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Inclusive diffraction at the LHC

• Dijet production: dominated by gg exchanges

• γ+jet production: dominated by qg exchanges

• C. Marquet, C. Royon, M. Saimpert, D. Werder, arXiv:1306.4901

• Jet gap jet in diffraction: Probe BFKL

• C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87
(2013) 034010; O. Kepka, C. Marquet, C. Royon, Phys. Rev. D79
(2009) 094019; Phys.Rev. D83 (2011) 034036

• Take quark and gluon density in Pomeron as measured at HERA to
predict dijet and γ+jet cross sections



Forward Physics Monte Carlo (FPMC)

• FPMC (Forward Physics Monte Carlo): implementation of all
diffractive/photon induced processes

• List of processes

– two-photon exchange

– single diffraction

– double pomeron exchange

– central exclusive production

• Inclusive diffraction: Use of diffractive PDFs measured at HERA, with a
survival probability of 0.03 applied for LHC

• Central exclusive production: Higgs, jets...

• FPMC manual (see M. Boonekamp, A. Dechambre, O. Kepka, V.
Juranek, C. Royon, R. Staszewski, M. Rangel, ArXiv:1102.2531)

• Survival probability: 0.1 for Tevatron (jet production), 0.03 for LHC,
0.9 for γ-induced processes

• Output of FPMC generator interfaced with the fast simulation of the
ATLAS detector in the standalone ATLFast++ package



Forward proton detectors

• In the following, we assume protons to be tagged in CMS/Totem or
ATLAS, for AFP:

– 210 m detectors: 0.015 < ξ < 0.15

– 210 and 420 m detectors: 0.0015 < ξ < 0.15

• Measurement assumed to be performed at low luminosity, no pile up
was introduced: possibility of using low pile up runs (3-5)



AFP acceptance in total mass
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• Assume protons to be tagged at 210 m and/or 420 m

• Sensitivity to high mass central system, X, as determined using AFP

• Very powerful for exclusive states: kinematical constraints coming from
AFP proton measurements



Possible upgrades of forward proton detectors

• Detectors at 420 and 220 allow to increase the acceptance at low
masses (NB: acceptance slightly smaller in CMS than in ATLAS)

• Possibility to increase the acceptance at high mass by having additional
detectors close to ATLAS
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Inclusive diffraction at the LHC: sensitivity to gluon density

• Predict DPE dijet cross section at the LHC in AFP acceptance, jets
with pT >20 GeV, reconstructed at particle level using anti-kT algorithm

• Sensitivity to gluon density in Pomeron especially the gluon density on
Pomeron at high β: multiply the gluon density by (1− β)ν with
ν = −1, ..., 1

• Measurement possible with 10 pb−1, allows to test if gluon density is
similar between HERA and LHC (universality of Pomeron model)

• If a difference is observed, it will be difficult to know if it is related to
the survival probability or different gluon density

(GeV)
T

p
40 50 60 70 80 90 100

(p
b/

G
eV

)
T

/d
p

di
je

t
σd

10

210

=-1ν

=-0.5ν

standard (HERA Fit PDF)

20% uncertainty bar

=0.5ν

=1ν

gluons
 < 0.15ξ0.015 < 



Dijet mass fraction: sensitivity to gluon density

• Dijet mass fraction: dijet mass divided by total diffractive mass
(
√
ξ1ξ2S)

• Sensitivity to gluon density in Pomeron especially the gluon density on
Pomeron at high β

• Exclusive jet contribution will appear at high dijet mass fraction
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Inclusive diffraction at the LHC: sensitivity to quark densities

• γ+jet and dijet cross sections as a function of d/u in the acceptance of
AFP (210 and 210+420 m detectors)

• As expected, the dijet cross section remains constant, whereas the γ+
jet cross section varies by a factor 2.5

• Jets and photon at particle level with pT >20 GeV
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Inclusive diffraction at the LHC: sensitivity to quark densities

• Predict DPE γ+jet divided by dijet cross section at the LHC

• Sensitivity to universality of Pomeron model

• Sensitivity to gluon density in Pomeron, of assumption:
u = d = s = ū = d̄ = s̄ used in QCD fits at HERA
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Soft Colour Interaction models

• A completely different model to explain diffractive events: Soft Colour
Interaction (R.Enberg, G.Ingelman, N.Timneanu, hep-ph/0106246)

• Principle: Variation of colour string topologies, giving a unified
description of final states for diffractive and non-diffractive events

• No survival probability for SCI models�q
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Inclusive diffraction at the LHC: sensitivity to soft colour interaction mo

• Predict DPE γ+jet divided by dijet cross section at the LHC for
pomeron like and SCI models

• In particular, the diffractive mass distribution (the measurement with
lowest systematics) allows to distinguish between the two sets of
models: flat distribution for SCI
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Jet gap jet events in diffraction

• Study BFKL dynamics using jet gap jet events

• Jet gap jet events in DPE processes: clean process, allows to go to
larger ∆η between jets

• See: Gaps between jets in double-Pomeron-exchange processes at the
LHC, C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D
87 (2013) 034010



Looking for BFKL effects

• Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP): Evolution in Q2

• Balitski Fadin Kuraev Lipatov (BFKL): Evolution in x



Jet gap jet events in diffraction

• Measure the ratio of the jet gap jet to the dijet cross sections:
sensitivity to BFKL dynamics

• As an example, study as a function of leading jet pT



“Exclusive models” in diffraction
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• All the energy is used to produce the Higgs (or the dijets), namely
xG ∼ δ

• Possibility to reconstruct the properties of the object produced
exclusively from the tagged proton: system completely constrained

• Possibility of studying any resonant production provided the cross
section is high enough

• See papers by Khoze, Martin, Ryskin, Szczurek, Peschanski, Royon...



Exclusive jet production at the LHC

• Jet cross section measurements: up to 18.9 σ for exclusive signal with
40 fb−1 (µ = 23): highly significant measurement in high pile up
environment, improvement over measurement coming from Tevatron
(CDF) studies using p̄ forward tagging by about one order of magnitude
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• Important to perform these measurements to constrain exclusive Higgs
production: background/signal ratio close to 1 for central values at 120
GeV



Search for γγWW quartic anomalous coupling
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• Study of the process: pp → ppWW

• Standard Model: σWW = 95.6 fb, σWW (W = MX > 1TeV ) = 5.9 fb

• Process sensitive to anomalous couplings: γγWW , γγZZ, γγγγ;
motivated by studying in detail the mechanism of electroweak symmetry
breaking, predicted by extradim. models

• Many additional anomalous couplings to be studied involving Higgs
bosons (dimension 8 operators); γγ specially interesting (C. Grojean, S.
Fichet, G. von Gersdorff)

• Rich γγ physics at LHC: see E. Chapon, O. Kepka, C. Royon, Phys.
Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) 074003; S.Fichet, G.
von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, ArXiv
1312.5153



Anomalous couplings studies in WW events

• Reach on anomalous couplings studied using a full simulation of the
ATLAS detector, including all pile up effects; only leptonic decays of
W s are considered

• Signal appears at high lepton pT and dilepton mass (central ATLAS)
and high diffractive mass (reconstructed using forward detectors)

• Cut on the number of tracks fitted to the primary vertex: very efficient
to remove remaining pile up after requesting a high mass object to be
produced (for signal, we have two leptons coming from the W decays
and nothing else)
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Results from full simulation

• Reaches the values expected for extradim models (C. Grojean, J. Wells)

• Improvement of “standard” LHC methods by studying
pp → l±νγγ (see P. J. Bell, ArXiV:0907.5299) by more than 2
orders of magnitude with 40/300 fb−1 at LHC

5σ 95% CL LEP limit

L = 40 fb−1, µ = 23 5.5 10−6 2.4 10−6 0.02
L = 300 fb−1, µ = 46 3.2 10−6 1.3 10−6



Reach at LHC

Reach at high luminosity on quartic anomalous coupling using fast
simulation (study other anomalous couplings, ZZ...)

Couplings OPAL limits Sensitivity @ L = 30 (200) fb−1

[GeV−2] 5σ 95% CL

aW0 /Λ2 [-0.020, 0.020] 5.4 10−6 2.6 10−6

(2.7 10−6) (1.4 10−6)

aWC /Λ2 [-0.052, 0.037] 2.0 10−5 9.4 10−6

(9.6 10−6) (5.2 10−6)

aZ0 /Λ
2 [-0.007, 0.023] 1.4 10−5 6.4 10−6

(5.5 10−6) (2.5 10−6)

aZC/Λ
2 [-0.029, 0.029] 5.2 10−5 2.4 10−5

(2.0 10−5) (9.2 10−6)

• Improvement of LEP sensitivity by more than 4 orders of magnitude
with 30/200 fb−1 at LHC, and of D0/CMS results by ∼two orders of
magnitude

• Reaches the values predicted by Higgsless/extradimension models

• Semic leptonic decays under study: looks promising, 1 order of
magnitude gain with respect to pure leptonic decays, full simulation
study under progress



Search for quartic γγ anomalous couplings

• Search for γγγγ quartic anomalous couplings

• Couplings predicted by extra-dim, composite Higgs models

• Diphoton events appear at high mass

• S.Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert,
ArXiv 1312.5153



Considered background

• Background leading to two photons in the final state: DPE diphoton
production, exclusive diphotons (quark box, exclusive KMR), DPE
Higgs decaying into γγ

• Background related to misidentification: Exclusive dilepton production,
dijet production, same for DPE (using misidentification probanilities in
ATLAS)

• Pile up background: Non diffractive production and pile up (50, 100,
200), Drell-Yan, dijet, diphoton

• Assume at least 1 photon to be converted, high pT photons (above 200
GeV)

• Further reduction using timing detectors: Reject background by a factor
40 for a pile up of 50 (10 ps resolution assumed)



Search for quartic γγ anomalous couplings
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• Exclusivity cuts: diphoton mass compared from missing mass computed
using protons, rapidity difference between diphoton and proton systems:
suppresses all pile up background

• For 300 fb−1 and a pile up of 50: 0 background event for 15.1 (3.8)
signal events for an anomalous coupling of 2 10−13 (10−13)



Search for quartic γγ anomalous couplings: Results

• No background after cuts for 300 fb−1

• Sensitivities for anomalous quartic couplings

• all sensitivites for 300 fb−1, pile up of 50, for > 1 converted or non
converted γ, except for the last column: 6000 fb−1, 200 pile up

Luminosity 300 fb−1 300 fb−1 300 fb−1 6000 fb−1

pile-up (µ) 50 50 50 200

coupling ≥ 1 conv. γ ≥ 1 conv. γ all γ all γ
(GeV−4) 5 σ 95% CL 95% CL 95% CL

ζ1 f.f. 1 · 10−13 7 · 10−14 4 · 10−14 2 · 10−14

ζ1 no f.f. 3 · 10−14 2 · 10−14 1 · 10−14 6 · 10−15

ζ2 f.f. 3 · 10−13 1.5 · 10−13 8 · 10−14 4 · 10−14

ζ2 no f.f. 7 · 10−14 2 · 10−14 2 · 10−14 1 · 10−14



Conclusion

• Pomeron structure at hadronic colliders and compare with results
obtained at HERA/Tevatron:

– Hard diffractive events might be due to Pomeron and also to soft
exchanges (combination of the two)

– Dijet data and especially dijet mass fraction sensitive to the gluon
density in Pomeron; Ratio γ+jet to dijet cross sections sensitive to
quark structure in the Pomeron, especially as a function of diffractive
mass computed using forward detectors (smallest systematics)

– Possibility to distinguish between SCI and Pomeron like models

• Jet gap jet events in DPE exchanges: clean test of BFKL evolution

• Clean test of electroweak symmetry breaking mechanism and search for
extra dimensions: search for anamalous γγWW , γγZZ, γγγγ
couplings; unprecedented precision at colliders, reaching the values
predicted by extradim models

• Bibliography

– C. Marquet, C. Royon, M. Saimpert, D. Werder, Phys. Rev D 88
(2013) 074029

– C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87
(2013) 034010; O. Kepka, C. Marquet, C. Royon, Phys. Rev D 83
(2011) 034036

– E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010) 074003; O.
Kepka, C. Royon, Phys. Rev. D 78 (2008) 073005; S. Fichet, G. von
Gersdorff, O. Kepka, C. Royon, M. Saimpert, ArXiv 1312.5153



Factorisation at Tevatron/LHC?

• Is factorisation valid at Tevatron/LHC? Can we use the parton densities
measured at HERA to use them at the Tevatron/LHC?

• Factorisation is not expected to hold: soft gluon exchanges in
initial/final states

• Survival probability: Probability that there is no soft additional
interaction, that the diffractive event is kept

• Value of survival probability assumed in these studies: 0.1 at Tevatron
(measured), 0.03 at LHC (extrapolated)
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Advantage of exclusive production: Higgs boson?

• Good Higgs mass reconstruction: fully constrained system, Higgs mass
reconstructed using both tagged protons in the final state (pp → pHp)

• Typical SM cross section: About 3 fb for a Higgs boson mass of 120
GeV (large uncertainty), strong increase in NMSSM models for instance

• No energy loss in pomeron “remnants”

• Mass resolution of the order of 2-3% after detector simulation
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Quartic anomalous gauge couplings: form factors

• Unitarity bounds can be computed (Eboli, Gonzales-Garcia, Lietti,
Novaes):
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where a = a0/Λ
2

• Introducing form factors to avoid quadratical divergences of scattering
amplitudes due to anomalous couplings in conventional way:

aW0 /Λ2 → aW
0

/Λ2

(1+Wγγ/Λcutoff )2
with Λcutoff ∼ 2 TeV, scale of new physics

• For aW0 ∼ 10−6 GeV−2, no violation of unitarity
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