
Nuclei with more than one valence 

nucleon 

 

Multi-particle systems 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Why?  Can we understand such simple results by extending 

the IPM to multi-valence-nucleon cases? 

The simplest case: nuclei with 2 “valence” particles outside 

doubly magic core. Universal result: J = 0,2,4,6…(2j-1). 

Ground state always 0+, large energy to 2+ first excited state 





 

– Pairing –  coupling of two identical nucleons to angular 
momentum zero.  No preferred direction in space, therefore 
drives nucleus towards spherical shapes. We will see the basis 
of this in a few minutes. 
 

– p-n interactions – generate configuration mixing, unequal 
magnetic state occupations, therefore drive towards collective 
structures and deformation.  See later lecture. 
 

– Monopole component of p-n interactions generates changes in 
single particle energies and shell structure. See discussion of 
exotic nuclei and the fragility of magicity.  

 

Residual interactions among valence nucleons   

 

Dominate the evolution of Structure 



Residual Interactions 
Need to consider a more complete Hamiltonian: 
 
                                     H = H0 + Hresidual 

 

Hresidual  reflects interactions not in the single particle potential. 
 
NOT a minor perturbation. In fact, these residual interactions 

determine almost everything we know about most nuclei. 
 
Start with 2- particle system, that is, a nucleus  “doubly magic + 2”.                    

    
   Hresidual    is    H12(r12)  
 
Consider two identical valence nucleons with j1 and    j2 .   
 
Two questions: What total angular momenta j1 +  j2 = J can be formed? 

    What are the energies of states with these J values?  
 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First problem – what angular momenta for 
multi-particle systems? 

WHY these? 



Coupling of two angular momenta 

j1+ j2       All values from:    j1 – j2   to   j1+ j2    (j1 = j2) 

 

Example: j1 = 3, j2 = 5:   J = 2, 3, 4, 5, 6, 7, 8 

 

BUT:   For j1 = j2:      J = 0, 2, 4, 6, … ( 2j – 1)     (Why these?)      

/ 



How can we know which total J values are obtained for the 

coupling of two identical nucleons in the same orbit with 

total angular momentum j?  Several methods: easiest is 

the “m-scheme”. 





          Separate radial and angular coordinates 





How can we understand the energy patterns  

that we have seen for two – particle spectra  

with residual interactions?  Easy – involves  

a very beautiful application of the Pauli  

Principle. 





x 



This is the most 

important slide: 

understand this and 

all the key ideas 

about residual 

interactions will be 

clear !!!!! 









Analytic formulas 



 NOTE: R4/2< 2.0 

Simple treatment of residual interactions accounts for 

universal fact that even-even nuclei have 0
+ 

ground 

states. 

Note that the 0
+ level is lowered more for higher j orbits

 

 







Extending the IPM with residual interactions 
 • Consider now an extension of, say, the Ca nuclei to 43Ca, with three 

particles in a j= 7/2 orbit outside a closed shell? 
 
• How do the three particle angular momenta, j,  couple to give final 

total J values?   
 

• If we use the m-scheme for three particles in a 7/2 orbit the 
allowed J values are 15/2, 11/2, 9/2, 7/2, 5/2, 3/2. 
 

• For the case of J = 7/2, two of the particles must have their angular 
momenta coupled to J = 0, giving a total J = 7/2 for all three 
particles. 
 

• For the J = 15/2, 11/2, 9/2, 5/2, and  3/2, there are no pairs of 
particles coupled to J = 0. 

 
• Since a J = 0 pair is the lowest configuration for two particles in the 

same orbit, that case, namely total J = 7/2, must lie lowest !! 
 



 

Treat as 20 protons and 20 

neutrons forming a doubly 

magic core with angular 

momentum J = 0.  The lowest 

energy for the 3-particle 

configuration is therefore  

J = 7/2. 

 

Note that the key to this is the 

results we have discussed for 

the 2-particle system !!  

43Ca 





Now, lets move beyond near-magic regions 

 

What about nuclei with more valence 

nucleons, with valence nucleons of both 

types, and with nucleons able to occupy 

more than one single particle state? 

 

Can form many states of a given angular 

momentum. 

 

What happens? Emergence of collectivity 

due to configuration mixing.  Lets look at the 

problem first and then possible “solutions”. 



THE  PROBLEM 

 

 As the number of 

valence nucleons grows, 

the number of ways of 

making states of a given 

J grows hugely.  

 

Those “basis states” will 

mix.  How many states 

do we need to mix?  

What are the resulting 

structures?  How difficult 

a calculation is this? 

Consider a couple of 

simple cases and a more 

typical one. 
These states mix !! 



So, with even just a few valence nucleons, such calculations 
become intractable by simple diagonalization. But yet, nuclei 
show very simple patterns despite the complexity and chaotic 
behavior one might expect.  Emergence of collective behavior. 

 
 
 
 
 

How can we understand emergent collectivity? 



Reminder: several types of spectra and where they occur 

More valence nucleons 

      Few valence nucleons 

Many valence nucleons –> mid-shell 

Two valence nucleons 



Two approaches 

a) Advanced methods at the level of nucleons and 

their interactions 

 

b) Collective models that look at the many-body 

system as a whole, with its shapes, oscillations, 

quantum numbers, selection rules, etc.  

 

We will follow this second route but then return to ask 

what the microscopic drivers of structural evolution 

and emergent collectivity are. 



Development of collective behavior in nuclei 

• Results primarily from correlations among valence nucleons. 

 

• Instead of pure “Independent Particle model” or 2-particle 
configurations configurations, the wave functions are mixed 
– linear combinations of many components. 

 

• Leads to a lowering of the collective states and to enhanced 
transition rates as characteristic signatures. 

 

• How does this happen? Consider mixing of states. 



In any many-body system it will generally be 
possible to make states of a given angular 

momentum in more than one way. 
 

In the simplest model those ways are 
independent and separate states. 

 
In realistic situations those states form a “basis” 
for the construction of real physical states that 

are mixtures of the basis states. 
 
 
 
 



Conceptually:   
 

Start from a simple model, construct basis states. 
 

Compare with data. Usually find reasonable 
agreement but significant discrepancies. 

 
Improve the model by introducing interactions 

(“residual interactions”) that mix the basis states. 
 

Compare with data  
 



Mixing of quantum mechanical states 
 

The essential key to understanding 
any many-body system 







A illustrative special case of 

fundamental importance 

T 

Lowering of one state.  

Note that the components 

of its wave function are all 

equal and in phase 

Consequences of this:  Lower energies for collective states, 

and enhanced transition rates. 

Extend to many-level case – Mixing of  N 

configurations. Collective states at low energy 

Please think about this 

carefully – it is one of the 

most important and most 

general concepts in all of 

many-body physics 



Now lets go back to some data we saw earlier 

and try to understand it in terms of collective 

structures 



First consider nuclei with a moderate number of 

valence nucleons (~ 6-16). 

 
These nuclei retain the spherical shapes of nuclei near 

closed shells but are “soft” -- they can take on oscillatory 

vibrational motion.  The lowest lying such excitation is a 

small amplitude surface quadrupole oscillation with angular 

momentum 2 

0 + 

2 + J = 2 one “phonon” vibrational excitation 



More than one phonon?  What angular momenta?  M-scheme for phonons 

Homework:  What angular momenta are allowed 

for three quadrupole bosons? 



0+ 

2+ 

6+. . . 

8+. . . 
Vibrator (H.O.) 

 

E(J) = n ( 0 ) 
 

  R4/2= 2.0 

n = 0 

n = 1 

n = 2 

Types of collective structures   

Few valence nucleons of each type: 

Remember this?  Now we see it as a  

spherical vibrator 

Gamma-ray transitions: 

Selection rule: Can destroy 

only one phonon 

X 



Deformed Nuclei 

• What is different about non-spherical nuclei? 

 

• They can ROTATE !!! 

 

• They can also VIBRATE 

– For axially symmetric deformed nuclei there are two 

low lying vibrational modes called b and g 

 

• So, levels of deformed nuclei consist of the 

ground state, and vibrational states, with 

rotational sequences of states (rotational bands) 

built on top of them. 



A subtle concept about deformation 

Ground states of all e-e nuclei, including deformed ones, are J = 0+   
 

Such wave functions are spherically symmetric (Y00) 
 

So how can the nucleus be deformed? 
 

The angular momentum 0+ is in the laboratory frame of reference.  

The ellipsoidal shape is in the nuclear (body-fixed frame).  In going 

from the body-fixed frame to the lab, the nucleus can have any 

orientation so all are equally probable, hence the density 

distribution in the lab is spherically symmetric. 
 

A related point:  How can circular nucleon orbits give a deformed 

shape?  “Circular” is not the same as “spherical”. Deformation is 

equivalent to a non-uniform occupation of magnetic substates 

resulting from mixing.  



0+ 
2+ 
4+ 

6+ 

8+ 

Rotor 

 

E(I)  ( ħ2/2I )I(I+1) 

 

         R4/2= 3.33 

Deformed nuclei – rotational spectra 

BTW, note value of 

paradigm in 

spotting physics 

(otherwise invisible) 

from deviations 



6+                    690 

4+                    330 

0+                     0 

2+                    100 

J          E (keV) 

? 
 

 

Without  

rotor  

paradigm 

 Paradigm 

Benchmark      

          700 

 

          333 

 

          100 
 

            0 
 

   Rotor  J(J + 1) 

Amplifies 

structural 

differences  

 

 

Centrifugal    

stretching 

 

 

 

 

Deviations 

 Identify additional 

degrees of freedom 

Value of paradigms 



0+ 
2+ 
4+ 

6+ 

8+ 

Rotational 

states 

Vibrational 

excitations 

Rotational states built on (superposed 

on) vibrational modes 

Ground or 

equilibrium 

state 

Rotor 

 

E(I)  ( ħ2/2I )I(I+1) 

 

         R4/2= 3.33 

Typical deformed nucleus 



0+ 

2+ 

6+. . . 

8+. . . 

Vibrator (H.O.) 
 

E(J) = n ( 0 ) 
 

  R4/2= 2.0 

n = 0 

n = 1 

n = 2 

Rotor 
 

E(J)  ( ħ2/2I )J(J+1) 
 

     R4/2= 3.33 

Doubly magic 

plus 2 nucleons 
 

  R4/2< 2.0 



2+ 

0+ 

Transition rates (half lives of excited levels) also tell us a 

lot about structure 

B(E2: 0+
1  2+

1)   2+
1 E2 0+

12 

Magic 

Collective 



W 

The more 

configurations 

that mix, the 

stronger the 

B(E2) value and 
the lower the 

energy of the 

collective state.  

Fundamental 

property of 
collective states. 



Relation of 

B(E2) values 

to the 

nuclear 

shape. 


