

Top quark production in the ATLAS detector of the LHC

Guillaume Lefebvre on behalf of the ATLAS Collaboration

HEP2013 Valparaíso, 16-20 December 2013

PARIS 2

Top quark pair production

Single-top production

Top quark pair production and decay

Production

gg fusion ${\sim}87\%$ @ LHC 8 TeV

Decay

Top Pair Decay Channels

BR(t \rightarrow Wb) almost 100%

- All hadronic large sample
 Large background
- Single lepton medium sample
 Manageable background
- Dilepton smaller sample
 Clean signature
- Using ~all measurable objects
 e, μ, (b-)jets, missing E_T, τ...

Top quark pair production cross section

Motivations:

Precise tests of pQCD

Comparison with recent theoretical calculations at NNLO + NNLL arXiv:1303.6254

for $m_t=172.5\ \mbox{GeV}$

$$\sigma_{t\bar{t}}(\sqrt{s}=7\,\text{TeV})=177.3^{+10.1}_{-10.8}\,\text{pb}~~,~\sigma_{t\bar{t}}(\sqrt{s}=8\,\text{TeV})=252.9^{+13.3}_{-14.5}\,\text{pb}$$

- Significant background for various analyses/searches (H \rightarrow bb, VLQ, stop)
- Indirect sensitivity to new physics
- Constraints on **PDF modeling and \alpha_s** with differential measurements
- Measurements done in many decay channels, four presented in this talk
 - Inclusive cross section
 - Single lepton @ 8 TeV
 - Dilepton @ 8 TeV
 - Differential cross section (single lepton)
 - $\sigma_{t\bar{t}}(p_T(t)), \sigma_{t\bar{t}}(m_{t\bar{t}}), \sigma_{t\bar{t}}(y_{t\bar{t}})$ @ 7 TeV
 - $\sigma_{t\bar{t}}(n_{jets})$ @ 7 TeV

Inclusive top quark pair cross section

Selection

- $\blacktriangleright~1$ isolated e/µ p_T > 40 GeV, $|\eta| < 2.5$
- > 3 jets with p_T > 25 GeV, |η| < 2.5 with at least 1 b-tagged
- e+jets: $E_T^{miss} > 30$ GeV, $m_T(W) > 30$ GeV
- μ +jets: $E_T^{miss} > 20$ GeV, $m_T(W) + E_T^{miss} > 60$ GeV

Analysis

- Measurement using a likelihood discriminant template fit
- Discriminant variables: η_{e,μ}, aplanarity (A')
- Data driven W+jets (normalisation) and multijet background

Results

 Main systematics: Signal modeling (11%) and jet uncertainties (5-6%)

consistent with theory

Dilepton channel @ 8 TeV (20.3 fb⁻¹)

- Selection (eµ+jets)
 - Exactly 1 eµ pair with opposite sign each isolated
 - 1 or 2 b-tagged jets
 - $p_T > 25$ GeV, $|\eta| < 2.5$ for all objects
 - Very pure signal selection

Analysis

- tt event counting in samples with exactly one and two b-tagged jets
- Simultaneous estimation of σ_{tt} and the efficiency to reconstruct and b-tag jets
 → reduced jet and modeling uncertainties
- Fake lepton estimation using data and MC

Events 00000 **ATLAS** Preliminary √s=8 TeV L=20.3 fb⁻¹ Data 2012 tt Powheq+PY 25000 Z+iets 20000 Diboson Fake lepton 15000 Powhea+PY MC@NLO+HW Alpgen+HW 10000 5000 Data/MC 1.2 0.8 2 0 3 1 N_{b-tag}

Results

Main systematics: luminosity (3.1%), beam energy (1.7%), signal modeling (1.5%), electron ID (1.4%)

 $\sigma_{ ext{t\bar{t}}} = 237.7 \pm 1.7\,(ext{stat.}) \pm 7.4\,(ext{syst.}) \pm 7.4\,(ext{lumi})\,\pm 4.0\,(ext{beam energy})\, ext{pb}$

consistent with theory

ATLAS-CONF-2013-097

Differential top quark pair cross section

- Lepton+jets selection
- Measurement in bins of p_T^t, m_{tt}, y_{tt} and p_T^{tt}
- tt kinematics reconstructed using a maximum likelihood fit to the reconstructed objects
 - Relates measured objects to the parton level tt decay
 - Maximisation performed for each jet combination
- Reconstructed variables are unfolded after background subtraction
 - Correction for detector effects and acceptance through a migration matrix derived from simulation

- Comparison with ALPGEN, MC@NLO and POWHEG
- **p**_T^t: softer measured spectrum above 200 GeV
 - Best data description by POWHEG+HERWIG
- ytt: overestimation by MC@NLO and POWHEG for y < -1, underestimation for |y| < 0.5
 - Best data description by ALPGEN+HERWIG

- Comparison with CT10, MSTW2008, NNPDF and HERAPDF
 - From NLO theory calculation
- p_T^t : Certain tension at high p_T for all predictions, need more data to gain significance
- m_{tt}: Best data description by HERAPDF, deviation at high m_{tt} for others

σ_{tt} vs jet multiplicity @ 7 TeV (4.6 fb⁻¹)

ATLAS-CONF-2012-155

- Jet multiplicity in tt events for different p_T thresholds (25, 40, 60, 80 GeV)
- Corrected for all detector effects within acceptance
- Comparison of data with ALPGEN+HERWIG, MC@NLO+HERWIG, ALPGEN+PYTHIA and POWHEG+PYTHIA

σ_{tt} vs jet multiplicity @ 7 TeV (4.6 fb⁻¹)

ATLAS-CONF-2012-155

- Jet multiplicity in tt events for different p_T thresholds (25, 40, 60, 80 GeV)
- Corrected for all detector effects within acceptance
- Comparison of data with ALPGEN+HERWIG, MC@NLO+HERWIG, ALPGEN+PYTHIA and POWHEG+PYTHIA

Top quark pair cross section summary

Inclusive

- Broad range of measurements
- Major channels covered @ 7 TeV
- First measurements @ 8 TeV in semileptonic and dileptonic channel

Differential

- Very important measurements to constraint SM modeling differences
- Done in fiducial range to avoid large extrapolations

All results consistent with SM expectations

Top quark pair production

Single top production

Single top quark production

t-channel $\sigma_{\rm t}(7\,{\rm TeV}) = 64.6^{+2.7}_{-2.0}\,{\rm pb}$ $\sigma_{\rm t}(8\,{\rm TeV}) = 87.8^{+3.4}_{-1.9}\,{\rm pb}$ Discovered at Tevatron

Motivations

approx. **NNLO**

- Test of SM
- Probe W-t-b vertex
 - Constraint on V_{tb}
 - Search for modified couplings
 - Anomalous polarisation

Wt channel $\sigma_{
m Wt}(7\,{
m TeV}) = 15.7\pm1.1\,{
m pb}$ $\sigma_{Wt}(8 \,\mathrm{TeV}) = 22.4 \pm 1.5 \,\mathrm{pb}$ Observed at LHC

• **u/d ratio**, b quark

Excited quarks (b*)

Charged higgs (H⁺)

covered in Madalina's talk

PDF constraints

► FCNC

W'

s-channel $\sigma_{\rm s}(7\,{\rm TeV}) = 4.6\pm0.2\,{\rm pb}$ $\sigma_{
m s}(8\,{
m TeV}) = 5.6\pm0.2\,{
m pb}$ Evidence at Tevatron

results presented in this talk

Single top quark cross section measurements

Selection

- W leptonic decay
- 1 isolated lepton $p_T > 25$ GeV
- \blacktriangleright 2 or 3 jets $|\eta| <$ 4.5, $p_T >$ 30 GeV
- 1 b-tagged jet
- $\blacktriangleright~E_T{}^{miss} > 30$ GeV, $m_T(W) > 50$ GeV
- Analysis
 - Use of a NN for signal/background discrimination
 - Measurement from maximum likelihood fit to NN distributions
 - Data driven multijet and W+jets background estimations
 - Other background estimated from simulation

Results

 Main systematics: ISR/FSR (9.1%), b-tagging efficiency (8.5%) and jet energy scale (7.7%)

 $\sigma_{ extsf{t}}=95\pm2\,(extsf{stat.})\pm18\,(extsf{syst.})\, extsf{pb}$

Selection

- Leptonic W decays, eµ channel
- Two isolated leptons p_T > 25 GeV of opposite charge
- + 1 or 2 jets $p_T >$ 30 GeV, $|\eta| <$ 2.5 with 1 b-tagged

Analysis

- Background discrimination using Boosted Decision Trees (BDT) in 1 and 2 jet samples
- Measurement using a maximum likelihood fit on BDT distributions
- Data driven fakes estimation

- Results
 - Main systematics: jet energy scale, b-tagging (~9%) and generator

$$\sigma_{Wt} = 27.2 \pm 2.8 \text{ (stat.)} \pm 5.4 \text{ (syst.) pb}$$

Significance: 4.2 σ (exp. 4.0 σ)

$\underbrace{ \sum_{k=1}^{t} Direct |V_{tb}| \text{ measurement (t and Wt channel)} }$

ATLAS-CONF-2012-132 - ATLAS-CONF-2013-100

- Cross section proportional to $|V_{tb} \boldsymbol{\cdot} f|^2$
 - with f a coupling (=1 in SM)
- Measurement

$$|\mathsf{V}_{\mathsf{tb}}\cdot\mathsf{f}|^2 = \frac{\sigma_\mathsf{t}^\mathsf{exp}}{\sigma_\mathsf{t}^\mathsf{th}}$$

- Independent of N_{quark} generation and CKM unitarity
- Assumptions
 - Left handed SM-like W-t-b interaction
 - $\blacktriangleright |V_{tb}| >> |V_{td}|, |V_{ts}|$

Results (8TeV)

$$\begin{array}{ll} \mbox{t-channel} & |V_{tb} \cdot f| \! = 1.04^{+0.10}_{-0.11} \\ & > 0.80 \; (95\% \; \mbox{CL}) \end{array} \\ \mbox{Wt} & |V_{tb} \cdot f| \! = 1.10 \pm 0.12 \\ & > 0.72 \; (95\% \; \mbox{CL}) \end{array}$$

Top/antitop cross section ratio (R_t) @ 7 TeV (4.7 fb⁻¹)

- $R_t = \sigma_{top} / \sigma_{antitop}$ sensitive to u/d quark PDF ratio
- Similar W leptonic decay selection
- Analysis
 - Similar to inclusive cross section measurement
 - Separate NN depending on the lepton charge

Results

 Main systematics: ISR/FSR (4.2%), QCD background normalisation (~3.8%), jet energy scale (3.7%)

$$\begin{split} \mathsf{R_t} &= 1.81 \pm 0.10 \, (\text{stat.}) \pm 0.21 \, (\text{syst.}) \\ \sigma_\mathsf{t}(\mathsf{t}) &= 53.2 \pm 1.7 \, (\text{stat.}) \pm 10.6 \, (\text{syst.}) \, \text{pb} \\ \sigma_\mathsf{t}(\bar{\mathsf{t}}) &= 29.5 \pm 1.5 \, (\text{stat.}) \pm 7.3 \, (\text{syst.}) \, \text{pb} \end{split}$$

agreement with predictions using various PDF sets

ATLAS-CONF-2012-056

All results consistent with SM expectations

- All top quark production cross section measurements are consistent with SM expectations
- Differential cross section measurements important to constraint SM modeling differences
 - Current measurements start to be discriminating
- More measurements coming @ 8 TeV

All public results from the ATLAS top physics working group here https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Many new results ahead!

THANK YOU

ATLAS-CONF-2013-097

 Cross section and b-tag/jet reconstruction efficiency extracted from event counts in 1 and 2 b-tagged jets samples

$$\begin{split} \mathsf{N}_1 &= \mathsf{L}\sigma_{\mathsf{t}\bar{\mathsf{t}}}\epsilon_{\mathsf{e}\mu} 2\epsilon_{\mathsf{b}}(1-\mathsf{C}_{\mathsf{b}}\epsilon_{\mathsf{b}}) + \mathsf{N}_1^{\mathsf{bkg}} \\ \mathsf{N}_2 &= \mathsf{L}\sigma_{\mathsf{t}\bar{\mathsf{t}}}\epsilon_{\mathsf{e}\mu} 2\mathsf{C}_{\mathsf{b}}\epsilon_{\mathsf{b}}^2 + \mathsf{N}_2^{\mathsf{bkg}} \end{split}$$

- with:
 - L: integrated luminosity
 - σ_{tt} : cross section
 - $\epsilon_{e\mu}$: efficiency to pass $e\mu$ preselection
 - ϵ_b : Probability for a jet from $t \to Wq$ to be within acceptance, reconstructed as a jet and b-tagged
 - C_b: correlations between two b-tagged jets
 - N^{bkg}: number of background events

τ+lepton channel @ 7 TeV (2.1 fb⁻¹)

- Cross section measurement with τ decaying hadronically
- Sensitive to non SM processes $t \rightarrow bH^+ \rightarrow b\tau^+ \nu_{\tau}$
- τ reconstruction and ID
 - + 1-3 associated tracks $p_T > 1~\text{GeV}$ $20 < E_T < 100~\text{GeV}, ~|\eta| < 2.3$
 - Discrimination between T and misidentified electron and jets using **boosted decision trees** (BDT)
 ID variables from tracking and calorimeter
- Analysis
 - Estimation on opposite sign same sign distribution to suppress fake τ from gluon jets and multijet background
 - X2 fits to the OS-SS BDT distributions on events with at least one b-jet
 - Signal templates from MC, background templates from 0 b-jet sample
- Results
 - Main systematics: b-tagging, ISR/FSR, τ-ID

consistent with $\sigma_{t\bar{t}}^{\text{NNLO}+\text{NNLL}} = 177.3^{+10.1}_{-10.8} \text{ pb}$

arXiv:1205.2067

tt + heavy flavor @ 7 TeV (4.7 fb⁻¹)

- Main irreducible background to $\, t \overline{t} + H \, with \, H \rightarrow b \overline{b}$
- Measurement of ratio R_{HF} to reduce systematic uncertainties

$$\mathsf{R}_{\mathsf{HF}} = \frac{\sigma_{\mathsf{fid}}(\mathsf{t}\overline{\mathsf{t}} + \mathsf{HF})}{\sigma_{\mathsf{fid}}(\mathsf{t}\overline{\mathsf{t}} + \mathsf{j})} \qquad \mathsf{HF} = \mathsf{b}, \mathsf{c} \quad \mathsf{j} = \mathsf{any} \; \mathsf{flavor}$$

- Both σ_{fid} measured in a **kinematic fiducial region** within the detector acceptance
- Nominal tt dilepton selection with a **third jet requirement** $\overline{\Xi}$ \rightarrow b-tagged for σ_{fid} (tt +HF)
- Main background for tt + HF is tt + jet with misidentified light jet
- Binned maximum likelihood fit to secondary vertex mass distribution to estimate heavy and light flavor content of the additional b-tagged jets
- Results
 - ▶ Main systematics: fiducial flavor composition (+69%), c-jets tagging efficiency (~21%)

 $\mathsf{R}_{\mathsf{HF}} = [7.1 \pm 1.3\,(\mathsf{stat.})\,^{+5.3}_{-2.0}\,(\mathsf{syst.})]\%$

prediction ALPGEN+HERWIG (LO): $R_{HF} = [3.4 \pm 1.1]\%$

ATLAS-CONF-2013-099

- **Generator**: good data/MC agreement
- **PDF**: best data description by HERAPDF, deviation at high m_{tt} for others

ATLAS-CONF-2013-099

- Generator: softer measured spectrum above 200 GeV
 - Best data description by POWHEG+HERWIG
- **PDF**: certain tension at high p_T for all predictions

- Generator: overestimation by MC@NLO and POWHEG for y < -1, underestimation for |y| < 0.5
 - Best data description by ALPGEN+HERWIG
- **PDF**: better agreement for NNPDF and HERAPDF

Compatility MC/data and PDF/data within uncertainties

- Comparison with MCFM (NLO QCD) and NLO+NNLL
- Predictions do not include parton showering
- p_T^t: Data a bit softer than both predictions
- m_{tt}: Spectrum falls more quickly than both predictions
 → better agreement with NLO QCD

t-channel LHC combination

- Combination using best linear unbiased estimator (BLUE)
 - Consider individual contributions to systematic uncertainties and their correlations

AT LAS

Wt channel @ 8 TeV - BDT variables

1-jet sample

Variable $p_{\rm T}^{\rm sys}$ variables $p_{\rm T}^{\rm sys}$ (lep1,lep2, $E_{\rm T}^{\rm miss}$,jet1) $p_{\mathrm{T}}^{\mathrm{sys}}$ (lep1,lep2,jet1) $p_{\rm T}$ -related variables $\Delta p_{\rm T}$ ((lep1,lep2),($E_{\rm T}^{\rm miss}$,jet1)) $\Delta p_{\rm T}$ (lep1, $E_{\rm T}^{\rm miss}$) $\sum E_{\mathrm{T}}$ $H_{\rm T}$ (lep1,lep2, $E_{\rm T}^{\rm miss}$,jet1) Angular correlations $\Delta \phi$ ((lep1,lep2),jet1) ΔR ((lep1,lep2),jet1) $\Delta \phi$ (lep1,jet1) $\Delta \phi (E_{\rm T}^{\rm miss}, jet1)$ *Centrality* (lep1,lep2) Thrust η (lep1,lep2) m or $m_{\rm T}$ variables $m_{\rm T}$ (lep2, $E_{\rm T}^{\rm miss}$) m (lep1, lep2, jet1) m (lep1,jet1) **Object kinematics** $E_{\rm T}^{\rm miss}$ $E_{\rm T}$ (jet1) η (lep2)

2-jet sample

Variable $p_{\rm T}^{\rm sys}$ variables (jet1,jet2) $p_{\rm T}^{\rm sys}$ (lep1,lep2) $p_{\rm T}^{\rm sys}$ (lep1,lep2, $E_{\rm T}^{\rm miss}$,jet1) $p_{\rm T}^{\rm sys}$ (lep1, $E_{\rm T}^{\rm miss}$,jet2) $p_{\rm T}$ -related variables $\Delta p_{\rm T}$ ((lep1,lep2),($E_{\rm T}^{\rm miss}$,jet1)) $\Delta p_{\rm T}$ (jet1, $E_{\rm T}^{\rm miss}$) Angular correlations $\Delta \phi((\text{lep1,lep2}), (E_{T}^{\text{miss}}, \text{jet1}))$ $\Delta \phi_{MAX}$ (lep,jet1) ΔR ((lep1,jet2) Centrality (lep2,jet1,jet2) η (lep1,jet2) *m* variables m (lep1,jet2) m (lep1,jet1) m (lep2,jet1) m (lep2,jet2) **Object kinematics** $E_{\rm T}^{\rm miss}$ $E_{\rm T}$ (jet1) E (lep1) E (jet2)

ATLAS-CONF-2013-100

Preselection

1 isolated lepton $p_T > 25$ GeV 2 b-tagged jets $p_T > 25$ GeV $E_T^{miss} > 25 \text{ GeV}$ $m_T(W) > 60 \text{ GeV} - E_T^{miss}$

Analysis

- **Cut based** signal extraction
- **Data driven** W+jets (normalisation) and multijet background

AT LAS

Single top FCNC production @ 8 TeV (14.2 fb^{-1})

- FCNC in top decay $\mathsf{B}(\mathsf{t} o \mathsf{qV})$ with $\mathsf{V}=\mathsf{H},\mathsf{Z},\!\boldsymbol{\gamma},\!\mathsf{g}$
- Highly suppressed by SM
 - ► Can be enhanced in some BSM models (B~10⁻⁵-10⁻³)
- t \rightarrow qg difficult due to large QCD background
- Better sensitivity with $qg \rightarrow t \rightarrow bW(\rightarrow l\upsilon)$
- Selection
 - 1 isolated lepton , 1 b-tagged jet $E_T{}^{miss} > 30 \mbox{ GeV} \ , \ m_T(W) > 50 \mbox{ GeV}$
- Analysis
 - Binned likelihood fit to NN distribution
 - Signal region: tight b-tag
 - Control region: looser b-tag (more W+jets)
 - Data driven multijet normalisation
- Results
 - No excess observed

$$\begin{split} &\sigma_{FCNC} < 2.5 \text{ pb @ 95\% CL (2.2 exp.)} \\ &B(t \to ug) < 3.1 \cdot 10^{\text{-5}} \text{ if } B(t \to cg) = 0 \\ &B(t \to cg) < 1.6 \cdot 10^{\text{-4}} \text{ if } B(t \to ug) = 0 \end{split}$$

ATLAS-CONF-2013-063

Motivations

W' \rightarrow tb @ 8 TeV (14.3 fb⁻¹)

W'_R mass [GeV]

Analysis

- Fit on **BDT distributions**
 - Data driven multijet and W+jets normalisations
 - Hypothesis testing using CL_s

Results

- No excess observed
- ▶ 95% CL exclusion limits on
 - W'_{L/R} cross section
 - g'_{L/R}/g coupling ratios
- Exclusion limits on W' mass

$${
m m}_{W_L'} < 1.74\,{
m TeV}$$

 ${
m m}_{W_R'} < 1.84\,{
m TeV}$

 $m_{W_1'} < 1.56 \, \text{TeV}$ exp. $m_{W_{\rm P}^\prime} < 1.72\,\text{TeV}$ 38

W' \rightarrow tb @ 8 TeV - BDT variables

- 2-jets sample: 14 variables
 - Most discriminating: m_{tb} , $p_T(t)$ and $\Delta R(l, b_2)$
- **3-jets sample**: 13 variables
 - Most discriminating: m_{tb}, p_T(t) and sphericity

39

More references (non exhaustive list)

• Top quark pair production

- Single lepton @ 7 TeV ATLAS-CONF-2011-121
- Dilepton @ 7 TeV ATLAS-CONF-2013-077
- All hadronic @ 7 TeV ATLAS-CONF-2012-031
- τ + jets @ 7 TeV ATLAS-CONF-2012-032
- Gap fraction @ 7 TeV 1205.5015
- tt resonances with boosted tops @ 7 TeV 1207.2409

Single top quark production

- t-channel @ 7 TeV 1205.3130
- Wt channel @ 7 TeV 1205.5764
- Single b* production @ 7 TeV 1301.1583
- FCNC @ 8 TeV ATLAS-CONF-2013-063
- . . .

All public results from the ATLAS top physics working group here https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults