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1 Introduction

2 Formalism

Let us consider a model characterized by a number of parameters p = (p1, ..., pn)
defining the model space. Those parameters may be, for example, coupling con-
stants of the effective Hamiltonian and effective charges characterizing operators
in the assumed Hilbert space. Calculated observables are functions of these pa-
rameters. Because the number of parameters is usually much smaller than the
number of observables, correlations exist between computed quantities. More-
over, because the model space has been optimized to a limited set of observables,
there may also exist correlations between parameters.

2.1 χ2 definition

Usually, most of the model space produces observables that are far from reality.
Therefore, one needs to confine the model space to a “physically reasonable”
domain. That can be achieved by a least-squares regression analysis. To this
end, one selects a pool of fit observables O that are used to calibrate p. The
optimum parametrization p0 is determined by a least-squares fit with the global
quality measure,

χ2(p) =
m∑

ı=1

(
Otheo.

ı −Oref.
ı

∆Oref.
ı

)2

(1)

where “theo.” stands for the calculated values, “ref.” for experimental and/or
semi-empirical data, and ∆Oref. for the adopted errors. In cases where the ex-
perimenatal data is used one could adopt, in principle, the experimental error.
The latter choice is not always reasonable since, e.g. in the nuclear case, ex-
periments on masses are beyond the accuracy of available models and generally
more precise than other measured observables which also use to enter in the fits
such as charge radius, neutron skins, spin orbit splittings,etc.. Such a situation
force one to have some freedom in choosing a convinient value for each ∆Oref..
There is not a unique criterium for this and one should try to “equilibrate”
the different terms in the χ2 according to the final purpose of the fit. In this
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sense the adopted error can also be undesrtood as a weight in the various terms
defining the function to be minimized. A post-optimiztion check to know if one
did a proper selection of such values is to see if each term contribute around
one to the χ2. One can easily see why form Eq. 1,

Otheo.
ı −Oref.

ı = ∆Oref.
ı , (2)

which means that for all Oı for ı = 1, ...,m, the deviation in the theoretical
description of each observable is inside the adopted uncertainty or, if experimetal
errors are used, within one standard deviation.

2.2 Covariance analysis of parameters and observables

Asuming that the χ2 is a well behaved (analytical) function in the vicinity of
the minimum, i.e. around χ2(p0),

∂pχ2(p) |p=p0= 0 , (3)

and the χ2 near the minimum can be approximated as an hyper-parabola in the
parameter space p,

χ2(p)− χ2(p0) ≈ 1
2

n∑
ı,

(pı − p0ı)∂pı∂pχ
2(p − p0)

≡
n∑
ı,

(pı − p0ı)Mı(p − p0) (4)

where the curvature matrix, M, provide us access to estimate the errors (e) of
the fitted parameters —according to our definition of the χ2— since its inverse
is the so called error matrix (E),

eı ≡ e(pı) =
√

(M−1)ıı ≡
√
Eıı , (5)

and also the correlations (C) between parameters,

Cı ≡
Eı√
EııE

(6)

where Cı takes values form −1 to 1. | Cı |≈ 1 indicates a large correlation
between parameters pı and p which means that one of them is redundant and
can be fixed during the fit setting its value according to the other and Cı around
zero which means that no correlation holds at all between parameters pı and p.

Moreover, once determined the set of parameters minimizing the χ2, an
expectation value (and deviation) of an observable A, not included in the fit, can
be computed at A(p0). The uncertainties in the prediction of such observable
are originated by the adopted errors in the fitted observables and from the
reliability of the model —which cannot be estimated quantitatively if it is not
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compared with other models. To estimate such an error —its “adopted-standard
deviation” in a sense— one can expand the observable under study, A(p), around
the minimum p0 assuming a smooth behavior of the former as a function of the
latter and, then, neglecting the second order derivatives,

A(p) = A(p) + (p− p0)∂pA(p) |p=p0

≡ A0 + (p− p0)A0 (7)

within this approximation the statistical expectation value of the observable
A would coincide exactly with A0. This can be demonstrated if we assume a
Gaussian distribution of the different parametrizations around the minimum,
i.e. if we assume that the set of reasonable models fulfilling the condition
χ2(p) − χ2(p0) ≤ 1 is distributed following a Gaussian probability law. This
would mean that the probablity distribution can be written as

P(p) = N exp
(
−1

2
(p− p0)M(p− p0)

)
(8)

where N is the normalization constant and, therefore, the expected value, A,
can be calculated as

A =
∫

A(p)P(p)dp

≈ A0

∫
P(p)dp +

∫
(p− p0)A0P(p)dp

≈ A0 (9)

since —remember— we have neglected second derivatives with respect the pa-
rameters, p, of the observables, A(p). The second integral does not contribute
since P(p) is symmetric with respect to all parameters, P(p) = P(−p), and the
factor (p− p0) is not. Note that A0 ≡ ∂pA(p) |p=p0 is just a constant.

From here, one can calculate the covariance between two observables which,
easily, becomes the calculation of the variance of an observable when both of
them are the same. Specifically, the covariance is defined as the statistical
product (i.e. expectation value) of the predicted values for the two observables
respect their expectatcion values. That is within our approximation,

CAB = (A(p)−A)(B(p)−B)
≈ (A(p)−A0)(B(p)−B0) (10)

and using Eqs. 7 and 9,

CAB ≈ (p− p0)A0B0(p− p0)
≈ A0(pı − p0ı)(p − p0)B0

≈
n∑
ı

∂pıA(p) |p=p0 (M−1)ı∂pıB(p) |p=p0 (11)
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since (pı − p0ı)(p − p0) = (M−1)ı = Eı. Hence,

CAB ≈
n∑
ı

∂pı
AEı∂p

B (12)

The variance of A which estimates the uncertainty (squared error) in the observ-
able is, then, easily calculated from the last expression as CAA. Furthermore,
it can be very useful for the study of the predicted observables of a model, if
one analyze the Pearson-product moment correlation coefficient between those
observables. It is defined as,

cAB ≡
CAB√

CAACBB

(13)

2.3 Numerical details

In order to cope with the covariance analysis described in the previous subsec-
tion, one should calculate the matrix M, its inverse E and the derivatives of
the observables respect to the parameters of the model in order to find their
covariances, variances and Pearson-product correlation coefficient.

2.3.1 The curvature matrix M

The calculation of the curvature matrix, proportional to the Hessian matrix,
can be done by using different numerical approximations. The first one, can be
the following. Assuming Eq. 3 is fulfilled, one can define the χ2(p) around the
minimum, p0, by an hyper-parabola without linear terms in the parameters,

χ2(p;a,b, c,d) =
n∑
ı

aı + bıp
2
ı + cıp

2
 + dıpıp (14)

where the parameters a, b, c and d should be determined from a least-squares
fitting after the evaluation of the χ2(p) around the minimum (how to choose a
good step size for evaluating this function and avoiding numerical inacuracies
will be discussed at the end of the present subsection). Note that for ı =  one
should set parameters b and c equal to zero and then perform the least-squares
fitting. The curvature matrix using this numerical approach becomes,

1
2
∂pı∂pχ

2(p;a,b, c,d) =
dı

2
(15)

Another approximation is to forget about condition 3 and perform the nu-
merical derivatives of the χ2(p) evaluated at p0 with numerical formulas avail-
able, for example, in Ref. [1]. Finally, following the approximation used along
the previous section in which we consider all nuclear observables to behave
smoothly with a change in the parameters p and, therefore, we have neglected
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its second order derivatives, one can calculate the curvature matrix starting
form Eq. 1 in a simplified and numerically convinient way (see [2]) as follows,

∂pı
∂p

χ2(p) = ∂pı∂p

[
m∑

k=1

(
Otheo.

k −Oref.
k

∆Oref.
k

)2
]

= 2
m∑

k=1

∂pı

[(
Otheo.

k −Oref.
k

∆Oref.
k

)
∂pOtheo.

k

∆Oref.
k

]

≈ 2
m∑

k=1

∂pı
Otheo.

k

∆Oref.
k

∂pOtheo.
k

∆Oref.
k

(16)

and then, only first derivatives should be calculated. In the results the latter
aproximation have been used.

2.3.2 The error matrix E

The error matrix E which is the inverse matrix of the curvature matrix M can
be calulated also using different approaches. Our choice have been to use the
subroutine gaussj available in the numerical recipes libraries. It is based on the
Gauss-Jordan elimination with full pivoting for solving a set of linear algebraic
equations. We test numerically for each inversion that ME = 1 is accurate
(precision found is 10−8 or better).

2.3.3 The covariance and correlation between two observables

The covariance between two observables and their correlation or its variance and
error are calculated within the same numerical approximations than the ones
already described. In this respect, the only important detail is to be consitent
regarding the adopted approximation along the calcultions. The question here
is to decide, after a proper step size for changing the parameters is known, the
number of points needed for an accurate calculation of the derivatives of the
different observables: a problem present all along this subsection. There is no
general solution for doing this. One needs to check the different recipes and
decide after that the more convinient way to proceed. However, if our approx-
imation of a smooth variation between the observables and the parameters is
good enough (almost all expressions in these notes are based on that), a two
point symmetric formula for the derivation is accurate for our purposes. There-
fore, the first derivative of the observables entering in the fit are calculated
as,

∂pıO ≈
O(p01, ..., p0ı + ∆pı, ...p0m)−O(p01, ..., p0ı −∆pı, ...p0m)

2∆pı
(17)

The same fromula have been used for the first derivative of the observables in
which we are interested for the calculation of their correlations (O → A). The
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error of using this formula is,

δ [∂pı
O] ≈ (∆pı)

2

6
∂3

pı
O (18)

One of the advantages of using this formula is that for the same nucmerical
effort one can calculate the second derivaties of the observables as,

∂2
pı
O ≈ O(p01, ..., p0ı + ∆pı, ...p0m)− 2O(p0) +O(p01, ..., p0ı −∆pı, ...p0m)

(∆pı)
2

(19)
and find, in this way, an overestimation of the error done in Eq. 19 (assuming
that the second derivative is larger than the third derivative). For completeness,
if we had used the non symmetric formula for the calculation of the the first
dervatives,

∂pı
O ≈ O(p01, ..., p0ı + ∆pı, ...p0m)−O(p0)

∆pı
(20)

the computational time would have been smaller and the error in the derivatives
larger,

δ [∂pıO] ≈ ∆pı

2
∂2

pı
O (21)

and, of course we would have had no way of estimating the error without more
computational effort.

2.3.4 How to chose step sizes, ∆p, for calculating derivatives with
respect the parameters

As it has been explained, the region of reasonable parametrizations is that
defined by the condition, χ2(p)−χ2(p0) ≤ 1, since it ensures that (in average),
the step in the parameters do not provide very large or very small changes
in the fitted observables but a change comparable to the adopted errors. For
this reason, a reasonable choice for the step size is that in which the variation
in each parameter produce a change ∆χ2 ≈ 1. In doing that, we evaluate
three points of the χ2. One at χ2(p01, ..., p0ı − h, ..., p0m) ≡ χ2

pı−h, another at
χ2(p01, ..., p0ı + h, ..., p0m) ≡ χ2

pı+h and finally at χ2(p0) ≡ χ2
0. The magnitude

of h is taken so that it produce an estimation of ∆pı that do not change very
much with the value of h itself and that the χ2(p01, ..., p0ı ± ∆pı, ..., p0m) is
comparable to one. Assuming a parabolic approximation of χ2, valid around
the minimum, and using Eq. 5 the estimation of ∆pı is the following,

e(pı)2 ≡ (∆pı)
2 =

(
M−1

)
ıı
≡ 2

(
∂2χ2

∂p2
ı

)−1

≈ 2h2(χpı−h − 2χ0 + χpı+h)−1 (22)

where this expresions provides a ∆pı which induce a change in the χ2 of around
the unity. We have also checked that ±10% changes in the value of ∆pı lead us
to the same results.
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3 Results

We present the correlation analysis of the interaction SLy5-min (very close to
SLy5). For details on the χ2 definition, fitting procedure, values of the parame-
ters and properties of SLy5 see Refs. [3] and [4]. Just one comment is important
here, not all the parameters (t0, t1, t3, x0, x1, x2, x3, α and W0) of the SLy-like
models have been included in the analysis since three of them have been fixed
manually and no χ2 term exist for fixing them. Those are x2 = −1, α = 1/6
and W0 = 126 MeV fm5. In Fig. 1 we show results for the Pearson product-

Figure 1: Pearson product-moment correlation coefficient matrix for the prop-
erties shown in the axes as predicted by the covariance analysis of SLy5-min.

moment correlation coefficient matrix for the properties shown in the axes as
predicted by the covariance analysis of SLy5-min. In the three panels of Fig. 2
some details of the same magnitude are shown. In what follows we show the
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Figure 2: Pearson product-moment correlation coefficient for the IVGDR (left
panel), IVPDR (middle panel) and m−1(IVGDR) (right panel) with all other
studied properties as predicted by the covariance analysis of SLy5.

output of the program we have used for the covariance analysis of SLy5-min.
The parameters, observables and their associated errors as well as the curvature,
error and correlation (for parameters and observables) matrices can be found.

Hessian or Curvature Matrix

=============================

1 d^2[X^2] |

Mij= --- ------------|

2 d[p_i]d[p_j]|p_0

t_0 t_1 t_2 t_3 x_0 x_1 x_3

31.8838 17.2803 4.5260 3.7586 1972.1206 -350.7807 -1271.3471

17.2803 9.3900 2.4575 2.0380 1075.8922 -192.0042 -694.2176

4.5260 2.4575 0.6453 0.5339 280.1924 -49.8234 -180.5988

3.7586 2.0380 0.5339 0.4432 231.4662 -41.1824 -149.1819

1972.1206 1075.8922 280.1924 231.4662 163675.5755 -28879.3109 -106873.2897

-350.7807 -192.0042 -49.8234 -41.1824 -28879.3109 5238.2678 18977.6732

-1271.3471 -694.2176 -180.5988 -149.1819 -106873.2897 18977.6732 69945.5436

Eigenvalues and eigenvectors of Mij

=====================================

Eigenvalues: 0.21593E+01

0.14722E-01

0.16615E-02

0.35153E-06

0.23866E+06

0.20708E+03

0.36681E+02
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Eigenvectors Vij:

t_0 t_1 t_2 t_3 x_0 x_1 x_3

0.7696E+00 -0.4643E+00 -0.1316E-01 -0.8858E-01 0.9942E-02 0.3918E-01 0.4272E+00

0.3791E+00 0.8575E+00 -0.2559E+00 -0.3425E-01 0.5426E-02 0.1756E-01 0.2323E+00

0.1058E+00 0.2208E+00 0.9639E+00 -0.8453E-01 0.1412E-02 0.5690E-02 0.6089E-01

0.9097E-01 0.6973E-02 0.7214E-01 0.9919E+00 0.1167E-02 0.4651E-02 0.5114E-01

-0.1784E+00 -0.4639E-02 0.6251E-03 0.7625E-04 0.8280E+00 0.4667E+00 0.2543E+00

0.3125E+00 0.1290E-01 -0.2683E-02 -0.2263E-03 -0.1465E+00 0.7123E+00 -0.6110E+00

-0.3392E+00 -0.9931E-02 0.1547E-02 0.1251E-03 -0.5411E+00 0.5223E+00 0.5650E+00

Error Matrix or Covariance Matrix

===================================

Eij = [M^(-1)]ij

t_0 t_1 t_2 t_3 x_0 x_1 x_3

22336.9346 8605.9939 21286.8815 -249944.5864 -19.1326 56.7466 -31.3399

8605.9939 3426.5838 8100.7505 -96652.6451 -7.8251 23.2657 -13.0625

21286.8815 8100.7505 20890.1571 -238475.4177 -18.0502 53.0719 -29.3523

-249944.5864 -96652.6451 -238475.4177 2798684.5698 215.1548 -638.6518 353.0597

-19.1326 -7.8251 -18.0502 215.1548 0.0358 -0.0826 0.0640

56.7466 23.2657 53.0719 -638.6518 -0.0826 0.2192 -0.1484

-31.3399 -13.0625 -29.3523 353.0597 0.0640 -0.1484 0.1160

Check

=======

Mij [M^(-1)]ij = 1

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Correlation Matrix

====================

Cij = Eij/sqrt(Eii Ejj)

t_0 t_1 t_2 t_3 x_0 x_1 x_3

1.0000 0.9837 0.9854 -0.9997 -0.6766 0.8110 -0.6158

0.9837 1.0000 0.9575 -0.9870 -0.7066 0.8489 -0.6553

0.9854 0.9575 1.0000 -0.9863 -0.6601 0.7843 -0.5964

-0.9997 -0.9870 -0.9863 1.0000 0.6798 -0.8154 0.6197

-0.6766 -0.7066 -0.6601 0.6798 1.0000 -0.9327 0.9928

0.8110 0.8489 0.7843 -0.8154 -0.9327 1.0000 -0.9311

-0.6158 -0.6553 -0.5964 0.6197 0.9928 -0.9311 1.0000
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Errors in free parameters

===========================

e_i = sqrt( Eii )

t_0 = -2475.408000 +/- 149.455460

t_1 = 482.842000 +/- 58.537029

t_2 = -559.374000 +/- 144.534277

t_3 = 13697.070000 +/- 1672.926947

x_0 = 0.741185 +/- 0.189191

x_1 = -0.146374 +/- 0.468173

x_3 = 1.162688 +/- 0.340537

Uncertainty of an observable A

=================================

DA = { d[A]/d[p_i] E_ij d[A]/d[p_j] }^1/2

ro_sat = 0.161559 +/- 0.002110

es_sat = -16.017422 +/- 0.065051

m_ef_m = 0.697844 +/- 0.072864

sy_sat = 32.604439 +/- 0.706988

K__sat = 230.461833 +/- 8.980535

L_symm = 47.456310 +/- 4.487230

trkivd = 0.326883 +/- 0.439172

r_neut = 5.598887 +/- 0.012992

rn__rp = 0.165517 +/- 0.006892

IV-GDR = 13.936772 +/- 1.825181

IV-M-1 = 19.428438 +/- 0.433911

IV-PDR = 7.757677 +/- 0.344406

IS-GMR = 14.003449 +/- 0.365507

IS-GQR = 9.897559 +/- 0.415486
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