$0\nu\beta\beta$ vs LNV at LHC

Juan Carlos Helo

University Santa Maria, Valparaiso, Chile

Based on:

J.C. Helo, M. Hirsch, H. Päs, S. Kovalenko; arXiv:1307.4849 J.C. Helo, M. Hirsch, H. Päs, S. Kovalenko; Phys.Rev. D88 011901 F. Bonnet, M. Hirsch, T. Ota, W. Winter, JHEP03 (2013) 055

 ${\cal I}$. Introduction: LNV and 0
uetaeta

III. LNV @ LHC

 $\mathcal{I}\mathcal{V}.$ Conclusions

Lepton number violation

$$(A,Z) \to (A,Z+2) + 2e^{-1}$$

Neutrino Mass Mechanism

$$T_{1/2}^{\beta\beta0\nu} \propto m_{\beta\beta}^{-2} \; ; \; m_{\beta\beta} = \sum_{i=1}^{3} |m_{\nu_i} U_{ei}^2|$$

- Sensitive to extensions of SM: Left-Right, SUSY RPV, LQ, Sterile neutrinos, Color sextet diquarks, ...etc. For a review: Deppish et al . Arxiv: 1208.0727
- Schether-Valle Theorem: Observation of 0νββ implies neutrinos are Majorana. Phys. Rev. D. 25 2951 (1982)
 However it won't be easily interpreted as evidence for any specific model.

Lorentz-invariant description

Graphically:

+

 \Rightarrow (a) mass mechanism

 \Rightarrow (b) long-range part:

 \Rightarrow (d) short-range part:

H. Päs et al. PLB453 (1999) H. Päs et al. PLB498 (2001)

Tree-level topologies

Tree-level topologies

Examples:

Win-2013, Natal, 19/09/2013 – p.5/26

Bonnet et al, JHEP03 (2013) 055; arXiv:1212.3045

T-I: SFS, part-I

Win-2013, Natal, 19/09/2013 – p.7/26

T-I: SFS, part-II

Mediator $(Q_{\rm em}, SU(3)_c)$					
#	Decomposition	$S \text{ or } V_{\rho}$	ψ	S' or V'_{ρ}	
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	$(+1, 1 \oplus 8)$	$(0, 1 \oplus 8)$	$(-1, 1 \oplus 8)$	18 decompositions
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$	$(+1, 1 \oplus 8)$	(+5/3, 3)	(+2, 1)	in total
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$	$(+1, 1 \oplus 8)$	$(+4/3,\overline{3})$	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$	$(+1, 1 \oplus 8)$	$(+4/3, \overline{3})$	$(+1/3, \bar{3})$	imes SFS, VFS and VFV
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	$(+1, 1 \oplus 8)$	$(0, 1 \oplus 8)$	$(+1/3, \overline{3})$	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$	$(+1, 1 \oplus 8)$	(+5/3, 3)	(+2/3, 3)	imes # of different
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	$(+1, 1 \oplus 8)$	$(0, 1 \oplus 8)$	(+2/3, 3)	chirality insertions
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	$(-2/3,\overline{3})$	$(0, 1 \oplus 8)$	$(+1/3, \overline{3})$	P_{I} and P_{P}
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$	$(-2/3,\overline{3})$	$(-1/3, \mathbf{3_a} \oplus \mathbf{\overline{6_s}})$	$(+1/3, \overline{3})$	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+5/3, 3)	(+2, 1)	Dec. has at least one
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$	$(+2/3, \mathbf{3_a} \oplus \overline{6_s})$	$(+4/3,\overline{3})$	(+2, 1)	$S_{\pm 1}$, S^{DQ} or S^{LQ}
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	$(-2/3, \bar{3})$	$(0, 1 \oplus 8)$	(+2/3, 3)	
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+5/3, 3)	(+2/3, 3)	Bonnet et al.
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+2/3, 3)	JHEP03 (2013) 055
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(-1/3, 3)	$(0, 1 \oplus 8)$	$(+1/3, \bar{3})$	
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$	(-1/3, 3)	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$	(-1/3, 3)	(-4/3, 3)	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	

	Mediator $(Q_{\rm em}, SU(3)_c)$				-
#	Decomposition	$S \text{ or } V_{\rho}$	ψ	S' or V'_{ρ}	RPV SUSY:
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	$(\mathbf{+1},1\oplus8)$	$(0, 1 \oplus 8)$	$(-1, 1 \oplus 8)$	$\tilde{e} = \tilde{e} - \chi - \tilde{e}$
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$	$(+1, 1 \oplus 8)$	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$	$(+1, 1 \oplus 8)$	$(+4/3,\overline{3})$	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$	$(+1, 1 \oplus 8)$	$(+4/3, \bar{3})$	$(+1/3, \bar{3})$	-
2-i-b	$(ar{u}d)(ar{e})(d)(ar{u}ar{e})$	$(\mathbf{+1},1\oplus8)$	$(0,1\oplus8)$	$(+1/3,\overline{3})$	$\Leftarrow \tilde{e} - \chi - \tilde{d}$
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$	$(+1, 1 \oplus 8)$	(+5/3, 3)	(+2/3, 3)	~ ~ ~
2-ii-b	$(ar{u}d)(ar{e})(ar{u})(dar{e})$	$(\mathbf{+1},1\oplus8)$	$(0,1\oplus8)$	(+2/3,3)	$\Leftarrow e - \chi - u$
2-iii-a	(dar e)(ar u)(d)(ar uar e)	$(-\mathbf{2/3},\overline{3})$	$(oldsymbol{0},oldsymbol{1}\oplusoldsymbol{8})$	$(+1/3,\overline{3})$	$\Leftarrow \tilde{u} - \chi/\tilde{g} - d$
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$	$(-2/3,\overline{3})$	$(-1/3, \mathbf{3_a} \oplus \mathbf{\overline{6_s}})$	$(+1/3, \overline{3})$	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	-
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+5/3, 3)	(+2, 1)	
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$	$(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$	$(+4/3,\overline{3})$	(+2, 1)	
4-i	(dar e)(ar u)(ar u)(dar e)	$(-\mathbf{2/3},\overline{3})$	$(oldsymbol{0},oldsymbol{1}\oplusoldsymbol{8})$	(+2/3,3)	$\tilde{u} \leftarrow \tilde{u} - \chi/\tilde{g} - \tilde{u}$
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+5/3, 3)	(+2/3, 3)	
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+2/3, 3)	~
5-i	$(ar{u}ar{e})(d)(d)(ar{u}ar{e})$	(-1/3,3)	$(oldsymbol{0},oldsymbol{1}\oplusoldsymbol{8})$	$(+1/3,\overline{3})$	$f \Leftarrow d - \chi/\tilde{g} - d$
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$	(-1/3, 3)	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$	(-1/3, 3)	(-4/3, 3)	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	_

		Mediator $(Q_{\rm em}, SU(3)_c)$			
#	Decomposition	$S \text{ or } V_{\rho}$	ψ	S' or V'_{ρ}	
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	$(+1, 1 \oplus 8)$	$(0,1\oplus8)$	$(-1, 1 \oplus 8)$	
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$	$(+1, 1 \oplus 8)$	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$	$(+1, 1 \oplus 8)$	$(+4/3,\overline{3})$	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$	$(+1, 1 \oplus 8)$	$(+4/3, \bar{3})$	$(+1/3,\overline{3})$	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	$(+1, 1 \oplus 8)$	$(0, 1 \oplus 8)$	$(+\mathbf{1/3}, \mathbf{\overline{3}})$	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$	$(+1, 1 \oplus 8)$	(+5/3, 3)	(+2/3,3)	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	$(+1, 1 \oplus 8)$	$(0, 1 \oplus 8)$	(+2/3,3)	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	$(-\mathbf{2/3},\overline{3})$	$(0, 1 \oplus 8)$	$(+\mathbf{1/3}, \mathbf{\overline{3}})$	
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$	$(-\mathbf{2/3},\overline{3})$	$(-1/3, \mathbf{3_a} \oplus \overline{\mathbf{6_s}})$	$(+\mathbf{1/3}, \mathbf{\overline{3}})$	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+5/3, 3)	(+2, 1)	
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$	$(+2/3, \mathbf{3_a} \oplus \overline{6_s})$	$(+4/3,\overline{3})$	(+2, 1)	
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	$(-2/3,\overline{3})$	$(0, 1 \oplus 8)$	(+2/3,3)	
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+5/3, 3)	(+2/3,3)	
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+2/3,3)	
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(-1/3,3)	$(0, 1 \oplus 8)$	$(+1/3,\overline{3})$	
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$	(-1/3,3)	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$	(-1/3,3)	(-4/3, 3)	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	

Leptoquarks

		Mediator $(Q_{\rm em}, SU(3)_c)$			
#	Decomposition	$S \text{ or } V_{\rho}$	ψ	S' or V'_{ρ}	
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	$(+1, 1 \oplus 8)$	$(0,1\oplus8)$	$(-1,1\oplus 8)$	
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$	$(+1, 1 \oplus 8)$	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$	$(+1, 1 \oplus 8)$	$(+4/3,\overline{3})$	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$	$(+1, 1 \oplus 8)$	$(+4/3, \bar{3})$	$(+1/3, \bar{3})$	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	$(+1, 1 \oplus 8)$	$(0, 1 \oplus 8)$	$(+1/3, \overline{3})$	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$	$(+1, 1 \oplus 8)$	(+5/3, 3)	(+2/3, 3)	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	$(+1, 1 \oplus 8)$	$(0, 1 \oplus 8)$	(+2/3, 3)	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	$(-2/3, \bar{3})$	$(0, 1 \oplus 8)$	$(+1/3, \bar{3})$	
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$	$(-2/3, \overline{3})$	$(-1/3, \mathbf{3_a} \oplus \overline{\mathbf{6_s}})$	$(+1/3, \overline{3})$	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$	$(+4/3, \overline{f 3}_{f a}\oplus {f 6}_{f s})$	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+5/3, 3)	(+2, 1)	
3 - iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$	$(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$	$(+4/3,\overline{3})$	(+2, 1)	
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	$(-2/3, \bar{3})$	$(0, 1 \oplus 8)$	(+2/3, 3)	
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+5/3, 3)	(+2/3, 3)	
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$	$(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	(+2/3, 3)	
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(-1/3, 3)	$(0, 1 \oplus 8)$	$(+1/3, \bar{3})$	
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$	(-1/3, 3)	$(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$	(-1/3, 3)	(-4/3, 3)	$(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$	

Di-quarks

LNV @ LHC

Win-2013, Natal, 19/09/2013 – p.12/26

 $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$:

Keung & Senjanovic, 1983

Signal:

di-lepton + jets, **no** $\not \!\!\! E_T$

 $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$:

Keung & Senjanovic, 1983

Signal:

Plot from: S.P. Das et al., PRD 86

 \Rightarrow Assumes $\mathcal{L}=30~{\rm fb}^{-1}$ at $\sqrt{s}=14~{\rm TeV}$

Win-2013, Natal, 19/09/2013 - p.13/26

 $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$:

Keung & Senjanovic, 1983

Signal:

di-lepton + jets, **no** \mathbb{E}_T

Plot from: S.P. Das et al., PRD 86

$$\Rightarrow$$
 Assumes $\mathcal{L} = 30 \text{ fb}^{-1}$ at $\sqrt{s} = 14 \text{ TeV}$

 \Rightarrow Assumes $\mathcal{L} = 2.1$ fb $^{-1}$ at $\sqrt{s} = 7$ TeV

Keung & Senjanovic, 1983

1.6

1.6

1.8

[]]]][[[]]

 $m_{III(i)}$ [TeV]

2

1.8

Signal:

di-lepton + jets, **no** E_T

 $\begin{array}{c} u \\ W_{R} \\ g_{R} \\ g_{R} \\ g_{R} \\ g_{R} \\ W_{R} \\ W_{R} \\ u \\ \overline{u} \end{array}$

CMS (and ATLAS) with $\sqrt{s} = 8$ TeV: Non-observation gives stringent limits on short-range W_R diagrams for $0\nu\beta\beta$ decay.

Assumes: $g_R = g_L!$

$0\nu\beta\beta$ versus LHC

$$\mathcal{A}_{I}^{0\nu\beta\beta} \propto \frac{g_{1}g_{2}g_{3}g_{4}}{m_{B_{1}}^{2}m_{F}m_{B_{2}}^{2}} = \frac{g_{eff}^{4}}{M_{eff}^{5}}$$

Define:

$$g_{eff} = (g_1 g_2 g_3 g_4)^{1/4}$$

$$M_{eff} = (m_{B_1}^2 m_F m_{B_2}^2)^{1/5}$$

$0\nu\beta\beta$ versus LHC

$$\mathcal{A}_{I}^{0\nu\beta\beta} \propto \frac{g_{1}g_{2}g_{3}g_{4}}{m_{B_{1}}^{2}m_{F}m_{B_{2}}^{2}} = \frac{g_{eff}^{4}}{M_{eff}^{5}}$$

Define:

$$g_{eff} = (g_1 g_2 g_3 g_4)^{1/4}$$

$$M_{eff} = (m_{B_1}^2 m_F m_{B_2}^2)^{1/5}$$

 \Rightarrow Compare to LHC:

 $\# \text{events}(e^{\pm}e^{\pm}jj) : \sigma(pp \to B_1) \times Br(B_1 \to F + f_3) \times Br(F \to f_4f_5f_6)$

 \Rightarrow Heavy F, once produced on-shell, will decay $\Rightarrow \sigma(pp \rightarrow B_1)$ depends on m_{B_1} and g_1 , but not on m_{B_2} nor g_3, g_4 $\Rightarrow Br(B_1 \rightarrow F + f_3)$ depends on m_{F_1} and g_2 , but not on m_{B_2} nor g_3, g_4

Cross sections for $\sqrt{s} = 8$ TeV

Status for $\sqrt{s} = 8$ TeV

Case T-I-i-1 with SFS
$$\Rightarrow (\bar{u}d) - S_{+1} - (e) - N - (e) - S_{+1} - (\bar{u}d)$$
:

 \Rightarrow Red lines: CMS-EXO-12-017-pas upper limit on:

 $\sigma(pp->e^+e^+jj) \lesssim (3-10) \text{ fb}$

 \Rightarrow Full lines assume $Br(S_{+1}->e^+e^+jj)=10^{-1}$ Dashed lines assume $Br(S_{+1}->e^+e^+jj)=10^{-2}$

Forecast for $\sqrt{s} = 14$ TeV

 \Rightarrow Estimation of the Bkg: We use a simple scaling of Bkg. at 8 TeV.

 \Rightarrow Assume an statistic of $300 fb^{-1}$

 $\Rightarrow m_F = 200 \text{ GeV}$ (pessimistic case!)

 \Rightarrow Full lines: Br= 10^{-1} , dashed lines Br= 10^{-2}

If a positive signal is found,

Can one distinguish different LNV models?

(i) Invariant mass peaks

(ii) Charge asymmetry

Mass peaks: Leptoquarks

Only example!

No peak in p_{eejj}^2 !

$$\begin{split} p_{ejjj}^2 &= m_{S_{2/3}^{LQ}}^2 \\ p_{ej_2j_3}^2 &= m_{\psi}^2 \\ p_{ej_3}^2 &= m_{S_{1/3}^{LQ}}^2 \end{split}$$

Cross sections for $\sqrt{s} = 14$ TeV

"Dominant" sign producion: "wrong" sign production: 10^{6} 106 10^{6} 10^{6} $uu \rightarrow S_{4/3}^{DQ}$ -DQ $u u \rightarrow S_{4/3}$ -DQ 10^{5} 10^{5} 10^{5} 10^{5} $dd \rightarrow S_{2/3}$ $dd \rightarrow S_{2/3}^{DQ}$ $\rightarrow \overset{-LQ}{S}_{1/3} e^{+}$ 10^{4} 10^{4} 10^{4} 10^{4} $\sigma(pp \to e \ e \ + \ jets)/(g_I^2 \ BR) \ (pb)$ (qd) $dg \rightarrow S_{2/3}^{LQ} e$ + $jets)/(g^2 BR)$ 10 10 10^{3} 10^{2} 10^{2} 10^{2} 10^{2} 10^{1} 10¹ 10^{1} 10 в в ↑ 10^{0} 100 10^{0} 10^{0} $\sigma(pp)$ 10- 10^{-1} 10^{-1} 10^{-1} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-3} 10^{-3} 10^{-3} 1 2 3 4 5 2 3 4 5 6 m (TeV) m (TeV)

 \Rightarrow Number of e^-e^- -like and e^+e^+ -like events differ, depending on scalar!

Charge asymmetry

 \Rightarrow (red) S_{+1} like LR-symmetric model: $x_{CA} \simeq [2.3.5]$ $\Rightarrow x_{CA}$ can be very different in general case! \Rightarrow We have compared the discovery potential of LNV signals at the LHC with the sensitivity of current and future $0\nu\beta\beta$ experiments. (TeV particle exchange).

 \Rightarrow With the exception of some leptoquark mechanisms a $0\nu\beta\beta$ decay signal corresponding to a half life in the range $10^{26} - 10^{27}$ yrs should imply a positive LNV signal at the LHC. The non-observation of a positive signal at the LHC would rule out a short-range mechanism for $0\nu\beta\beta$ in most cases

 $\Rightarrow \mathsf{IF} \ 0\nu\beta\beta \ \mathsf{decay} \text{ is discovered:} \\ \text{Which is the dominant mechanism?}$

 \rightarrow short range operators: by LHC!

 \rightarrow charge asymmetry

 \rightarrow resonance peaks at the invariant mass distribution

 $\Rightarrow \text{Consequently, if an LNV signal at the LHC would be found it should be possible}$ to identify the dominant contribution of $0\nu\beta\beta$ decay. Win-2013, Natal, 19/09/2013 - p.26/26