and parity that also preserve background discrimination

 $J^{P}=0^{+}$ tested against $J^{P}=2^{+}$ (no parity sensitivity)

Fit to **the invariant di-photon mass** and **diphoton separation angle**

WW^(*)→evµv:

- $J^P=0^+$ tested against $J^P=1^+$, 1^- , 2^+
- Fit to multivariate discriminant from boosted decision trees trained on 4 parameters

ZZ^(*)→I+I-I+I-:

- $J^{P}=0^{+}$ tested against $J^{P}=0^{-}$, 1⁺, 1⁻, 2⁺
- Fit to **BDT discriminants** trained on **2 mass** values, 2 production angles, 3 decay angles

Standard Model Higgs (JP=0+)

- ZZ^(*) channel uses JHU MC generator
- **NLO predictions** from POWHEG MC for **WW**(*) and **yy** channels
- Tuned to reproduce the re-summed p_T calculation of the HqT program
- Interfaced with PYTHIA8 for parton showering and hadronization

Alternate spin models $(J_{A/t}^{P})$

- LO QCD predictions from JHU generator + PYTHIA8 parton showering
- Transverse momentum comes from parton showering in the initial state
- p_T of resonance impacts angular variables
- For gg production, reweight p_T spectrum to POWHEG prediction:

$$w(p_T) = \frac{1}{\sigma_{POWHEG}} \frac{d\sigma_{POWHEG}}{dp_T} / \frac{1}{\sigma_{PYTHIA}} \frac{d\sigma_{PYTHIA}}{dp_T}$$

No p_T re-weighting for the qq initial state (LO model has very large NLO QCD corrections)

$H \rightarrow \gamma \gamma$ Channel

20.7 *fb*⁻¹ of data at $\sqrt{s} = 8$ *TeV* from the LHC in 2012

Photon selection

- Energy scale calibration (and smearing for MC) from Z→ee
- p_T > 25 GeV
- |η|<2.37 excluding 1.37<|η|<1.56 (excluding calo. transition region)
- η corrections from electromagnetic calorimeter pointing.
- Rectangular "tight" ID cuts on calorimeter shower shapes.
- Isolation: $\Sigma E_T^{Calo} (\Delta r=0.4) < 6.0 \text{ GeV}$ $\Sigma p_T^{Track} (\Delta r=0.2) < 2.6 \text{ GeV}$

Event selection

- **Trigger:** "loose" ID di-photon events
- Vertex reconstruction with artificial neural network, using pointing capabilities of the ATLAS EM calo. as well as tracking information
- $p_{T,1} / m_{\gamma\gamma} > 0.35$, $p_{T,2} / m_{\gamma\gamma} > 0.25$

Di-photon invariant mass spectrum

Separate signal from background with fit to the yy mass

- Excellent 1.77 GeV mass resolution
- Fit a narrow signal peak near 125.5 GeV on top of exponentially decreasing background

Separate 0⁺ and 2⁺ spin hypotheses using the angular correlation of the two photons

0.9

lcosθ*l

Fit method

Events are divided into yy mass sidebands and signal region

Side-bands: 1D fit in m_{vv}

- **Background:** O(5) Bernstein polynomial
- Constrains the background shape in the signal region of mass

Signal region: 2D m_{vv} -cos(θ^*) fit

- Product of two 1D shapes
- Signal: Crystal ball + Gaussian mass peak, $\cos(\theta^*)$ shape from MC Events / 2 GeV
- **Background:** $cos(\theta^*)$ shape from m_{vv} sidebands

Method assumes minimal correlation between mass and $cos(\theta^*)$ in background

2000

Events - Fitted bkg

$H \rightarrow WW^{(*)} \rightarrow ev\mu v$ Channel

WW^(*) →*evµv* analysis uses full 20.7 fb⁻¹ of data at √s=8 TeV

• **Trigger** on isolated single-muon and single-electron events with p_T >24 GeV

Lepton selection

- $|\eta^{lepton}| < 2.5$ (inside tracker volume)
- $p_T^{lepton1} > 25 \text{ GeV}$ and $p_T^{lepton2} > 15 \text{ GeV}$

Event selection

- Veto events with jets
- Require exactly 1 electron and 1 muon of opposite charge
- Di-lepton transverse momentum cut (reduce Z+jets): p_T["] > 20 GeV
- Di-lepton invariant mass: *m_{II} < 80 GeV*
- Azimuthal separation of leptons: $\Delta \phi_{\parallel} < 2.8$
- *MET_{Rel}* > 20 GeV

Transverse mass distribution after selection (signal region)

$$MET_{REL} = \begin{cases} E_T^{Miss} & \Delta \phi \ge \frac{\pi}{2} \\ E_T^{Miss} \cdot \sin \Delta \phi & \Delta \phi < \frac{\pi}{2} \end{cases}$$

Estimating the primary backgrounds

MC simulation distributions normalized to observed rates in control regions

WW

- **Control region:** no $\Delta \phi_{\parallel}$ cut, m_{\parallel} cut inverted
- Subtract off non-WW contributions (from MC)

Z/γ* + Jets

- Control region: invert $\Delta \phi_{\parallel}$ cut, remove p_{T}^{\parallel} cut
- Suppressed in signal region by MET_{Rel} cut

W + hadronic jet mis-tagged as a lepton

- Control region: "reversed" lepton selection
- Fully data-driven estimation

Di-boson (WW, WZ/γ*, ZZ/γ*)

 Shapes and normalizations estimated from MC, checked in validation regions

Top quark (tt and single top) production

Estimated in 2 CR: (1) all events after MET_{Rel} cut (2) events with 1b-jet after MET_{Rel} cut

Analysis method

Spin correlations between decay products affect event topologies

- Can't directly calculate angles due to non-interacting neutrinos
- m_{μ} and and $\Delta \phi_{\mu}$ are the two variables most sensitive to spin

Use boosted decision trees to perform shape-based analysis

Train 2 BDT classifiers for each hypothesis test: one to distinguish SM $J^P=0^+$ from all the backgrounds, one to separate alternative spin hypotheses ($J^P=2^+$, 1⁺, 1⁻) from all backgrounds

• 4 variables: m_{II} , $\Delta \phi_{II}$, p_T^{II} , m_T sensitive to spin, reduce background

BDT output

2D distributions of BDT classifier outputs used in binned likelihood fits to test compatibility with each J^P hypothesis

- Construct unique 2D BDT distribution for each hypothesis test
- Overall, test separation of Standard Model $J^P=0^+$ hypothesis against $J^P=1^+, 1^-, 2^+$ (no sensitivity to 0^-)

Expected BDT output distributions in the signal region, trained with $J^P=0^+$

Expected BDT output distributions in the signal region, trained with $J^P=2^+$

$H \rightarrow ZZ^{(*)} \rightarrow I^+I^-I^+I^-$ Channel

4.6 fb^{-1} of data at $\sqrt{s}=7$ TeV and 20.7 fb^{-1} of data at $\sqrt{s}=8$ TeV

Trigger: single and di-lepton events

Electron selection

- $p_T^{ele} > 7 \text{ GeV}, |\eta_{ele}| < 2.47$
- Optimized multi-lepton identification

Muon selection

- $p_T^{\mu} > 6 \text{ GeV}, |\eta_{\mu}| < 2.7$
- Muon ID cuts (described in Ref[7])

Lepton isolation & impact parameter cuts

Event selection

- Tighter cuts on the leading lepton p_T
- Require 2 pairs of same-flavor opposite-charge leptons
- Select pair with mass closest to Z mass, require 50 < m₁₂ < 106 GeV
- Events categorized by flavor of lepton pairs to increase sensitivity

Study spin-sensitive observables in 115 GeV $< m_{4l} < 130$ GeV window

Small branching ratio & large S/B

Background estimation

Non-resonant ZZ is the dominant (irreducible) background

Estimated from MC, normalized to NLO calculations

Z+jets and tt estimated from data control regions

Estimate transfer factor using background-enriched region in MC

II + $\mu^+\mu^-$ control region

- Reverse isolation and impact parameter cuts
- Obtain yields of Z+jets and tt with fit to control region

3 control regions for *II* + e⁺e⁻

- 1. Relax isolation and impact parameter cuts
- 2. Reverse isolation and impact parameter cuts for one lepton
- 3. Same-flavor same-sign di-electron pairs

Analysis strategy

Many observables provided by the fully reconstructed 4 lepton final state

- Production angles Φ₁, θ* and decay angles θ₁, θ₂, Φ, illustrated in the figure
- *m*₃₄ and *m*₁₂ play a very important role in discrimination

Combine angles using multivariate discriminant based on a boosted decision tree

Independently train BDT classifiers for each signal hypothesis

- 7 input variables: 5 production and decay angles as well as masses of the two Z bosons (m_{1.2} and m_{3.4})
- Test SM J^P=0⁺ as well as J^P=0⁻, 1⁺, 1⁻, 2⁺
- For $J^P=2^+$, train BDTs for different fractions of $qq \rightarrow 2^+$ production

Analysis strategy (continued)

Responses of BDTs evaluated separately for each pair of signal hypotheses

 Perform signal-plus-background fit to the BDT discriminant for each hypothesis

Improve overall sensitivity by evaluating BDT responses in regions with high and low signal/background

- Low S/B: 115 < m_{4l} < 121 GeV or 127 < m_{4L} < 130 GeV</p>
- **High S/B:** 121< *m*_{4/} < 127 GeV

Analyses using matrix element-based discriminant give compatible results

Combination of Channels

Each channel has observables that discriminate between J^P hypotheses and between signal and background Construct a likelihood function L that depends on the spinparity assumption of the signal

 Product of conditional probabilities over binned distributions of the discriminants:

$$L(J^{P},\mu,\theta) = \prod_{j}^{N_{Channel}} \prod_{i}^{N_{Bins}} P(N_{i,j} | \mu_{j} \cdot S_{i,j}^{J^{P}}(\theta) + B_{i,j}(\theta)) \times A_{j}(\theta)$$

$$Poisson$$
Constraint
Component
Component

- µ is the signal rate nuisance parameter in the channel j, and is treated as an unconstrained nuisance parameter
- θ represents the other nuisance parameters

Statistical test for all channels

Construct a likelihood ratio teststatistic to separate hypotheses

$$q = \log \frac{L\left(J^{P} = 0^{+}, \hat{\hat{\mu}}_{0^{+}}, \hat{\hat{\theta}}_{0^{+}}\right)}{L\left(J^{P}_{Alt}, \hat{\hat{\mu}}_{J^{P}_{Alt}}, \hat{\hat{\theta}}_{J^{P}_{Alt}}\right)}$$

• $\hat{\mu}$ and $\hat{\theta}$ represent the fitted signal strength and other nuisance parameters

Get expected distribution of test statistic from unconditional ensemble tests (MC pseudo-experiments)

 Values of nuisance parameters like µ are fixed to those from fit to data

Calculate CL_S from p_0 values from ensemble test statistic distributions

$$CL_{S}(J_{Alt}^{P}) = \frac{p_{0}(J_{Alt}^{P})}{1 - p_{0}(0^{+})}$$

Example distributions of the test statistics $g_{0+}(q)$ and $g_{2+}(q)$ from pseudo-experiments.

Results for $J^P = 2^+$ test

Expected and observed values of the test statistic as a function of the $qq \rightarrow 2^+$ production fraction by channel

Sensitivity for the channels is complementary

- $\gamma\gamma$ has better hypothesis discrimination at low f_{qq}
- $ZZ^{(*)}$ sensitivity is stable with respect to f_{aa}
- $WW^{(*)}$ have better discrimination at high f_{qq}

Observations in each channel favor SM J^P=0⁺ over 2⁺

19.12.2013

Andrew Hard - The University of Wisconsin Madison

CL_{S} from the combination of channels

Exclusion of $J^P=2^+$ with respect to the Standard Model $J^P=0^+$ extends beyond 3σ significance for all fractions of $qq \rightarrow 2^+$ signal production

In addition, the data clearly **disfavors J**^P**=0⁻**, **1**⁺ **and 1⁻ hypotheses** in favor of the Standard Model hypothesis

19.12.2013

ATLAS has made significant progress in understanding the spin/CP properties of the new boson with the $\gamma\gamma$, $WW^{(*)}$, and $ZZ^{(*)}$ channels

Hypothesis tests on 7 TeV + 8 TeV dataset strongly favor the Standard Model hypothesis ($J^P=0^+$)

- Exclude minimal $J^P = 2^+$ models at > 3σ significance
- Other models ($J^P = 0^-$, 1⁺, 1⁻) disfavored by data

Stay tuned for final 7 TeV + 8 TeV dataset publications!

Including tests of signals with CP admixture

References

- Observation of a new particle in the search for the Standard Model Higgs Boson with the ATLAS detector at the LHC <u>http://www.sciencedirect.com/science/article/pii/S037026931200857X</u> auxiliary plots: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/</u>
- 2. Evidence for the spin-0 nature of the Higgs boson using ATLAS data <u>http://arxiv.org/abs/1307.1432</u> auxiliary plots: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-01/</u>
- Measurement of the Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC <u>http://arxiv.org/abs/1307.1427</u> auxiliary plots: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-02/</u>
- Study of the spin of the Higgs-like boson in the two photon decay channel using 20.7 fb⁻¹ of pp collisions collected at √s=8 TeV with the ATLAS detector <u>https://cds.cern.ch/record/1527124</u>
- 5. Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb⁻¹ of proton-proton collision data <u>http://cds.cern.ch/record/1523698</u>
- 6. Study of the spin properties of the Higgs-like boson in the H→WW^(*)→evµv channel with 21 fb⁻¹ of √s=8 TeV data collected with the ATLAS detector <u>https://cds.cern.ch/record/1527127</u>
- 7. Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb⁻¹ of proton-proton collision data http://cds.cern.ch/record/1523699
- 8. L. J. Dixon and M. S. Siu, Resonance continuum interference in the diphoton Higgs signal at the LHC, Phys. Rev. Lett. 90 (2003) 252001, arXiv:hep-ph/ 0302233 [hep-ph] http://arxiv.org/pdf/hep-ph/0302233.pdf

Experimental systematic uncertainties

γγ channel

- $\cos(\theta^*)$ shape uncertainty from $J^P = 2^+ \text{MC } p_T$ modeling
- Interference with non-resonant γγ background
- 2% uncertainty due to residual correlation between $m_{\nu\nu}$ and $\cos(\theta^*)$
- Spurious signal from background model bias

WW channel

- Dominated by jet energy scale and resolution uncertainties
- Lepton energy scales and resolutions
- W+jets background CR→SR transfer factor
- $J^P = 2^+ p_T$ spectrum shape uncertainty
- Theory shape and normalization uncertainty for WW background

ZZ channel

- Shapes of BDT output, normalizations of different S/B regions due to lepton energy scale and resolution
- ±10% on normalization of high and low S/B mass regions (uncertainty on Higgs boson mass)
- Others related to overall background yields

Combination: test statistic distributions for $J^P=2^+$ tests

$\gamma\gamma$ channel: background-subtracted cos(θ^*) distribution

Fit (points) and $gg \rightarrow 2^+$ expectation (line)

$\gamma\gamma$ channel: correlation between $m_{\gamma\gamma}$ and $\cos(\theta^*)$

2D analysis assumes no correlation between the two observables. This assumption can be checked in data

Compare the 1D x 1D expectation to the observed events

Gaussian distribution of fluctuations from the $m_{\gamma\gamma} \times \cos(\theta^*)$ expectation \rightarrow correlations between variables are small

Process	Expected or observed events
WW	2190 ± 20
WZ/ZZ/Wy	230 ± 10
tt	180 ± 10
tW/tb/tqb	120 ± 10
Z+jets	290 ± 20
W+jets	280 ± 10
Total Background	3280 ± 20
Signal <i>J</i> ^P =0 ⁺	170 ± 1
Signal J ^P =2 ⁺	110 ± 1
Observed	3615

WW^(*) channel: templates in discriminating variables

WW^(*) channel: templates in discriminating variables

Source	Uncertainty (%)
Jet energy scale & resolution	± 9
WW normalisation, theory	± 9
W+jets fake factor	± 8
Lepton scale & resolution	± 6
Other backgrounds, theory	± 5
Pileup modelling	± 4
PDF model	± 4
$E_{\rm T}^{\rm miss}$ scale & resolution	± 3

ZZ^(*) channel control regions

The ATLAS Detector

Particle detection with ATLAS

Andrew Hard - The University of Wisconsin Madison