
More on Collective models 

 

Microscopic drivers:   

Valence p-n interactions  

 

Simply estimating the properties 

of nuclei 

 

Exotic nuclei 
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         R4/2= 3.33 

Typical deformed nucleus 



Guidelines about Collective states. 

 

They arise from mixing and so should be relatively low lying 

in energy.  The lower in energy, the more collective. 

 

Collectivity inherently involves wave functions with many 

components corresponding to particles in many different 

orbit configurations (many states mix) 

 

That implies that collective excitations do not change much 

from one nucleus to a neighboring (in Z and N) one. 



Systematics and 
collectivity of the 
lowest vibrational 

modes in deformed 
nuclei 

Notice that  the the b 
mode is at higher 

energies (~ 1.5 times the 
g vibration near mid-
shell)* and fluctuates 
more. This points to 

lower collectivity of the b  
vibration. 

 



Energies of collective states 
Gamma ray transitions between collective states: 
Intraband, interband, Alaga 
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Wave functions:  contain two parts, one describing the “intrinsic” 
character and one describing the rotational. 
           Y  =   c(int) x D(rot.) 

0 
2 

Rotational Energies: 
 

E(J) (rot) = [h-bar2 /2I] J(J + 1)  
 

E(2) – E(0) = 6 
E(3) – E(2) = 6 
E(4) – E(3) = 8                                        
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Remember: 
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5 B(E2) 
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We have discussed spherical vibrators and  

deformed ellipsoidal rotors.   

 

But how do nuclei evolve between these 

extreme limits?  

 

Deformation can develop in several ways. 

 

 One of the most intriguing and challenging is 

very rapid onsets of deformation that have 

been described in terms of Quantum Phase 

Transitions and new “symmetries” for 

critical point nuclei called E(5) and X(5). 



Two obvious features which 
capture much of the physics: 

 
• High values at certain 

numbers,   2, 8, 20, 50, 82, 
126…  

These show the rigidity to 
excitation of nuclei with these 
special numbers of nucleons 

 
• Sharp drops thereafter.  

 
• Something must be special 

about these “magic” numbers 
 
 
 

 Spectroscopic 
observables   

  

E(2+
1 ) 



R4/2 





Isotope shifts 

Li et al, 2009 

Charlwood et al, 2009 



Quantum (equilibrium) phase transitions in the shapes of 

strongly interacting finite nuclei as a function of neutron 

and proton number  
o

r
d

e
r

 p
a

r
a

m
e

t
e

r
 

control parameter 
critical 

point 



86 88 90 92 94 96 98 100

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

 

 

 Nd

 Sm

 Gd

 Dy

R
4
/2

N

Vibrator 

Rotor Transitional E 

β 

1 2 

3 

4 

Quantum phase transitions in equilibrium 

shapes of nuclei with N, Z 

For nuclear shape phase transitions the control parameter is nucleon 

number and the order parameter is deformation 

Potential as function of the ellipsoidal 

deformation of the nucleus 

Shape coexistence 

Discontinuous change in 

equilibrium deformation 





Nuclear Shape Evolution   
b - nuclear ellipsoidal deformation (b=0 is spherical) 

  Vibrational Region    Transitional Region    Rotational Region 
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Critical Point 

 

Few valence nucleons                                               Many valence Nucleons 

New analytical solutions, 
E(5) and X(5) R4/2= 3.33 R4/2= ~2.0 
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E E 

β 

1 2 

3 

4 

b b 

Energy surface 

changes with 

valence nucleon 

number 

Iachello 

X(5) 
 







Casten and Zamfir 



Comparison of relative energies with X(5) 





Based on idea of Mark Caprio 



Casten and Zamfir 



Borrowing from the later discussion --SU(3) 

Characteristic signatures: 

 

• Degenerate bands 

 within a group 

• Vanishing B(E2) values 

 between groups 

• Allowed transitions  

between bands within a 

group  

 

 R4/2= 3.33 



Hence BOTH the disagreements – for the 

energies in the excited band and for the 

B(E2) values are seen to be – not a whole 

series of unrelated discrepancies but, in 

both cases, a matter of scale. 

 

This answers one question that was asked, 

namely how to react when a model doesn’t 

work – sometimes you learn something !! 



These collective models have been introduced ad 

hoc. 

 

Is there a single comprehensive collective model that 

incorporates a variety of types of collectivity in a 

simple framework? 

 

There are two: the Geometric Collective Model (GCM) 

and the Interacting  Boson Approximation (IBA) 

model. 

 

The latter is simpler, with fewer parameters, and has 

had continuing success. We will very briefly 

summarize the GCM and then discuss the IBA.  



n 

Recall the problem that faces 

descriptions of many-body systems: 

Too many “basis”states. 



Nuclear Shapes 

• Need to specify the shape.  Need two parameters, b and  
g. The concept of “intrinsic frame”. 

 
 b specifies the ellipsoidal deformation of the shape. (We 

consider quadrupole shapes only – American football or frisbee 
shapes.)  

 
 g specifies the amount of axial asymmetry 

 

• H = T + Vb,g              Models are primarily a question of 
     choosing Vb,g  

 

• Kinetic energy contains rotation if the nucleus is not 
spherical.   So we must specify orientation of the nucleus 
in space (the lab frame). Introduces three more 
coordinates, Euler angles. 

 



The Geometric Collective Model 
 H = T + Trot + Vb,g 

V ~ C2b2  C3 b3 cos 3 g  C4b4  .... 

Six terms in all for the potential. These three are normally the 

only ones used as they allow a rich variety of collective 

structures without an explosion of parameters.  In addition, 

there is a kinetic energy term. 

 







An algebraic approach 
Collective behavior superposed on shell structure 

IBA, a symmetry-based model (Iachello and Arima)  

Drastic simplification of shell model 
 

 Valence nucleons, in pairs as bosons 
 

 Only certain configurations. Only pairs of  
nucleons coupled to angular momentum  
0(s) and 2(d). Why? (3 x 1014  26 !!!) 
 

 Simple Hamiltonian in terms of s an d boson 
creation, destruction operators – simple 
interactions 
 

 Group theoretical underpinning 
 

 Why?  Because it works. And extremely 
parameter-efficient 

 

 



Shell Model Configurations 

Fermion 
configurations 

Boson 
configurations 

(by considering only 
configurations of 
pairs of  fermions 

with J = 0 or 2.) 

The IBA 

Roughly, gazillions !! 

Need to simplify 



Modeling a Nucleus 

154Sm 3 x 1014 2+ states 

Why the IBA is the best thing since baseball, a jacket potato, 

aceto balsamico, Mt. Blanc, raclette, pfannekuchen, baklava, …. 

Shell model 

Need to truncate 

IBA assumptions 

1.  Only valence nucleons 

2.  Fermions → bosons 

J = 0  (s bosons) 

J = 2  (d bosons) 
IBA:  26  2+ states 

Is it conceivable that 
these 26 basis states 

are correctly chosen to 
account for the 

properties of the low 
lying collective states? 

IBA: Truncation of Shell Model with Group Theory  structure 



Brief, simple, trip into the Group 
Theory of the IBA 

DON’T BE SCARED 
 

You do not need to understand all the 
details but try to get the idea of the 
relation of groups to degeneracies of 

levels and quantum numbers 

A more intuitive name for this application of Group Theory is 

 

 “Spectrum Generating Algebras” 



That relation is based on the operators that create, destroy s and d bosons 

s†,  s,     d†,  d     operators 

   Ang. Mom. 2 d†
  , d     = 2, 1, 0, -1, -2 

Hamiltonian is written in terms of s, d operators 

Since boson number, NB, is conserved for a given nucleus, H can only contain 
“bilinear” terms:   36 of them. 

s†s,  s†d, d†s, d†d 

Gr. Theor. 
classification 

of 
Hamiltonian 

IBA has a deep relation to Group theory 

Group is 

called 

U(6) 
  

H = Hs  + Hd  +  Hint (  s
†s, s†d, d†s, d†d) 

NB = ns + nd  = s+s = d+d 

U(6) has three subgroups corresponding to different shapes 

 



Concepts of group theory  
First, some fancy words with simple meanings:  Generators, Casimirs, 
Representations, conserved quantum numbers, degeneracy splitting 

 
 Generators  of a group:   Set of operators , Oi that close on commutation.  

  [ Oi , Oj ] = Oi Oj - Oj Oi  = Ok  i.e., their commutator gives back 0 or a member of the set   

For IBA, the 36 operators   s†s, d†s, s†d, d†d   are generators of the group U(6). 

Generators: define and conserve some quantum number.  
 

Ex.: 36 Ops of IBA  all conserve total boson  number  

  
 = ns  +  nd  N = s†s + d†  d

Casimir:  Operator that commutes with all the generators of a group.  Therefore, its 

eigenstates have a specific value of the q.# of that group.  The energies are defined  

solely in terms of that q. #.  N is Casimir of U(6). 

 

Representations of a group: The set of degenerate states with that value of the q. #. 

 

A  Hamiltonian written solely in terms of Casimirs can be solved analytically 

 

 

ex:     † † † † † †, d s d sd s s s n n d ss s s sd s n n= 
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Sub-groups:  
 

Subsets of generators that commute among themselves. 
    

 e.g:   d†d  25 generators—span U(5) 
  

 They conserve nd (# d bosons) 
 

Set of states with same nd are the representations of the group [ U(5)] 

Summary to here: 

Generators: commute, define a q. #, conserve that q. # 
  
Casimir Ops: commute with a set of generators 
  

  Conserve that quantum # 
  

 A Hamiltonian that can be written in terms of Casimir Operators is then 
diagonal for states with that quantum # 
 
Eigenvalues can then be written ANALYTICALLY as a function of that 
quantum # 



        Let’s illustrate group chains and degeneracy-breaking.   

Consider a Hamiltonian that is a function ONLY of:     s†s  + d†d 
 

 

That is:      H = a(s†s + d†d)  = a (ns  +  nd ) =  aN 

 

H  “counts” the numbers of bosons and multiplies by a boson energy, a.  The 
energies depend ONLY on total number of bosons -- the total number of valence 

nucleons. The states with given N are degenerate and constitute a “representation” 
of the group U(6) with the quantum number N.  U(6) has OTHER representations, 
corresponding to OTHER values of N, but THOSE states are in DIFFERENT NUCLEI. 

 

Of course, a nucleus with all levels degenerate is not realistic (!!!) and suggests that 
we should add more terms to the Hamiltonian. I use this example to illustrate the 

idea of successive steps of degeneracy breaking related to different groups and the 
quantum numbers they conserve. 

 

 

 

 

 

Note that s†s = ns and  d†d = nd and that ns  +  nd  = N = ½ val nucleons    



 

H’ = H + b d†d = aN + b nd 

 
 

Now, add a term to this Hamiltonian: 
 
 

Now the energies depend not only on N but also on 
nd 

 

States of a given nd  are now degenerate. They are 
“representations” of the group U(5). States with 

different nd are not degenerate 
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H = aN + b d†d  =  a N + b nd 

           U(6)     U(5) 

U(6)                          U(5) 

H  = aN      +         b d†d  



Example of a nuclear dynamical symmetry --  O(6) 

N 

Spectrum generating algebra 

Each successive term: 
 

• Introduces a new 
sub-group 
 

• A new quantum 
number to label the 
states described by 
that group 
 
• Adds an eigenvalue 
term that is a function 
of the new quantum 
number,  and 
therefore 
 

• Breaks a previous 
degeneracy  
 



Group Structure of the IBA 

U(5) 
vibrator 

SU(3) 
rotor 

O(6) 
γ-soft 

U(6) 

Magical group 
theory stuff 

happens here 

Symmetry Triangle of the IBA 
 

 
Sph. 

Def. 
 R4/2= 2.0 

 R4/2= 3.33 

 R4/2= 2.5 

6-Dim. problem 

Three Dynamic symmetries, 
 nuclear shapes 



Classifying Structure -- The Symmetry Triangle  

Most nuclei do not exhibit the idealized symmetries but 

rather lie in transitional regions. Mapping the triangle. 

Sph. 

Deformed 



Calculations with the IBA Hamiltonian:  Symmetries and 
symmetry-breaking 

Truncated form of with just two parameters (+ scale): 

H =   ε nd    -   Q  Q  
 
Q = e[s†   + d†s + χ (d†   )(2)] 
 

d d

Competition:                 ε nd                     Counts quad bosons: vibrator. 

                                          Q  Q         Gives deformed nuclei. 

    χ                     Determines axial asymmetry   
 

Hence structure is given by two parameters, ε/  and  χ 

More complicated forms exist but this is the form usually 

used. It works extremely well in most cases. 

c 

/ε  



Relation of IBA Hamiltonian to Group Structure 
 

We will see later that this same Hamiltonian allows us to calculate 
the properties of a nucleus ANYWHERE in the triangle  simply by 

choosing appropriate values of the parameters 

= -1.32 



What J’s?  M-scheme  

 

Look familiar?  Same as 
quadrupole vibrator. 

U(5) also includes anharmonic 
spectra 

6+, 4+, 3+, 2+, 0+ 

4+, 2+, 0+ 

2+ 

0+ 

 

 3 

 2 

 1 

 0 

nd 

Simplest Possible IBA Hamiltonian – 
 given by energies of the bosons with NO interactions 

 † †

d d s s

d s

H n n

d d s s

 

 

= 

= 

Excitation energies so, set s = 0, and drop subscript d on d 

What is spectrum?  Equally spaced levels defined by number of d bosons 

=  E of d bosons + E of s bosons 

dH n= U(5)  Harmonic form 





0+ 

2+ 

6+. . . 

8+. . . 

Vibrator (H.O.) 
 

E(J) = n ( 0 ) 
 

  R4/2= 2.0 

n = 0 

n = 1 

n = 2 

Spherical vibrator – U(5) 

Gamma-ray transitions: 

Selection rule: Can destroy 

only one phonon 

X 



SU(3) 

                     SU(3)                      O(3)  

     K bands in (l, :    K = 0, 2, 4, - - - -   

Characteristic signatures: 

 

• Degenerate bands 

 within a group 

• Vanishing B(E2) values 

 between groups 

• Allowed transitions  

between bands within a 

group  

 

Where?  N~ 104, Yb, Hf  R4/2= 3.33 



Now, what about all those nuclei that 
do not manifest a dynamical 

symmetry?  How does the IBA deal 
with those 

H =   ε nd    -   Q  Q  
 

c 

/ε  
Q = e[s†d + d†s + χ (d†d)(2)] 
 





H has two parameters. A given observable can only specify one of them. That 
is, a given observable has a contour (locus) of constant values in the triangle 

= 2.9 R4/2 

Structure varies considerably along this trajectory, so we 

need a second observable. 
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E

E

Vibrator Rotor 

γ - soft 

Mapping Structure with Simple Observables – Technique of 

Orthogonal Crossing Contours 

R. Burcu Cakirli 

 



Warner, Borner, and Davidson 



Evolution of Structure 

Complementarity of macroscopic and microscopic approaches. Why do certain 

nuclei exhibit specific symmetries?  Why these evolutionary trajectories?  
            

What will happen far from stability in regions of proton-neutron 

asymmetry and/or weak binding? 

McCutchan, Zamfir 

Trajectories show 

the paths taken by 

sequences of 

isotopes of each 

element 



Appendix  --- doing IBA 

calculations 



Nuclear Model Codes at Yale 
Computer name: Titan 

         Connecting to SSH:   Quick connect 

Host name:               titan.physics.yale.edu 

User name:               phy664 

Port Number             22 

Password:                  nuclear_codes 

 

cd phintm 

pico filename.in         (ctrl x, yes, return) 

runphintm filename  (w/o  extension) 

pico filename.out      (ctrl x, return) 

 



Sph. 

Deformed 

Lets first do the three symmetries.    Okey, dokey? 



Relation of IBA Hamiltonian to Group Structure 
 



 Mapping the Entire Triangle with a minimum of data 
        

2 parameters 

2-D surface 

 
c 

H =   ε nd    -   Q  Q  

 
Parameters:       ,  c (within Q)  

 
Note: we usually keep  fixed at 0.02 MeV and just vary ε.  

When we have a good fit to RELATIVE energies, we then 

scale BOTH  and ε by the same factor to reproduce the 

experimental scale of energies 

 

     

/ε  

/ε  Note: The natural size of QQ is much 

larger than nd  so, in typical fits,   is on 

the order of 10’s of keV and ε is ~ 

hundreds of keV  

 /ε varies from 0 to infinity 



Input 
            $diag                                                                          

            eps = 0.20, kappa = 0.00, chi =-0.00,                                          

            nphmax = 6,                                                                    

            iai = 0, iam = 6, neig = 3,                                                    

            mult=.t.,ell=0.0,pair=0.0,oct=0.0,ippm=1,print=.t.                             

           $                                                                               

           $em                                                                             

            E2SD=1.0, E2DD=-0.00                                                           

           $                                                                               

           SLCT 2 2+  0+  2                                                                

                                                                                           

          99999                                                                            
 

Output 
--------------------------- 
 

L P =  0+ 
 

                  Basis vectors 

                     |NR> = |ND,NB,NC,LD,NF,L P>  

                     ---------------------------  

                     | 1> = | 0, 0, 0, 0, 0, 0+>  

                     | 2> = | 2, 1, 0, 0, 0, 0+>  

                     | 3> = | 3, 0, 1, 0, 0, 0+>  

                     | 4> = | 4, 2, 0, 0, 0, 0+>  

                     | 5> = | 5, 1, 1, 0, 0, 0+>  

                     | 6> = | 6, 0, 2, 0, 0, 0+>  

                     | 7> = | 6, 3, 0, 0, 0, 0+>  

 

   Energies 

      0.0000   0.4000   0.6000   0.8000   1.0000   1.2000   1.2000 

 

   Eigenvectors 

 

     1:   1.000  0.000  0.000 

     2:   0.000  1.000  0.000 

     3:   0.000  0.000  1.000 

     4:   0.000  0.000  0.000 

     5:   0.000  0.000  0.000 

     6:   0.000  0.000  0.000 

     7:   0.000  0.000  0.000 

--------------------------- 

L P =  1+ 

No states 

--------------------------- 

L P =  2+ 

 

   Energies 

      0.2000   0.4000   0.6000   0.8000   0.8000   1.0000   1.0000   1.2000   1.2000 

--------------------------- 

L P =  3+ 

                   

   Energies 

      0.6000   1.0000   1.2000 

--------------------------- 

L P =  4+ 

 

 Energies 

      0.4000   0.6000   0.8000   0.8000   1.0000   1.0000   1.2000   1.2000   1.2000 

--------------------------- 

L P =  5+ 

                   

   Energies 

      0.8000   1.0000   1.2000   

--------------------------- 

L P =  6+ 

                   

   Energies 

      0.6000   0.8000   1.0000   1.0000   1.2000   1.2000   1.2000 

-------------------------- 

 

Transitions:  2+ ->  0+  (BE2) 

  2+,1 -> 0+,1:  6.00000  2+,1 -> 0+,2:  2.00000  2+,1 -> 0+,3:  0.00000 

  2+,2 -> 0+,1:  0.00000  2+,2 -> 0+,2:  0.00000  2+,2 -> 0+,3:  2.40000 

  2+,3 -> 0+,1:  0.00000  2+,3 -> 0+,2:  5.60000  2+,3 -> 0+,3:  0.00000 

   and  0+ ->  2+  (BE2) 

  0+,1 -> 2+,1: 30.00000  0+,2 -> 2+,1: 10.00000  0+,3 -> 2+,1:  0.00000 

  0+,1 -> 2+,2:  0.00000  0+,2 -> 2+,2:  0.00000  0+,3 -> 2+,2: 12.00000 

  0+,1 -> 2+,3:  0.00000  0+,2 -> 2+,3: 28.00000  0+,3 -> 2+,3:  0.00000 

 

Transitions:  4+ ->  2+  (BE2) 

  4+,1 -> 2+,1: 10.00000  4+,1 -> 2+,2:  0.00000  4+,1 -> 2+,3:  2.28571 

  4+,2 -> 2+,1:  0.00000  4+,2 -> 2+,2:  6.28571  4+,2 -> 2+,3:  0.00000 

  4+,3 -> 2+,1:  0.00000  4+,3 -> 2+,2:  0.00000  4+,3 -> 2+,3:  3.85714 

    

U(5) 

Basis 

Energies 

Pert. 

Wave 

Fcts. 



Input                                                                                        

            $diag                                                                          

            eps = 0.0, kappa = 0.02, chi =-0.0,                                            

            nphmax = 6,                                                                    

            iai = 0, iam = 6, neig = 5,                                                    

            mult=.t.,ell=0.0,pair=0.0,oct=0.0,ippm=1,print=.t.                             

           $                                                                               

           $em                                                                             

            E2SD=1.0, E2DD=-0.00                                                           

           $                                                                               

          99999                                                                            

      

                          Output 
--------------------------- 

 

L P =  0+ 

                  Basis vectors 

                     |NR> = |ND,NB,NC,LD,NF,L P>  

                     ---------------------------  

                     | 1> = | 0, 0, 0, 0, 0, 0+>  

                     | 2> = | 2, 1, 0, 0, 0, 0+>  

                     | 3> = | 3, 0, 1, 0, 0, 0+>  

                     | 4> = | 4, 2, 0, 0, 0, 0+>  

                     | 5> = | 5, 1, 1, 0, 0, 0+>  

                     | 6> = | 6, 0, 2, 0, 0, 0+>  

                     | 7> = | 6, 3, 0, 0, 0, 0+>  

 

   Energies 

      0.0000   0.3600   0.5600   0.9200   0.9600   1.0800   1.2000 

 

   Eigenvectors 

 

     1:  -0.433  0.000  0.685  0.000  0.559 

     2:  -0.750  0.000  0.079  0.000 -0.581 

     3:   0.000 -0.886  0.000  0.463  0.000 

     4:  -0.491  0.000 -0.673  0.000  0.296 

     5:   0.000 -0.463  0.000 -0.886  0.000 

     6:   0.000  0.000  0.000  0.000  0.000 

     7:  -0.094  0.000 -0.269  0.000  0.512 

--------------------------- 

L P =  1+ 

 

No states 

--------------------------- 

L P =  2+ 

                  

   Energies 

      0.0800   0.2000   0.5600   0.6400   0.7600   0.8000   1.0400   1.1200   1.1600 

-------------------------- 

 

L P =  3+ 

                

   Energies 

      0.3600   0.9200   1.0800 

--------------------------- 

L P =  4+ 

                 

   Energies 

      0.2000   0.3600   0.5600   0.7600   0.8000   0.9200   1.0800   1.1200   1.1600 

-------------------------- 

 

L P =  5+ 

 

   Energies 

      0.5600   0.8000   1.1200 

--------------------------- 

 

L P =  6+ 

               

   Energies 

      0.3600   0.5600   0.8000   0.9200   1.0800   1.0800   1.1200 

 

--------------------------- 

 

   Binding energy = -0.6000 , eps-eff = -0.1200 

 

O(6) 

Basis 

Pert. 

Wave 

Fcts. 

Energies 



 

 

     ******************** Input file contents ******************** 

                                                                                                                                         

            $diag                                                                          

            eps = 0.00, kappa = 0.02, chi =-1.3229,                                        

            nphmax = 6,                                                                    

            iai = 0, iam = 6, neig = 5,                                                    

            mult=.t.,ell=0.0,pair=0.0,oct=0.0,ippm=1,print=.t.                             

           $                                                                               

           $em                                                                             

            E2SD=1.0, E2DD=-2.598                                                          

                                                                                           

           $                                                                               

          99999                                                                            

     ************************************************************* 

--------------------------- 

 

L P =  0+ 

 

                  Basis vectors 

                     |NR> = |ND,NB,NC,LD,NF,L P>  

                     ---------------------------  

                     | 1> = | 0, 0, 0, 0, 0, 0+>  

                     | 2> = | 2, 1, 0, 0, 0, 0+>  

                     | 3> = | 3, 0, 1, 0, 0, 0+>  

                     | 4> = | 4, 2, 0, 0, 0, 0+>  

                     | 5> = | 5, 1, 1, 0, 0, 0+>  

                     | 6> = | 6, 0, 2, 0, 0, 0+>  

                     | 7> = | 6, 3, 0, 0, 0, 0+>  

 

   Energies 

      0.0000   0.6600   1.0800   1.2600   1.2600   1.5600   1.8000 

 

   Eigenvectors 

 

     1:   0.134  0.385 -0.524 -0.235  0.398 

     2:   0.463  0.600 -0.181  0.041 -0.069 

     3:  -0.404 -0.204 -0.554 -0.557 -0.308 

     4:   0.606 -0.175  0.030 -0.375 -0.616 

     5:  -0.422  0.456 -0.114  0.255 -0.432 

     6:  -0.078  0.146 -0.068  0.245 -0.415 

     7:   0.233 -0.437 -0.606  0.606  0.057 

 

--------------------------- 

 

L P =  1+ 

 

No states 

--------------------------- 

 

L P =  2+ 

 

   Energies 

      0.0450   0.7050   0.7050   1.1250   1.1250   1.3050   1.3050   1.6050    

--------------------------- 

 

L P =  3+ 

                  

   Energies 

      0.7500   1.1700   1.6500 

--------------------------- 

 

L P =  4+ 

                  

   Energies 

      0.1500   0.8100   0.8100   1.2300   1.2300   1.2300   1.4100   1.4100    

--------------------------- 

 

L P =  5+ 

                  

   Energies 

      0.8850   1.3050   1.3050 

--------------------------- 

 

L P =  6+ 

 

   Energies 

      0.3150   0.9750   0.9750   1.3950   1.3950   1.5750   1.5750 

--------------------------- 

 

   Binding energy = -1.2000 , eps-eff = -0.1550 

 

SU(3) 

Wave fcts. in 
U(5) basis 


