Nuclel with more than one valence
nucleon

Multi-particle systems



The simplest case: nuclei with 2 “valence” particles outside
doubly magic core. Universal result: J = 0,2,4,6...(2j-1).
Ground state always 0*, large energy to 2*first excited state
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Why? Can we understand such simple results by extending
the IPM to multi-valence-nucleon cases?



Independent Particle Model:

1 particle (or hole)
outside closed shell

(very few nuclei)

Recall mean field approximation

H = Hipm + HResidual

Effects not included in independent

particle model potential




Residual interactions among valence nucleons

Dominate the evolution of Structure

— Pairing — coupling of two identical nucleons to angular
momentum zero. No preferred direction in space, therefore
drives nucleus towards spherical shapes. We will see the basis
of this in a few minutes.

— p-ninteractions —generate configuration mixing, unequal
magnetic state occupations, thereforedrive towards collective
structures and deformation. See later lecture.

— Monopolecomponent of p-n interactions generates changesin
single particleenergies and shell structure. See discussion of
exotic nuclei and the fragility of magicity.



Residual Interactions

Need to consider a more complete Hamiltonian:

H= HO + Hresidual

H ..o reflects interactions not in the single particle potential.

NOT a minor perturbation. In fact, these residual interactions
determine almost everything we know about most nuclei.

Start with 2- particle system, that is, a nucleus “doubly magic + 2”.
Hresidual is H12(r12)

Consider two identical valence nucleons with j,and j,.

Two questions: What total angular momenta j, + j, =J can be formed?
What are the energies of states with these J values?



First problem — what angular momenta for
multi-particle systems?
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WHY these?



Coupling of two angular momenta

Jat).  Allvalues from: j;—], to Ji+], (1%])
Example: |, =3,),=5: J=2,3,4,5,6,7,8

BUT: Forj,=j,, J=0,2,4,6,...(2j—1) (Whythese?)



How can we know which total J values are obtained for the
coupling of two identical nucleons in the same orbit with
total angular momentum j? Several methods: easiestis

the “m-scheme”.

‘Table 5.1 m scheme for the configuration |(7/2)*J)*

J1=7/2 =112

mi mo M J
712 5/2 6 |

712 3/2 5

72 12 4

712 ) 3 6
712 ~3/2 2

712 ~5/2 1

712 712 0|

5/2 3/2 4

5/2 12 3

5/2 -1/2 2 4
5/2 ~3/2 1

5/2 ~5/2 0|

3/2 12 2

3/2 =13 1 3
3/2 ~3/2 0 |

1/2 ~12 0] 0

* Only positive total M values are shown. The table is symmetric for M < 0.
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Consider 2 particles, in orbits j1, j2 coupled to
spin Ji, and interacting with a residual
interaction, V.

2 ldentical Nucleons

| j1. jar J >

NO RESIDUAL
INTERACTION



What are Energies of 2-particle configurations
AE (j1j2d) = (hLIMIH,|jLIM )

1 : 2 g
- 2041 <J1J2J||H12||J1J2‘J>

Separate radial and angular coordinates

\I’=;Rn1(r)Ylm(e1 (D)

nl

where —- Rt F(E"' -V)R =0

r

2
d'R, I+ 1)R 2m

R, depends on potential — but generally not very
much.

Many choices possible. Let’'s start with simplest.

Nuclear force is short range and attractive. So, take
o-force



V5=_—V"—5(r1 r, )5 (cosB®,cos0,)5(D,D,)

kT
in spherical coordinates

Need to evaluate the matrix element (ME) of the form
\P> . <%Rnl

First factoris just a | constant | independent of J,

Vv

%0,d

[ a"

v,

- %Rnl > & < Ylm ((D,(D) Ylm ((D,(I)) >

i.e., does not depend on Jin |, J).

So energy shifts for different J's are independent

of the form of the radial wave functions and

hence of the radial form of the potential 1]

= Great simplification

= Typical of many results - radial effects disappear



How can we understand the energy patterns
that we have seen for two — particlespectra
with residual interactions? Easy — involves
a very beautiful application of the Pauli
Principle.

Need 2 ideas only

» Nuclear force (including residual
iNnteractions) is

- Short range and attractive

- Pauli Principle



Physical Interpretation

frr2 [ J depends on angle
4‘ between the two

ds/ H orbital planes

Interaction strongest when the 2 particles are closest to

each other
i.e., when the orbits are co-planar

—> strongest interaction either for

J min or J max

Which one?

Consider L, S composition of state J

= 1or0O

n
|
S
_|_
N

l_J= l—1+22
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:  Pauli Principle

Fermions:

No two fermions can occupy the same state/place

Wave functions must be totally antisymmetric

W (r)=-W(-F) r=7-F

.". If particles are at same place ----- 7 = Q-nn--
then ¥ (0) = -¥ (0)
=>%(0)=0

so PP is satisfied

We split wave functions into 2 parts - spatial part (L),
and spin part (S). PP =

lPTot = Tspat& Tspin = Anti-Sym




This is the most
Important slide:
understand this and
all the key ideas
about residual
Interactions will be

PP: Key Physics Ideas

lIIspatial \Pspin
A S
S A
e

S=%+%=1=Sym
S=%- Y%2=0=A-Sym
lI’spat (A) x LI"spin (§=1) \Pspat (S) x \Pspin (§=0)

S$=1case Wopat = A Y (r12) = -¥ (- r12)

For |o force |, which only acts at 71, =0

\P(l‘12=0)=0.’.’

So, at the ONLY place where a é-int acts, the wave fct.
vanishes—i/.e., No effect of ¢ fctinton $=1 states / / /

S$=0case ‘Pspat =S

No restriction on ¥ (»1> = 0), hence J-int
can have big effect / /!



Equivalent Orbits

t
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ForJ=0 AE -V, % => AE larger for larger j: Why???




Geometrical Interpretation

for ’j2J=O> being lowest

&
A A
A A
|
1
S$=0 S=
Jmin Jmax

IDENTICAL NUCLEONS
EQUIVALENT ORBITS

Pauli Principle is ~ repulsive interaction !




il




dlnteraction  Analytic formulas

V12 (8) = -V08 (['7-['2) = Vo é'(rl—rz)é'(cosel—cosez)é'((l)l-(l)z)

hL—n

AE(ppl)=-VoF r(mhnahk)A())

where 5 5
Fa(mhimb)=L I LR R 0)dr

and
A(;,;,J):(z,-,n)(zhu)(f; f* ; ]z (fh +1p-Jseven)

=0 @if h +12-J s 0dd)
(Non-equivalent orbits)

AE(j1)=-VoFr(n)A(77)  Ueven)
where

Fk(no-tj-’lz-k‘m (f)df
and

‘(f”)'w[’ ' ]1 Geven)
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MULTIPLET SPLITTINGS; & INTERACTION (ldentical Particles)
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EQUIVALENT ORBITS

NOTE: R,,,< 2.0

Simple treatment of residual interactions accounts for
+

universal fact that even-even nuclei have 0 ground
states.

+
level is lowered more for higher | orbits

Note that the O



Lowering of 0+ States

AE(sz]oc—VOMEHJ

2 =g

Ford = 0

AE(J = 0)oc—V, 2

—> AE o« 2j+ 1

Energy lowering of 0*
is larger for larger |

8+
6*
4+
4* ———
o+
Why ?
o* e K




Lowering of 0™ States in | 2/ )

AEx?2j+ 1. Why?

Note: 2 j + 1 = # magnetic substates

low j high j
4 : Semi-
+J +J classical
. picture-
=) localized

-]

Y (J, m ®)is locdlized to an angular range*
centered about normal to ang. mom. vector:

spread of ¥ roughly given by angular “distance” to
next substate

*quantum fluctuations

. « Largerj = more magnetic substates
= greater localization

— greater spatial overlap in
| im) and | j,-m)

— lower energy



Consider now an extension of, say, the Ca nuclei to 43Ca, with three
particles in a j= 7/2 orbit outside a closed shell?

How do the three particle angular momenta, j, couple to give final
total J values?

If we use the m-scheme for three particles in a 7/2 orbit the
allowed J values are 15/2, 11/2,9/2, 7/2,5/2, 3/2.

For the case of J = 7/2, two of the particles must have their angular
momenta coupled to J = 0, giving a total J = 7/2 for all three
particles.

For the J =15/2,11/2,9/2,5/2, and 3/2, there are no pairs of
particles coupled toJ = 0.

Since a J = 0 pair is the lowest configuration for two particles in the
same orbit, that case, namely total J = 7/2, must lie lowest !!



43Ca

Treat as 20 protons and 20
neutrons forming a doubly
magic core with angular
momentum J =0. The lowest
energy for the 3-particle
configuration is therefore

J=7/2.

Note that the key to this s the
results we have discussed

the 2-particle system !!
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Now, lets move beyond near-magic regions

What about nuclei with more valence
nucleons, with valence nucleons of both
types, and with nucleons able to occupy

more than one single particle state?

Can form many states of a given angular
momentum.

What happens? Emergence of collectivity
due to configuration mixing. Lets look at the
problem first and then possible “solutions”.



THE PROBLEM The Need for Simplification in

Multiparticle Spectra
Example: How many 2+ states?

As the number of
valence nucleons grows,
the number of ways of
making states of a given
J grows hugely.

# nucl.

2 d52/2 1

Those “basis states” will
mix. How many states
do we need to mix?
What are the resulting
structures? How difficult
a calculationis this?
Consider a couple of
simple cases and a more

ypicalone. - rhese states mix 1!



So, with even just a few valence nucleons, such calculations
become intractable by simple diagonalization. But yet, nuclei

show very simple patterns despite the complexity and chaotic
behavior one might expect. Emergence of
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How can we understand emergent collectivity?



Reminder: several types of spectra and where they occur

Two valence nucleons 2r Few valence nucleons
8" 1.69 4+
e —gt 1.56 —l,-4+ 1.58 or
EREEES . 1.47 -
—--4* 1.43
&t 1.28 e N —— 4+
—pt— 118 ‘,:,5: 29 =3 =
_A 1.10 24t 2t
Y mx 2+ 4
| — Y
2+
2+
o- ot o o*
———t————— 0 — ot — 0 — ot g 10 Tes 1% 1308a.,
(ha2)” POy (95a2)2 2;‘[2)Ph|m (9,,)° ‘52 Teg - -
+
More valence nucleons E — .
I oo ot 516" r Many valence nucleons —> mid-shell
6+ 4+ j— '2+
+ b at
2+ 0 5, B 2
a g:- N & 2
_ 4';\ 41—\ 4+ — 4t St\.: gjr’
s 8 2 $ B = &+
21 o* = 1 o o —
uf ui 2+
6+
R ———— 2+ gt — &t &
4t — 4+ 4%
ol 0+ o+ S 0+ _— oL gi S g: I gI
‘?3“63 192 Ru g 138¢d_ 182 Dygy 128 En00 182 W08




Two approaches

a) Advanced methods at the level of nucleons and
their interactions

b) Collective models that look at the many-body
system as a whole, with its shapes, oscillations,
guantum numbers, selection rules, etc.

We will follow this second route but then return to ask
what the microscopic drivers of structural evolution
and emergent collectivity are.



Development of collective behavior in nuclei

Results primarily from correlations among valence nucleons.

Instead of pure “Independent Particle model” or 2-particle
configurations configurations, the wave functions are mixed
— linear combinations of many components.

Leads to a lowering of the collective states and to enhanced
transition rates as characteristic signatures.

How does this happen? Consider mixing of states.



In any many-body system it will generally be
possible to make states of a given angular
momentum in more than one way.

In the simplest model those ways are
independent and separate states.

In realistic situations those states form a “basis”
for the construction of real physical states that
are mixtures of the basis states.



Conceptually:
Start from a simple model, construct basis states.

Compare with data. Usually find reasonable
agreement but significant discrepancies.

Improve the model by introducing interactions
(“residual interactions”) that mix the basis states.

Compare with data



Mixing of quantum mechanical states

The essential key to understanding
any many-body system
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INTERACTION: V
The mixed wave functions are
Y1 = apr + B
o? -+ 82 = ]
Y = —pé1 + adr

where the smaller amplitude B i1s given by

1
IB:

1
{1+[R/2+\/m]2}2




Table 1.2 Examples of two-state mixing energy shifts and mixing
amplitudes (from Egs. 1.6 and 1.8). R = AE,/V

Specific case: AE, = 100 keV
R* AEAE, B

V(keV) AEg(keV)
0.2 4.52 0.67 500 452
0.5 1.56 0.61 200 156
1 0.62 0.53 100 62
2 0.207 0.38 50 20.7
3 0.101 0.29 33:3 10.1
5 0.0385 0.19 20 3.85
10 0.0099 0.099 10 0.99
20 0.0025 0.050 S 0.25

*For R =0,8 =0.707,and AE; = V.



Extend to many-level case — Mixing of N
configurations. Collective states at low energ

Lowering of one state.
Note that the components
of its wave function are all
LEVELS. ALL V equal and in phase

+\

A

N DEGENERATE
EQUAL

Please think about this
carefully —itis one of the
most important and most
y general concepts in all of
Viowsst = (i + 0+ 4 4] many-body physics

-(N=DV

Consequences of this: Lower energies for collective states,
and enhanced transition rates.



Now lets go back to some data we saw earlier
and try to understand it in terms of collective
structures
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First consider nuclel with a moderate number of
valence nucleons (~ 6-16).

These nuclei retain the spherical shapes of nuclei near
closed shells but are “soft” -- they can take on oscillatory
vibrational motion. The lowest lying such excitation is a
small amplitude surface quadrupole oscillation with angular
momentum 2

2" =——— J=2o0ne “phonon” vibrational excitation

0" ——



More than one phonon? What angular momenta? M-schemefor phonons

Table 6.1 m scheme for two-quadrupole phonon states™

he=2 b =2

mi m» M=> m, J
2 2 4 ]

2 1 3

2 0 2 4
2 —1 1

2 2 0 i

1 1 2 ]

1 0 1 2
I =] 0 |

0 0 0 ] 0

*Only positive total M values are shown: the table is symmetric for M < 0. The full set of allowable m; values

giving M > 0 is obtained by the conditions m| > 0. my < mj.

Homework: What angular momenta are allowed
for three quadrupole bosons?



Types of collective structures
Few valence nucleons of each type:
Remember this? Now we see it as a

spherical vibrator

Vibrator (H.O.)
E(J) =n (% ay)

R,,= 2.0

Gamma-ray transitions:

Selection rule: Can destroy

only one phonon

A0

EnergykeV)

1)

——

n / n=i1 "°Cd Experiment
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Deformed Nuclel

What is different about non-spherical nuclei?
They can ROTATE !l

They can also VIBRATE

— For axially symmetric deformed nuclei there are two
low lying vibrational modes called B and y

So, levels of deformed nuclei consist of the
ground state, and vibrational states, with
rotational sequences of states (rotational bands)
built on top of them.



A subtle concept about deformation

Ground states of all e-e nuclel, including deformed ones, are J = 0*

Such wave functions are spherically symmetric (Yqo)
So how can the nucleus be deformed?

The angular momentum O* is in the laboratory frame of reference.
The ellipsoidal shape is in the nuclear (body-fixed frame). In going
from the body-fixed frame to the lab, the nucleus can have any
orientation so all are equally probable, hence the density
distribution in the lab is spherically symmetric.

A related point: How can circular nucleon orbits give a deformed
shape? “Circular” is not the same as “spherical”. Deformation is
equivalent to a non-uniform occupation of magnetic substates
resulting from mixing.



Rotor

E(1) oc ( A2/21)1(1+1)

R,,=3.33

BTW, note value of

paradigm in

spotting physics

(otherwise invisible)

from deviations

8+

6+

4+
2+

207

2841
93
18"
2342
456 .2
16 . 4 1886
A13.3
ANL-P-2F a0
(147 . 1474
386.8 (7}
12" L 1106
318.4 [4)
1a?t o
DET.Z ()
B 518
21414 (2}
&~ = a0s
. 150,14 [3)
e e 148
ot {102)
-1 (7 S



6+

4+

2+
O+

Value of paradigms
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Typical deformed nucleus Rotational states built on (superposed

on) vibrational modes
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Transition rates (half lives of excited levels) also tell us a
lot about structure
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Coherence and Transition Rates

Consider simple case of N degenerate levels: 2°

R 3 AE=(N-1)V
1 Y=ap)+tap+----agy
> 1
where a =W
N 2 TR
W l J | z"a = 7\7= | |
[=
0+
Consider transition rate from 21+ =L 01* The more
’ configurations
B(E2; 2,‘_,0{)-2 ' l<o1'|t:'2||2,'} that mix, the
g . Y B e stronger the
((‘.01 | E2||2, > = <0, | E 2] '{’> = a; (\0, | E2| ¢ ) B(E2) value and

the lower the
energy of the
collective state.
Fundamental
property of
collective states.



Relation of
B(E2) values
to the
nuclear
shape.

Quadrupole Moment of Ellipsoid
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