LINKING NATURAL SUPERSYMMETRY TO FLAVOUR PHYSICS

HEP Chile 2013

Gero von Gersdorff December 2013

Based on I308.I 090 (with E. Dudas, S. Pokorski and R. Ziegler)

INTRODUCTION

XThe flavor structure of the SM is very peculiar
\boldsymbol{X} Strong hierarchy in the masses of the SM fermions:

X The quark mixing is pretty much the identity:

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
0.97427 \pm 0.00015 & 0.22534 \pm 0.00065 & 0.00351_{-0.00014}^{+0.00015} \\
0.22520 \pm 0.00065 & 0.97344 \pm 0.00016 & 0.0412_{-0.0011}^{+0.0005} \\
0.00867_{-0.00031}^{+0.00029} & 0.0404_{-0.0005}^{+0.0011} & 0.999146_{-0.000046}^{+0.000021}
\end{array}\right)
$$

INTRODUCTION

x Low energy New Physics comes with a FCNC/CP problem:
X In the SM, only 3 angles an I phase are left in the renormalizable Lagrangian (the W vertex), accounts very well for all the flavor transitions and CP violation

INTRODUCTION

X Low energy New Physics comes with a FCNC/CP problem:
X In the SM, only 3 angles an I phase are left in the renormalizable Lagrangian (the W vertex), accounts very well for all the flavor transitions and CP violation
X Generic new physics can be captured within an effective field theory prescription

$$
\mathcal{L}_{e f f}=\mathcal{L}_{S M}+\frac{C_{\mathcal{O}}}{\Lambda^{d-4}} \mathcal{O}^{d}
$$

INTRODUCTION

X Low energy New Physics comes with a FCNC/CP problem:
X In the SM, only 3 angles an I phase are left in the renormalizable Lagrangian (the W vertex), accounts very well for all the flavor transitions and CP violation
X Generic new physics can be captured within an effective field theory prescription

$$
\mathcal{L}_{e f f}=\mathcal{L}_{S M}+\frac{C_{\mathcal{O}}}{\Lambda^{d-4}} \mathcal{O}^{d}
$$

\boldsymbol{X} No reasons why the coefficients should be flavour diagonal,
X All the quark rotation angles (and phases) matter XThis typically requires $\Lambda>10^{5}-10^{6} \mathrm{TeV}$

HORIZONTAL SYMMETRIES

\boldsymbol{x} Horizontal symmetries put quarks in representations of some Abelian or non-Abelian symmetry which consequently is spontaneously broken at a scale somewhat lower than the UV scale. X Generates small order parameter that controls the size of Yukawa couplings

HORIZONTAL SYMMETRIES

\boldsymbol{x} Horizontal symmetries put quarks in representations of some Abelian or non-Abelian symmetry which consequently is spontaneously broken at a scale somewhat lower than the UV scale. \boldsymbol{x} Generates small order parameter that controls the size of Yukawa couplings
X Simplest model: A single $\cup(I)$ symmetry
Froggatt + Nielsen '79
$\mathcal{L}_{f}=H\left(\hat{Y}_{i j}^{u} \bar{q}_{i} u_{j}\left[\frac{\chi}{\Lambda}\right]^{X_{\bar{q}_{i}}+X_{u_{j}}}+\hat{Y}_{i j}^{d} \bar{q}_{i} d_{j}\left[\frac{\chi}{\Lambda}\right]^{X_{\bar{q}_{i}}+X_{d_{j}}}\right) \quad X_{\chi}=-1$

HORIZONTAL SYMMETRIES

\boldsymbol{x} Horizontal symmetries put quarks in representations of some Abelian or non-Abelian symmetry which consequently is spontaneously broken at a scale somewhat lower than the UV scale. X Generates small order parameter that controls the size of Yukawa couplings
X Simplest model: A single $\cup(I)$ symmetry
Froggatt + Nielsen '79

$$
\begin{aligned}
& \mathcal{L}_{f}=H\left(\hat{Y}_{i j}^{u} \overline{\bar{i}}_{i} u_{j}\left[\frac{\chi}{\Lambda}\right]^{X_{\bar{q}_{i}}+X_{u_{j}}}+\hat{Y}_{i j}^{d} \overline{\bar{q}}_{i} d_{j}\left[\frac{\chi}{\Lambda}\right]^{X_{\bar{q}_{i}}+X_{d_{j}}}\right) \quad X_{\chi}=-1 \\
& O(1) \text { bare Yukawas } \hat{Y}_{i j}^{u}
\end{aligned}
$$

HORIZONTAL SYMMETRIES

\boldsymbol{x} Horizontal symmetries put quarks in representations of some Abelian or non-Abelian symmetry which consequently is spontaneously broken at a scale somewhat lower than the UV scale. X Generates small order parameter that controls the size of Yukawa couplings
X Simplest model: A single $\cup(I)$ symmetry
Froggatt + Nielsen '79

$$
\begin{aligned}
\mathcal{L}_{f}=H & \left.\left.\left(\hat{Y}_{i j}^{u}\right) \overline{\bar{I}}_{i} u_{j}\left[\frac{\chi}{\Lambda}\right]^{X_{\bar{q}_{i}}+X_{u_{j}}}+\hat{Y}_{i j}^{d}\right) \bar{q}_{i} d_{j}\left[\frac{\chi}{\Lambda}\right]^{X_{\bar{q}_{i}}+X_{d_{j}}}\right) \quad X_{\chi}=-1 \\
& \bigcirc(1) \text { bare Yukawas } \hat{Y}_{i j}^{u} \\
& \epsilon=\frac{\langle\chi\rangle}{\Lambda} \searrow Y_{i j}^{u} \sim \epsilon^{X_{\bar{q}_{i}}+X_{u_{j}}}
\end{aligned}
$$

HORIZONTAL SYMMETRIES

\boldsymbol{x} Horizontal symmetries put quarks in representations of some Abelian or non-Abelian symmetry which consequently is spontaneously broken at a scale somewhat lower than the UV scale. X Generates small order parameter that controls the size of Yukawa couplings
X Simplest model: A single $\cup(I)$ symmetry
Froggatt + Nielsen '79

$$
\begin{aligned}
& \mathcal{L}_{f}=H\left(\hat{Y}_{i j}^{u}\right)_{\bar{i} i} u_{j}\left[\frac{\chi}{\Lambda}\right]^{X_{\bar{q}_{i}}+X_{u_{j}}}+\left(\hat{Y}_{i j}^{d}\right. \\
&\left.\overline{\bar{I}}_{i} d_{j}\left[\frac{\chi}{\Lambda}\right]^{X_{\bar{x}_{i}}+X_{d_{j}}}\right) \quad X_{\chi}=-1 \\
& O(\mathrm{I}) \text { bare Yukawas } \hat{Y}_{i j}^{u} \\
& \epsilon=\frac{\langle\chi\rangle}{\Lambda} \searrow Y_{i j}^{u} \sim \epsilon^{X_{\bar{q}_{i}}+X_{u_{j}}} \longrightarrow \begin{array}{l}
\text { Hierarchical eigen- } \\
\text { values and angles! }
\end{array}
\end{aligned}
$$

PROBLEMS OF U(I) MODELS

X What does this imply for supersymmetry?
\boldsymbol{X} A general problem of $\mathrm{U}(\mathrm{I})$ models is that the suppressions tend to cancel out in the soft terms:

$$
K \supset|X|^{2} c_{i j} \epsilon^{\left|X_{i}-X_{j}\right|} \bar{Q}_{i} Q_{i}
$$

X Not so small off-diagonal terms
X Diagonal terms completely unsuppressed: uncontrolled splitting x Bounds on first two generation squarks $>100 \mathrm{TeV}$ (Note: this is also inconsistent with light stops because

Arkani Hamed RG evolution will typically drive those tachyonic) et al '97

X Still many parameters

U(2) MODELS

X Unify the first two generations in doublets of a $\cup(2)$ symmetry X Make the third generation a total flavor singlet (top Yukawa!).

$$
\frac{\langle\phi\rangle}{\Lambda}=\binom{0}{\epsilon_{\phi}} \quad \frac{\langle\chi\rangle}{\Lambda}=\epsilon_{\chi}
$$

Barbieri, Dvali, Hall '95
Barbieri, Hall, Romanino, '96

U(2) MODELS

X Unify the first two generations in doublets of a $U(2)$ symmetry X Make the third generation a total flavor singlet (top Yukawa!).

$$
\begin{aligned}
& \frac{\langle\phi\rangle}{\Lambda}=\binom{0}{\epsilon_{\phi}} \quad \frac{\langle\chi\rangle}{\Lambda}=\epsilon_{\chi} \\
& Y_{i j}=\left(\begin{array}{ccc}
0 & Y_{12} & 0 \\
-Y_{12} & Y_{22} & Y_{23} \\
0 & Y_{32} & Y_{33}
\end{array}\right) \begin{array}{l}
\boldsymbol{X} \text { up and down sectors work } \\
\text { in the same way }\left(Y^{u} \sim Y^{d}\right) \\
\text { (suppression factors } \epsilon_{\chi}, \epsilon_{\phi} \\
\text { are not displayed here...) }
\end{array}
\end{aligned}
$$

U(2) MODELS

X Unify the first two generations in doublets of a $\cup(2)$ symmetry X Make the third generation a total flavor singlet (top Yukawa!).

$$
\begin{aligned}
& \frac{\langle\phi\rangle}{\Lambda}=\binom{0}{\epsilon_{\phi}} \quad \frac{\langle\chi\rangle}{\Lambda}=\epsilon_{\chi} \\
& \text { Barbieri, Dvali, Hall '95 } \\
& \text { Barbieri, Hall, Romanino, '96 } \\
& Y_{i j}=\left(\begin{array}{ccc}
0 & Y_{12} & 0 \\
-Y_{12} & Y_{22} & Y_{23} \\
0 & Y_{32} & Y_{33}
\end{array}\right) \begin{array}{l}
\boldsymbol{x} \text { up and down sectors work } \\
\text { in the same way }\left(Y^{u} \sim Y^{d}\right) \\
\\
\\
\end{array}
\end{aligned}
$$

X The quark rotations only depend on 4 angles (+4 phases)
\boldsymbol{X} SUSY: Splitting of Ist and 2nd squark generation suppressed as ϵ_{ϕ}^{2}

PROBLEMS OF U(2) MODELS

$\boldsymbol{x} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(I)$ numbers!!

PROBLEMS OF U(2) MODELS

$\boldsymbol{x} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(I)$ numbers!!

$$
\begin{aligned}
\sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \quad \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008 \\
\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{aligned}
$$

PROBLEMS OF U(2) MODELS

$\boldsymbol{x} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(I)$ numbers!!

$$
\begin{aligned}
& \sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008 \\
&\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{aligned}
$$

PROBLEMS OF U(2) MODELS

$\boldsymbol{x} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(I)$ numbers!!

$$
\begin{aligned}
\sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \quad \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008 \\
\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{aligned}
$$

PROBLEMS OF U(2) MODELS

$\boldsymbol{X} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(I)$ numbers!!

$$
\begin{aligned}
& \sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008 \\
&\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{aligned}
$$

PROBLEMS OF U(2) MODELS

$\boldsymbol{X} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(I)$ numbers!!

$$
\begin{aligned}
\sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \quad \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008 \\
\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{aligned}
$$

PROBLEMS OF U(2) MODELS

$\boldsymbol{x} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(1)$ numbers!!

$$
\begin{gathered}
\sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \quad \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008, \\
\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{gathered}
$$

PROBLEMS OF U(2) MODELS

$\boldsymbol{X} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \sqrt{ } \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, X \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(I)$ numbers!!

$$
\begin{aligned}
\sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \quad \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008 \\
\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{aligned}
$$

PROBLEMS OF U(2) MODELS

$\boldsymbol{X} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \sqrt{ } \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, X \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\bigcirc(1)$ numbers!!

$$
\begin{gathered}
\sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \quad \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008 \\
\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{gathered}
$$

\boldsymbol{X} The reason of this discrepancy turns out to be the fact that b_{R} is a total flavor singlet $\left(X_{b_{R}}=0\right)$ which leads to a strong RH hierarchy in the down sector:

$$
Y_{i 1}^{d} \ll Y_{i 2}^{d} \ll Y_{i 3}^{d}
$$

PROBLEMS OF U(2) MODELS

$\boldsymbol{x} \cup(2)$ models make some striking predictions for quark data

$$
\left|V_{u s}\right| \approx \sqrt{m_{d} / m_{s}}, \sqrt{ } \quad\left|V_{u b} / V_{c b}\right| \approx \sqrt{m_{u} / m_{c}}, X \quad\left|V_{t d} / V_{t s}\right| \approx \sqrt{m_{d} / m_{s}}
$$

X At leading order in the $\epsilon_{\chi}, \epsilon_{\phi}$ expansion, but no $\mathrm{O}(\mathrm{I})$ numbers!!

$$
\begin{gathered}
\sqrt{m_{d} / m_{s}}=0.22 \pm 0.02, \quad \sqrt{m_{u} / m_{c}}=0.046 \pm 0.008, \\
\left|V_{u s}\right|=0.2253 \pm 0.0007, \quad\left|V_{u b} / V_{c b}\right|=0.085 \pm 0.004, \quad\left|V_{t d} / V_{t s}\right|=0.22 \pm 0.01
\end{gathered}
$$

X The reason of this discrepancy turns out to be the fact that b_{R} is a total flavor singlet ($X_{b_{R}}=0$) which leads to a strong RH hierarchy in the down sector:

QUARK NUMEROLOGY

Typical model:
$\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}}$
$\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u}{ }^{j}}$

QUARK NUMEROLOGY

Typical model:
Eigenvalues:
$\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}}$
$y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}}$
$\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} \quad y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}}$

QUARK NUMEROLOGY

Typical model:
$\begin{array}{ll}\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d^{j}}} & y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} \\ \left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u} j} & y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}}\end{array}$
Eigenvalues:
$\left|V_{i j}\right| \sim \epsilon^{\left|X_{q^{i}}-X_{q^{j}}\right|}$

QUARK NUMEROLOGY

Eigenvalues:

$$
\begin{array}{cc}
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}} & y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} & y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}} \\
\epsilon^{X_{q^{1}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}} & =1: 5: 125
\end{array}
$$

QUARK NUMEROLOGY

Eigenvalues:

$$
\begin{array}{cc}
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}} & y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} & y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}} \\
\epsilon^{X_{q^{1}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}} & =1: 5: 125
\end{array}
$$

CKM angles:
$\left|V_{i j}\right| \sim \epsilon^{\left|X_{q^{i}}-X_{q^{j}}\right|}$

QUARK NUMEROLOGY

Eigenvalues:

$$
\begin{gathered}
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d^{j}}} \quad y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u} j} \\
\epsilon_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}}=1: 5: 125
\end{gathered}
$$

$$
\left|V_{i j}\right| \sim \epsilon^{\left|X_{q^{i}}-X_{q^{j}}\right|}
$$

$$
\epsilon^{X_{q^{1}}+X_{u^{1}}}: \epsilon^{X_{q^{2}}+X_{u^{2}}}: \epsilon^{X_{q^{3}}+X_{u^{3}}}=1: 560: 75000
$$

QUARK NUMEROLOGY

Typical model:

$$
\begin{array}{ccc}
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}} & y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} & \left|V_{i j}\right| \sim \epsilon^{\left|X_{q^{i}}-X_{q^{j}}\right|} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} \quad y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}} & \\
\epsilon^{X_{q^{1}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}}=1: 5: 125 & \Rightarrow \text { hierarchy } \\
\epsilon^{X_{u^{1}}}: \epsilon^{X_{u^{2}}}: \epsilon^{X_{u}{ }^{3}}=1: 110: 600 &
\end{array}
$$

CKM angles:

QUARK NUMEROLOGY

Typical model:

$$
\begin{array}{ccc}
\hline \text { Typical model: } & \text { Eigenvalues: } & \text { CKM angles: } \\
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}} & y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} & \left|V_{i j}\right| \sim \epsilon^{\left|X_{q^{i}}-X_{q^{j}}\right|} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} & y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}} & \\
\epsilon^{X_{q^{1}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}}=1: 5: 125 & \Rightarrow \text { hierarchy } \\
\epsilon^{X_{u}{ }^{1}}: \epsilon^{X_{u^{2}}}: \epsilon^{X_{u} 3}=1: 110: 600 & \Rightarrow \text { hierarchy }
\end{array}
$$

QUARK NUMEROLOGY

$$
\begin{array}{cc}
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}} & y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} & y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}} \\
\epsilon^{X_{q^{1}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}} & =1: 5: 125
\end{array}
$$

Eigenvalues:

$$
\left|V_{i j}\right| \sim \epsilon^{\left|X_{q^{i}}-X_{q^{j}}\right|}
$$

$$
\Rightarrow \text { hierarchy }
$$

$$
\epsilon^{X_{u^{1}}}: \epsilon^{X_{u^{2}}}: \epsilon^{X_{u}^{3}}=1: 110: 600
$$

$$
\epsilon^{X_{q^{1}}+X_{d^{1}}}: \epsilon^{X_{q^{2}}+X_{d^{2}}}: \epsilon^{X_{q^{3}}+X_{d^{3}}}=1: 20: 800
$$

QUARK NUMEROLOGY

Eigenvalues:

$$
\begin{gathered}
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}} \quad y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} \quad y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}} \\
\epsilon^{X_{q^{1}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}}=1: 5: 125 \\
\epsilon^{X_{u^{1}}}: \epsilon^{X_{u^{2}}}: \epsilon^{X_{u^{3}}}=1: 110: 600 \\
\epsilon^{X_{d^{1}}}: \epsilon^{X_{d^{2}}}: \epsilon^{X_{d^{3}}}=1: 4: 6.5
\end{gathered}
$$

CKM angles:

$\left|V_{i j}\right| \sim \epsilon^{\left|X_{q^{i}}-X_{q^{j}}\right|}$
\Rightarrow hierarchy
\Rightarrow hierarchy

QUARK NUMEROLOGY

Eigenvalues:

$$
\begin{gathered}
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}} \quad y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} \quad y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}} \\
\epsilon^{X_{q^{1}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}}=1: 5: 125 \\
\epsilon^{X_{u^{1}}}: \epsilon^{X_{u^{2}}}: \epsilon^{X_{u^{3}}}=1: 110: 600 \\
\epsilon^{X_{d^{1}}}: \epsilon^{X_{d^{2}}}: \epsilon^{X_{d^{3}}}=1: 4: 6.5
\end{gathered}
$$

CKM angles:
$\left|V_{i j}\right| \sim \epsilon^{\left|X_{q^{i}}-X_{q^{j}}\right|}$
\Rightarrow hierarchy
\Rightarrow hierarchy
\Rightarrow no hierarchy

QUARK NUMEROLOGY

Eigenvalues:

$$
\begin{array}{ccc}
\left(Y^{d}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{d j}} & y_{i}^{d} \sim \epsilon^{X_{q^{i}}+X_{d^{i}}} & \left|V_{i j}\right| \sim \epsilon^{\mid X_{q^{i}}-X_{q^{j}}} \\
\left(Y^{u}\right)_{i j} \sim \epsilon^{X_{q^{i}}+X_{u j}} \quad y_{i}^{u} \sim \epsilon^{X_{q^{i}}+X_{u^{i}}} & \\
\epsilon^{X_{q^{1}}}: \epsilon^{X_{q^{2}}}: \epsilon^{X_{q^{3}}}=1: 5: 125 & \Rightarrow \text { hierarchy } \\
\epsilon^{X_{u^{1}}}: \epsilon^{X_{u^{2}}}: \epsilon^{X_{u^{3}}}=1: 110: 600 & \Rightarrow \text { hierarchy } \\
\epsilon^{X_{d^{1}}}: \epsilon^{X_{d^{2}}}: \epsilon^{X_{d^{3}}}=1: 4: 6.5 & \Rightarrow \text { no hierarchy }
\end{array}
$$

THE SU(2) $\times \cup(I)$ MODEL

x Giving up RH down hierarchy \Rightarrow correction to the exact relations

THE SU(2) \times U(I) MODEL

x Giving up RH down hierarchy \Rightarrow correction to the exact relations

$$
\begin{aligned}
\left|V_{t d} / V_{t s}\right| & \approx\left|\sqrt{m_{d} / m_{s}}+e^{i \beta^{\prime}} \Delta t_{d}\right| \sqrt{c_{d}} & \Delta & =\frac{\sqrt{m_{s} m_{d}}}{\left|V_{c b}\right| m_{b}} \approx 0.09 \\
\left|V_{u b} / V_{c b}\right| & \approx\left|\sqrt{m_{u} / m_{c}}+e^{i \beta} \Delta t_{d} \sqrt{c_{d}}\right| & & t_{d}=\tan \theta_{d}=\frac{Y_{32}^{d}}{Y_{33}^{d}} \quad \text { Roberts et al '0। } \\
\left|V_{u s}\right| & \approx \sqrt{m_{d} / m_{s}} \sqrt{c_{d}} & & \text { Dudas et al'।3 }
\end{aligned}
$$

THE SU(2) $\times \cup(I)$ MODEL

\boldsymbol{x} Giving up RH down hierarchy \Rightarrow correction to the exact relations

$$
\begin{aligned}
\left|V_{t d} / V_{t s}\right| & \approx\left|\sqrt{m_{d} / m_{s}}+e^{i \beta^{\prime}} \Delta t_{d}\right| \sqrt{c_{d}} & \Delta=\frac{\sqrt{m_{s} m_{d}}}{\left|V_{c b}\right| m_{b}} \approx 0.09 & \\
\left|V_{u b} / V_{c b}\right| & \approx\left|\sqrt{m_{u} / m_{c}}+e^{i \beta} \Delta t_{d} \sqrt{c_{d}}\right| & t_{d}=\tan \theta_{d}=\frac{Y_{32}^{d}}{Y_{33}^{d}} & \begin{array}{l}
\text { Roberts et al 'Ol } \\
\left|V_{u s}\right|
\end{array}
\end{aligned} \approx \sqrt{m_{d} / m_{s}} \sqrt{c_{d}} \quad 1 \text { Dudas et al'I3 }
$$

X The exact relations get corrected by the RH down 23 angle
x Fit requires $t_{d} \approx 0.5$

$$
V_{R}^{d}=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & c_{d} & s_{d} \\
\cdot & -s_{d} & c_{d}
\end{array}\right)
$$

X SUSY: RH sbottom must be heavy!

THE SU(2) $\times \cup(I)$ MODEL

\boldsymbol{x} Giving up RH down hierarchy \Rightarrow correction to the exact relations

$$
\begin{aligned}
\left|V_{t d} / V_{t s}\right| & \approx\left|\sqrt{m_{d} / m_{s}}+e^{i \beta^{\prime}} \Delta t_{d}\right| \sqrt{c_{d}} & \Delta & =\frac{\sqrt{m_{s} m_{d}}}{\left|V_{c b}\right| m_{b}} \approx 0.09 \\
\left|V_{u b} / V_{c b}\right| & \approx\left|\sqrt{m_{u} / m_{c}}+e^{i \beta} \Delta t_{d} \sqrt{c_{d}}\right| & & \\
\left|V_{u s}\right| & \approx \sqrt{m_{d} / m_{s}} \sqrt{c_{d}} & & t_{d}=\tan \theta_{d}=\frac{Y_{32}^{d}}{Y_{33}^{d}}
\end{aligned} \begin{aligned}
& \text { Roberts et al '0। } \\
& \text { Dudas et al'। }
\end{aligned}
$$

X The exact relations get corrected by the RH down 23 angle
x Fit requires $t_{d} \approx 0.5$

$$
V_{R}^{d}=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & c_{d} & s_{d} \\
\cdot & -s_{d} & c_{d}
\end{array}\right)
$$

X SUSY: RH sbottom must be heavy!

> Only the two stops can remain truly light
> \Rightarrow Spectrum of Natural SUSY

FITTING THE QUARK DATA

X An explicit fit to quark masses exhibits the following possibilities: (Also impose here that the $U(1)_{X}$ commutes with $S U(5)$)

Model	ϵ_{ϕ}	ϵ_{χ}	$\tan \beta$	X_{ϕ}	$X_{Q_{i}, U_{i}}$	$X_{Q_{3}, U_{3}}$	$X_{D_{i}}$	$X_{D_{3}}$
A	0.02	0.02	5	-1	1	0	1	1
B	0.1	0.2	5	-2	3	0	3	2
$\mathrm{~B}^{\prime}$	0.1	0.2	20	-2	3	0	2	1
C	0.2	0.1	50	-1	2	0	1	0

FITTING THE QUARK DATA

X An explicit fit to quark masses exhibits the following possibilities: (Also impose here that the $U(1)_{X}$ commutes with $S U(5)$)

Model	ϵ_{ϕ}	ϵ_{χ}	$\tan \beta$	X_{ϕ}	$X_{Q_{i}, U_{i}}$	$X_{Q_{3}, U_{3}}$	$X_{D_{i}}$	$X_{D_{3}}$
A	0.02	0.02	5	-1	1	0	1	1
B	0.1	0.2	5	-2	3	0	3	2
$\mathrm{~B}^{\prime}$	0.1	0.2	20	-2	3	0	2	1
C	0.2	0.1	50	-1	2	0	1	0

Dudas et al 'I3
X The smaller the $S \cup(2)$ breaking, the less important the subleading effects from soft terms \Rightarrow FCNCs dominated by quark rotations

FITTING THE QUARK DATA

X An explicit fit to quark masses exhibits the following possibilities: (Also impose here that the $U(1)_{X}$ commutes with $S U(5)$)

Model	ϵ_{ϕ}	ϵ_{χ}	$\tan \beta$	X_{ϕ}	$X_{Q_{i}, U_{i}}$	$X_{Q_{3}, U_{3}}$	$X_{D_{i}}$	$X_{D_{3}}$
A	0.02	0.02	5	-1	1	0	1	1
B	0.1	0.2	5	-2	3	0	3	2
$\mathrm{~B}^{\prime}$	0.1	0.2	20	-2	3	0	2	1
C	0.2	0.1	50	-1	2	0	1	0

Dudas et al 'I3
X The smaller the $S \cup(2)$ breaking, the less important the subleading effects from soft terms \Rightarrow FCNCs dominated by quark rotations
X This is the case in model A
χ Also benefits from $X_{D_{i}}=X_{D_{3}}$ (additional FCNC suppression)

D-TERM DOMINANCE

Summary: would like to build a SUSY model with
$x S \cup(2) \times \cup(I)$ flavour symmetry
\boldsymbol{x} Light stops (and light LH sbottom) => Naturalness
X All other squarks heavy

D-TERM DOMINANCE

Summary: would like to build a SUSY model with
$x \mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$ flavour symmetry
\boldsymbol{x} Light stops (and light LH sbottom) => Naturalness
x All other squarks heavy
X A very natural way to realize this spectrum is assuming that the dominant contribution to the soft terms arises from D-terms of the flavour $\cup(1) \quad m_{I}^{2}=m_{D}^{2} X_{I}$ Binetruy+Dudas '96 Dvali+Pomarol '96
X Quark masses: Only vanishing charges are the (s)tops, i.e.

$$
X_{Q^{3}}=X_{U^{3}}=0
$$

X Other soft terms are generated by subleading F terms x A typical hierarchy is $m_{D}=15 \mathrm{TeV}, m_{F}=4 \mathrm{TeV}$

D-TERM DOMINANCE

Summary: would like to build a SUSY model with
$x \mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$ flavour symmetry
\boldsymbol{x} Light stops (and light LH sbottom) => Naturalness
x All other squarks heavy
\boldsymbol{x} A very natural way to realize this spectrum is assuming that the dominant contribution to the soft terms arises from D-terms of the flavour $\cup(1) \quad m_{I}^{2}=m_{D}^{2} X_{I}$ Binetruy+Dudas '96 Dvali+Pomarol '96
X Quark masses: Only vanishing charges are the (s)tops, i.e.

$$
X_{Q^{3}}=X_{U^{3}}=0
$$

X Other soft terms are generated by subleading F terms XA typical hierarchy is $m_{D}=15 \mathrm{TeV}, m_{F}=4 \mathrm{TeV}$

CONSTRAINTS FROM KAONS

\times Effective Lagrangian: Wilson coefficient of $\mathcal{O}_{4}=\left(\bar{d}_{R} s_{L}\right)\left(\bar{d}_{L} s_{R}\right)$

$$
\operatorname{Im} \Delta C_{4} \approx 1.6 \times 10^{-8}\left(\frac{\left|V_{23}^{d}\right|}{0.04}\right)^{2}\left(\frac{s_{d}^{2}}{0.2}\right)\left(\frac{\sin \alpha_{12}}{0.5}\right)\left(\tilde{m}_{d_{R}}^{2}-\tilde{m}_{b_{R}}^{2}\right) \frac{\log \left(\frac{\tilde{m}_{d_{R}}}{m_{\tilde{g}}}\right)+\frac{1}{4}}{\left(\tilde{m}_{d_{R}}\right)^{4}}
$$

CONSTRAINTS FROM KAONS

\boldsymbol{x} Effective Lagrangian: Wilson coefficient of $\mathcal{O}_{4}=\left(\bar{d}_{R} s_{L}\right)\left(\bar{d}_{L} s_{R}\right)$

$$
\operatorname{Im} \Delta C_{4} \approx 1.6 \times 10^{-8}\left(\frac{\left|V_{23}^{d}\right|}{0.04}\right)^{2} \underset{\text { angles }}{\left(\frac{s_{d}^{2}}{0.2}\right)}\left(\frac{\sin \alpha_{12}}{0.5}\right)\left(\tilde{m}_{d_{R}}^{2}-\tilde{m}_{b_{R}}^{2}\right) \frac{\log \left(\frac{\tilde{m}_{d_{R}}}{m_{\tilde{g}}}\right)+\frac{1}{4}}{\left(\tilde{m}_{d_{R}}\right)^{4}}
$$

CONSTRAINTS FROM KAONS

\boldsymbol{x} Effective Lagrangian: Wilson coefficient of $\mathcal{O}_{4}=\left(\bar{d}_{R} s_{L}\right)\left(\bar{d}_{L} s_{R}\right)$

$$
\operatorname{Im} \Delta C_{4} \approx 1.6 \times 10^{-8}\left(\frac{\left|V_{23}^{d}\right|}{0.04}\right)^{2} \underset{\text { angles }}{\substack{\text { phase }}}\left(\frac{s_{d}^{2}}{0.2}\right)\left(\frac{\sin \alpha_{12}}{0.5}\right)\left(\tilde{m}_{d_{R}}^{2}-\tilde{m}_{b_{R}}^{2}\right) \frac{\log \left(\frac{\tilde{m}_{d_{R}}}{m_{\tilde{g}}}\right)+\frac{1}{4}}{\left(\tilde{m}_{d_{R}}\right)^{4}}
$$

CONSTRAINTS FROM KAONS

\times Effective Lagrangian: Wilson coefficient of $\mathcal{O}_{4}=\left(\bar{d}_{R} s_{L}\right)\left(\bar{d}_{L} s_{R}\right)$

$$
\begin{aligned}
& \operatorname{Im} \Delta C_{4} \approx 1.6 \times 10^{-8}\left(\frac{\left|V_{23}^{d}\right|}{0.04}\right)^{2}\left(\frac{s_{d}^{2}}{0.2}\right)\left(\frac{\sin \alpha_{12}}{0.5}\right)\left(\tilde{m}_{d_{R}}^{2}-\tilde{m}_{b_{R}}^{2}\right) \frac{\log \left(\frac{\tilde{m}_{d_{R}}}{m_{\tilde{g}}}\right)+\frac{1}{4}}{\left(\tilde{m}_{d_{R}}\right)^{4}} \\
& \text { angles phase } \begin{array}{l}
x \text { dominant splitting } \\
\\
\end{array} \\
& x \text { GIM suppression! }
\end{aligned}
$$

CONSTRAINTS FROM KAONS

\times Effective Lagrangian: Wilson coefficient of $\mathcal{O}_{4}=\left(\bar{d}_{R} s_{L}\right)\left(\bar{d}_{L} s_{R}\right)$

$$
\begin{aligned}
\operatorname{Im} \Delta C_{4} \approx 1.6 \times 10^{-8}\left(\frac{\left|V_{23}^{d}\right|}{0.04}\right)^{2}\left(\frac{s_{d}^{2}}{0.2}\right)\left(\frac{\sin \alpha_{12}}{0.5}\right) & \left(\tilde{m}_{d_{R}}^{2}-\tilde{m}_{b_{R}}^{2}\right) \frac{\log \left(\frac{\tilde{m}_{d_{R}}}{m_{\tilde{g}}}\right)+\frac{1}{4}}{\left(\tilde{m}_{d_{R}}\right)^{4}} \\
\text { angles phase } & \boldsymbol{x} \text { dominant splitting } \\
& \boldsymbol{x G I M} \text { suppression! }
\end{aligned}
$$

CONSTRAINTS FROM KAONS

\times Effective Lagrangian: Wilson coefficient of $\mathcal{O}_{4}=\left(\bar{d}_{R} s_{L}\right)\left(\bar{d}_{L} s_{R}\right)$

$$
\begin{aligned}
\operatorname{Im} \Delta C_{4} \approx 1.6 \times 10^{-8}\left(\frac{\left|V_{23}^{d}\right|}{0.04}\right)^{2}\left(\frac{s_{d}^{2}}{0.2}\right)\left(\frac{\sin \alpha_{12}}{0.5}\right) & \left(\tilde{m}_{d_{R}}^{2}-\tilde{m}_{b_{R}}^{2}\right) \frac{\log \left(\frac{\tilde{m}_{d_{R}}}{m_{\tilde{g}}}\right)+\frac{1}{4}}{\left(\tilde{m}_{d_{R}}\right)^{4}} \\
\text { angles phase } & \boldsymbol{x} \text { dominant splitting } \\
& \boldsymbol{x G I M} \text { suppression! }
\end{aligned}
$$

CONSTRAINTS FROM KAONS

\times Effective Lagrangian: Wilson coefficient of $\mathcal{O}_{4}=\left(\bar{d}_{R} s_{L}\right)\left(\bar{d}_{L} s_{R}\right)$

$$
\begin{aligned}
\operatorname{Im} \Delta C_{4} \approx 1.6 \times 10^{-8}\left(\frac{\left|V_{23}^{d}\right|}{0.04}\right)^{2}\left(\frac{s_{d}^{2}}{0.2}\right)\left(\frac{\sin \alpha_{12}}{0.5}\right) & \left(\tilde{m}_{d_{R}}^{2}-\tilde{m}_{b_{R}}^{2}\right) \frac{\log \left(\frac{\tilde{m}_{d_{R}}}{m_{\tilde{g}}}\right)+\frac{1}{4}}{\left(\tilde{m}_{d_{R}}\right)^{4}} \\
\text { angles phase } & \boldsymbol{x} \text { dominant splitting } \\
& \boldsymbol{x G I M} \text { suppression! }
\end{aligned}
$$

@ TeV scale!

MAPPING TO THE HIGH SCALE

\boldsymbol{X} The bounds apply to the physical masses at the TeV scale \boldsymbol{X} Need to map this to the high scale, to determine m_{F}, m_{D} \boldsymbol{X} The splitting at the high scale between the 3rd and Ist two generations cannot be too large, otherwise the 3 rd generation is driven to tachyonic values by 2-loop RG

$$
\begin{gathered}
m_{D}=15 \mathrm{TeV} \\
\left.m_{\tilde{g}}\right|_{M_{G U T}}=0.6 \mathrm{TeV} \\
\downarrow \\
m_{\tilde{q}_{L, R}^{1,2}} \approx m_{\tilde{b}_{R}} \approx 15 \mathrm{TeV} \\
m_{\tilde{g}}=1.5 \mathrm{TeV}
\end{gathered}
$$

MAPPING TO THE HIGH SCALE

X The bounds apply to the physical masses at the TeV scale \boldsymbol{X} Need to map this to the high scale, to determine m_{F}, m_{D} XThe splitting at the high scale between the 3rd and Ist two generations cannot be too large, otherwise the 3rd generation is driven to tachyonic values by 2-loop RG

$$
\begin{gathered}
m_{D}=15 \mathrm{TeV} \\
\left.m_{\tilde{g}}\right|_{M_{G U T}}=1.0 \mathrm{TeV} \\
\downarrow \\
m_{\tilde{q}_{L, R}^{1,2}} \approx m_{\tilde{b}_{R}} \approx 15 \mathrm{TeV} \\
m_{\tilde{g}}=2.5 \mathrm{TeV}
\end{gathered}
$$

MODEL BUILDING REQUIREMENTS

\boldsymbol{x} Continuous $\mathrm{SU}(2)$ symmetry is problematic (Goldstone modes) X Discrete subgroups may be a way out
XThe simplest groups that do not spoil the Yukawa texture are the dicyclic groups $\tilde{D}_{n}, n \geq 3 \quad\left(t_{1}=e^{\frac{\pi i}{n} \sigma_{3}}, t_{2}=i \sigma_{2}\right)$

Two possible ways:
X Nonrenormalizable breaking $S U(2) \rightarrow \tilde{D}_{n}$ (start with an $\mathrm{SU}(2)$ model + higher dim Kahler operators that break the Goldstone degeneracy and align the vev)
X Renormalizable breaking $S U(2) \rightarrow \tilde{D}_{n}$ (add fields in nontrivial representations of \tilde{D}_{n}), have constructed examples, but involved...

CONCLUSIONS

CONCLUSIONS

$\times S \cup(2) \times U(1)$ provides an economical way of generating quark masses with relatively few parameters
x Quark rotations in the RH down sector are large!

CONCLUSIONS

$\times S U(2) \times U(1)$ provides an economical way of generating quark masses with relatively few parameters
X Quark rotations in the RH down sector are large!
\boldsymbol{x} LHC bounds on superpartners revive interest in "minimal" or "natural" susy, with just the stops and gluino light.
\boldsymbol{x} Fits very well with the $\mathrm{SU}(2) \times \cup(1)$ quark model

CONCLUSIONS

$\times S \cup(2) \times U(1)$ provides an economical way of generating quark masses with relatively few parameters
X Quark rotations in the RH down sector are large!
\boldsymbol{x} LHC bounds on superpartners revive interest in "minimal" or "natural" susy, with just the stops and gluino light.
\boldsymbol{x} Fits very well with the $\mathrm{SU}(2) \times \cup(1)$ quark model
\boldsymbol{x} Natural realization: D-term dominance (stops are light because their $U(I)$ charges are vanishing)
x One model (A) particular nice (small $\mathrm{SU}(2)$ breaking, $X_{D_{i}}=X_{D_{3}}$)

CONCLUSIONS

$\times S U(2) \times U(1)$ provides an economical way of generating quark masses with relatively few parameters
X Quark rotations in the RH down sector are large!
\boldsymbol{x} LHC bounds on superpartners revive interest in "minimal" or "natural" susy, with just the stops and gluino light.
\boldsymbol{x} Fits very well with the $\mathrm{SU}(2) \times \cup(1)$ quark model
\boldsymbol{x} Natural realization: D-term dominance (stops are light because their $U(I)$ charges are vanishing)
x One model (A) particular nice (small $\operatorname{SU}(2)$ breaking, $X_{D_{i}}=X_{D_{3}}$)
χ Dominant FCNC bounds from ϵ_{K}, leading to $m_{D}>10-20 \mathrm{TeV}$

CONCLUSIONS

$\times S U(2) \times U(1)$ provides an economical way of generating quark masses with relatively few parameters
X Quark rotations in the RH down sector are large!
\boldsymbol{x} LHC bounds on superpartners revive interest in "minimal" or "natural" susy, with just the stops and gluino light.
\boldsymbol{x} Fits very well with the $\mathrm{SU}(2) \times \cup(1)$ quark model
\boldsymbol{x} Natural realization: D-term dominance (stops are light because their $U(I)$ charges are vanishing)
x One model (A) particular nice (small $\operatorname{SU}(2)$ breaking, $X_{D_{i}}=X_{D_{3}}$)
χ Dominant FCNC bounds from ϵ_{K}, leading to $m_{D}>10-20 \mathrm{TeV}$
x Realistic model would be based on discrete subgroup of $S U(2)$ (More model building needed)

BACKUP

QUARK ROTATIONS

exact

$$
\begin{aligned}
V_{L}^{u}= & \left(\begin{array}{ccc}
e^{-i \alpha_{12}} & & \\
& 1 & \\
& & e^{i \alpha_{23}}
\end{array}\right)\left(\begin{array}{ccc}
1 & \left|V_{12}^{u}\right| & 0 \\
-\left|V_{12}^{u}\right| & 1 & \left|V_{23}^{u}\right| \\
\left|V_{12}^{u} V_{23}^{u}\right| & -\left|V_{23}^{u}\right| & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{i\left(\tilde{\alpha}_{12}+\alpha_{12}\right)} & & \\
& 1 & \\
& & \\
& V^{-i\left(\tilde{\alpha}_{23}+\alpha_{23}\right)}
\end{array}\right) \\
& V_{L}^{d}=\left(\begin{array}{cccc}
& -\left|V_{12}^{d}\right| & \left|V_{13}^{d}\right| & 1 \\
-V_{12}^{d \alpha_{d}} \\
\left|V_{12}^{d} V_{23}^{d}\right|-\left|V_{13}^{d}\right| e^{-i \alpha_{d}} & -\left|V_{23}^{d}\right| & \left|V_{23}^{d}\right|
\end{array}\right)\left(\begin{array}{ccc}
e^{i \tilde{\alpha}_{12}} & & \\
& 1 & \\
& & e^{-i \tilde{\alpha}_{23}}
\end{array}\right)
\end{aligned}
$$

rotations:

$$
\begin{aligned}
& V_{R}^{d}=\left(\begin{array}{ccc}
1 & -\left|V_{12}^{d}\right| / c_{d} & 0 \\
\left|V_{d}^{d}\right| & c_{d}^{d} \\
-\left|V_{12}^{d} V_{32}^{d}\right| / c_{d} & -\left|V_{3_{32}^{d}}^{d}\right| & \left|V_{32}^{d 2}\right| \\
c_{d}
\end{array}\right)\left(\begin{array}{ccc}
e^{-i \tilde{\alpha}_{12}} & & \\
& 1 & \\
& & e^{i\left(\tilde{\alpha}_{23}-\alpha_{d}\right.}
\end{array}\right) \\
& V_{R}^{u}=\left(\begin{array}{ccc}
1 & -\left|V_{12}^{u}\right| & 0 \\
\left|V_{12}^{u}\right| & 1 \\
-\left|V_{12}^{u} V_{32}^{u}\right| & -\left|V_{32}^{u}\right| & 1
\end{array}\right)\left(\begin{array}{lll}
3^{u}
\end{array}\right)\left(\begin{array}{ccc}
e^{-i\left(\tilde{\alpha}_{12}+\alpha_{12}\right)} & & \\
& & 1 \\
& & \\
& & e^{i\left(\tilde{\alpha}_{23}+\alpha_{23}-\alpha_{u}\right.}
\end{array}\right) \\
& \left|V_{12}^{u}\right|=\sqrt{m_{u} / m_{d}} \\
& \left|V_{12}^{d}\right|=\sqrt{m_{d} / m_{s}} \sqrt{c_{d}} \\
& \left|V_{13}^{d}\right|=\sqrt{m_{d} m_{s} / m_{b}^{2}} s_{d} / \sqrt{c_{d}} \\
& \left|V_{32}^{d}\right|=s_{d}
\end{aligned}
$$

with:

The remaining 4 angles $\left(V_{23}^{d}, V_{32}^{d}, V_{23}^{u}, V_{32}^{u}\right)$ are free parameters

SQUARK MASS MATRICES

The full D-term squark mass matrices are

$$
\begin{aligned}
& \left(\tilde{m}_{q, D}^{2}\right)_{11}=\left(X_{10}+z_{11}^{q} X_{\phi} \epsilon_{\phi}^{2}\right) \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{q, D}^{2}\right)_{22}=\left(X_{10}+z_{22}^{q} X_{\phi} \epsilon_{\phi}^{2}\right) \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{q, D}^{2}\right)_{33}=\left(z_{33}^{q} X_{\phi} \epsilon_{\phi}^{2}-z_{33}^{q} \epsilon_{\chi}^{2}\right) \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{q, D}^{2}\right)_{12}=2 z_{12}^{q} X_{\phi} \epsilon_{\phi}^{2} \epsilon_{\chi}^{2\left|X_{\phi}\right|} \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{q, D}^{2}\right)_{13}=z_{13}^{q}\left(X_{\phi}-\frac{1}{2} X_{10}\right) \epsilon_{\phi} \epsilon_{\chi}^{X_{10}-X_{\phi}} \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{q, D}^{2}\right)_{23}=\left[z_{23}^{q}\left(X_{\phi}-\frac{1}{2} X_{10}\right) \epsilon_{\phi}^{2}-z_{23}^{\prime q}\left(1+\frac{1}{2} X_{10}\right) \epsilon_{\chi}^{2}\right] \epsilon_{\phi} \epsilon_{\chi}^{X_{10}+X_{\phi}} \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{d, D}^{2}\right)_{11}=\left(X_{\overline{5}}+z_{11}^{d} X_{\phi} \epsilon_{\phi}^{2}\right) \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{d, D}^{2}\right)_{22}=\left(X_{\overline{5}}+z_{22}^{d} X_{\phi} \epsilon_{\phi}^{2}\right) \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{d, D}^{2}\right)_{33}=\left(X_{3}+\left(z_{33}^{d} X_{\phi} \epsilon_{\phi}^{2}-z_{33}^{d} \epsilon_{\chi}^{2}\right)\right) \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{d, D}^{2}\right)_{12}=2 z_{12}^{d} X_{\phi} \epsilon_{\phi}^{2} \epsilon_{\chi}^{2\left|X_{\phi}\right|} \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{d, D}^{2}\right)_{13}=z_{13}^{d}\left(X_{\phi}-\frac{1}{2} X_{53}\right) \epsilon_{\phi} \epsilon_{\chi}^{X_{53}-X_{\phi}} \tilde{m}_{D}^{2} \\
& \left(\tilde{m}_{d, D}^{2}\right)_{23}=z_{23}^{d}\left(X_{\phi}+\frac{1}{2} X_{53}\right) \epsilon_{\phi} \epsilon_{\chi}^{-X_{53}-X_{\phi}} \tilde{m}_{D}^{2}
\end{aligned}
$$

CONSTRAINTS FROM KAONS

Using unitarity of the rotations, one can cast the C4 coefficient as

$$
\begin{aligned}
\Delta C_{4} & \left.=\frac{\alpha_{s}^{2}}{m_{\tilde{g}}^{2}} \underline{\hat{\delta}_{12}^{d, R R} \Delta_{31}^{R}}+\tilde{\delta}_{12}^{d, R R} \Delta_{21}^{R}\right)\left\{-\frac{1}{3}\left[\underline{\hat{\delta}_{12}^{d, L L}} x_{1}^{R} \partial_{R}\left(\tilde{f}_{4}\left(x_{3}^{L}, x_{1}^{R}\right)-\tilde{f}_{4}\left(x_{1}^{L}, x_{1}^{R}\right)\right)\right.\right. \\
& \left.\left.+\tilde{\delta}_{12}^{d, L L} \Delta_{21}^{L} x_{1}^{L} x_{1}^{R} \partial_{L} \partial_{R} \tilde{f}_{4}\left(x_{1}^{L}, x_{1}^{R}\right)\right]+\frac{7}{3}\left[\tilde{f}_{4} \rightarrow f_{4}\right]\right\},
\end{aligned}
$$

Keeping only the dominant splitting

$$
\begin{array}{ll}
\tilde{\delta}_{12}^{d, R R} \equiv\left(V_{R}^{d}\right)_{21}\left(V_{R}^{d}\right)_{22}^{*}, & \hat{\delta}_{12}^{d, R R} \equiv\left(V_{R}^{d}\right)_{31}\left(V_{R}^{d}\right)_{32}^{*} \\
\tilde{\delta}_{12}^{d, L L} \equiv\left(V_{L}^{d}\right)_{21}^{*}\left(V_{L}^{d}\right)_{22}, & \hat{\delta}_{12}^{d, L L} \equiv\left(V_{L}^{d}\right)_{31}^{*}\left(V_{L}^{d}\right)_{32}
\end{array}
$$

$$
\operatorname{Im} \Delta C_{4} \approx 1.6 \times 10^{-8}\left(\frac{\left|V_{23}^{d}\right|}{0.04}\right)^{2}\left(\frac{s_{d}^{2}}{0.2}\right)\left(\frac{\sin \alpha_{12}}{0.5}\right)\left(\tilde{m}_{d_{R}}^{2}-\tilde{m}_{b_{R}}^{2}\right) \frac{\log \left(\frac{\tilde{m}_{d_{R}}}{m_{\tilde{g}}}\right)+\frac{1}{4}}{\left(\tilde{m}_{d_{R}}\right)^{4}}
$$

