

Trigger Detector Upgrade

TDR Editorial Meeting CERN, June 12, 2013

Wladyslaw H. Trzaska

on behalf of the team preparing the Trigger Detector chapter

Preliminary content of TDR trigger chapter

- The purpose of Trigger Detector Upgrade
- Required functionality, latency and compatibility with current trigger
- Proposed readout scheme (requirement to follow TOF readout)
- Space envelope on the C side (A side not critical)
- The baseline for T0 upgrade
 - Description, properties, simulations, test results, etc.
- Redundancy and additional funcionality
 - The baseline for V0 upgrade
- First cost estimate and timetable
- List of participating institutes
- Conclusions

The purpose of Trigger Detector upgrade

- To provide ALICE with a reliable, efficient and flexible trigger detector capable to deal with the increased luminosity and bunch crossing frequency of the upgraded LHC.
- To fit into reduced <u>space envelope</u> imposed to accommodate MFT – the new forward detector.
- To maintain the functionality and performance that was secured by T0 & V0 detector.
- To increase robustness of the trigger and minimize aging phenomena observed during 2009 2012 running period.
- To reduce trigger generation <u>latency</u>.
- To eliminate or substantially reduce after-pulsing
- To provide <u>common readout</u> architecture compatible with that of the ALICE TOF detector.
- To updated and refine the front-end electronics.

<u>Additional functionality</u> requested of the upgraded T0 trigger detector

- Monitor LHC beam conditions,
- Measure the luminosity,
- Reject beam-induced backgrounds
- to measure basic physics quantities
 - Particle multiplicity
 - Centrality
 - Event plane of nucleus-nucleus collisions (V0 equivalent)

<u>Latency reduction</u> is to be implemented already during LS1 (chart from <u>K. Oyama</u>)

Individual LO contributor detector timing

processing time? trigger distribution?

Current Current

<u>Common readout</u> of Trigger Detectors

as proposed by W. Riegler

Space envelope on the C – side

(status from 24/05/2013 from G.Corrado)

- The present 'cavity' between the absorber and ITS cage has a outer radius of 330 mm and a depth of 149 mm.
- This area will however still change a lot due to the pending MFT integration and final ITS layout, so we have to stick to an outer enveloping radius of 250 mm and a depth of 100 mm for the moment, which fits with the present T0 proposal.
- The inner enveloping radius will depend on the question whether we want to place the detector on the absorber or on the ITS mechanics, which would make it removable/serviceable without moving the TPC.
- In case it is sitting on the absorber, an inner enveloping radius of 50mm is feasible.
- In case it is sitting on the ITS cage, a minimum inner radius of 60 mm must be assumed.

The proposed Trigger Detector

Dimensions of the new detector unit

New T0 Quartz radiator

Active Area:53 × 53 mm²Thickness:20 mm

Will be made from a high purity, synthetic, fused silica material SUPRASIL[®]1 manufactured by the Heraeus Company, Germany

Photonis PLANACON® XP85012

Cost (2012): XP85012/A1-Q - \$8,830

XP85012

Window-side

Overall thickness ~30 mm

Back-side

CERN 12 June 2013

W.H.Trzaska

The anode of **XP85012** is **subdivided** into **64** units. This feature, together with fragmented radiator, could be used to **improve performance** and add **tracking ability** to T0

Solid vs. fragmented quartz radiator

In case of a **solid radiator** the Cherenkov ring of light generated by a MIP spreads over a large surface of the light sensitive element. To register that diffused light, **higher amplification (HV)** is required. The inner walls of a **fragmented radiator** reflect the light and contain it within the sub-unit of the radiator. As a result the light intensity falling on the MCP surface is higher. Therefore **lower amplification (HV)** is needed.

Thickness estimate of the new T0 module

Prototype of PMT-MCP based detector with quartz radiator and front end electronics attached to the unit. The anodes are divided into 4 groups with individual amplifiers.

~15 mm – optical fiber

~20 mm – Quartz

~30 mm – PMT-MCP

~20 mm – FEE

~15 mm – cabling

TOTAL = ~100 mm

Latest information on the ongoing R&D

- Properties of Photonis PLANACON[®] XP85012
 - Time resolution
 - After pulses
 - Simulations
 - etc.
- Choice and properties of quartz material
- Shape optimization of MCP-PMT modules
 - Price and availability
 - Performance

Time resolution at the level of 30 ps

has been proven by several groups developing MCP-PMT detectors

After-pulses are suppressed in MCP-PMT

PMT (used currently by T0)

MCP-PMT (proposed for T0 upgrade)

Simulation environment (ideal geometries)

-90cm, 340cm

-75cm, 375cm

Aliroot trunk 29 May 2013

Generator PYTHIA6 14TeV

5000 events V0 place : Z position detector face T0 place Air ring size 5 -17 cm

6 – 18 cm

Radius 6 — 18 cm; T0 place; pipe upgrade

Comments on the **input options for MC** simulations

- Intrinsic efficiency of the new MCP-PMT based module is ~100% for MIPs entering perpendicular to the surface of the radiator.
- The <u>geometric coverage</u> of the quartz radiator (the ratio of its surface to outline of the module) is (53mm/59mm)² = 80%. The need for a mechanical support will reduce it a little ~73%.
- <u>Side coating</u> of the quartz would reduce (if needed) the sensitivity to the entrance angle of MIPs.
- <u>Front coating</u> (black or highly reflective) will control the sensitivity to particles traveling in the opposite direction

TO Efficiencies [%] for ideal geometries

	A (340cm)	C (-90cm)	A&C	A C		
old pipe	88	88	83	93	Ring 5 -17cm (V0 place)	
Pipe upgrade	88	88	83	93	0	
	А	С	A&C	A C		
old pipe	89	88	83	94	Ring 6-18cm (V0 place)	
pipe upgrade	88	87	82	93		
	A (375cm)	C (-75cm)	A&C	A C		
old pipe	A (375cm) 89	C (-75cm) 89	A&C 84	A C 94		
old pipe Pipe upgrade	A (375cm) 89 88	C (-75cm) 89 88	A&C 84 83	A C 94 93	Ring 5 -17cm (T0 place)	
old pipe Pipe upgrade	A (375cm) 89 88 A (375cm)	C (-75cm) 89 88 C (-75cm)	A&C 84 83 A&C	A C 94 93 A C	Ring 5 -17cm (TO place)	
old pipe Pipe upgrade	A (375cm) 89 88 A (375cm) 88	C (-75cm) 89 88 C (-75cm) 89	A&C 84 83 83 A&C 83	A C 94 93 A C A C 93	Ring 5 -17cm (T0 place) Ring 6-18cm (T0 place)	
old pipe Pipe upgrade old pipe Pipe upgrade	A (375cm) 89 88 A (375cm) 88 88	C (-75cm) 89 88 C (-75cm) 89 88	A&C 84 83 83 A&C 83 83 83	A C 94 93 A C 93 93 93 93	Ring 5 -17cm (T0 place) Ring 6-18cm (T0 place)	

MCP placed around new beam pipe at inner radius 6cm and Z TO-A=373cm Z TO-C=-70cm

	T0A[%]	T0C[%]	T0A&C[%]	T0AorC[%]
Old pipe	86	86	80	92
New pipe	88	86	80	93

"VZERO" place and size

V0 A||C 0.95 (T0 93 %)

V0 A&C 0.85 (T0 83%)

Choice of **quartz suppliers**

- QUARTZ KU-1 (Gus-Khrustalnyi, Russia)
- SUPRASIL® 1 (Heraeus Company, Germany)

Option with **non-square MCP-MPT** units

Cost estimate

- The most expensive items are the new MCP-PMT units currently valued at \$8500 each (tax free). Therefore we get:
 - For the single ring option: 2 x 8 + 4 spares = 20 units
 @ ~10 k€ each = ~200 k€
 - For the two ring option: 2 x 20 + 10 spares = 50 units
 @ ~10 k€ each = ~500 k€
- Quartz material ~500€/kg + processing
- The main cost to modernize the electronics will be the labor cost for R&D of the new PCBs

Redundancy

- One of the strong points in the old trigger was partial functional overlap between TO and VO
- It would be desirable to maintain at least partial redundancy also in the upgraded trigger.
- The natural choice for the second detector would be a modified plastic scintillator based system with the readout part complying with the TOF standard.

Information provided by G. Herrera Corral

VO UPGRADE

Pseudo-rapidity coverage of the new design

Ring	New	V0A	New V0C		
	η_{max}/η_{min}	$\theta_{max}/\theta_{min}$	η_{max}/η_{min}	$\theta_{max}/\theta_{min}$	
V0C e	extension 18	m from IP	-6.0/-4.9		
			-4.9/-4.5		
	acceptance	hole	-4.5/-3.7		
0	5.1/4.5	0.7/1.3	-3.7/-3.2	177.0/175.3	
1	4.5/3.9	1.3/2.3	-3.2/-2.7	175.3/172.4	
2	3.9/3.4	2.3/3.8	-2.7/-2.2	172.4/167.5	
3	3.4/2.8	3.8/6.9	-2.2/-1.7	167.5/159.8	
4	2.8/2.2	6.9/12.7	Additional ring on V0A		

Proposed new location on C-side

Proposed new location on C-side

Five rings design for the New VOA

New vs. Old

Preliminary list of contributors

(please help me to keep the list up to date)

- Members of the T0
 - Finland
 - Jyväskylä / HIP (W.H.Trzaska Project Leader)
 - <u>Russia</u>
 - INR/Russian Academy (T.Karavicheva Deputy PL)
 - MEPhI
 - Kurchatov Institute
- Members of V0
 - <u>Mexico</u>
 - CINVESTAV, UAS (G. Herrera Corral)
 - Puebla
 - UNAM
- Members of FMD
 - <u>Denmark</u>
 - Niels Bohr Institute (B. Nielsen and I. Bearden)
- New members
 - <u>USA</u>
 - Chicago State University (E. Garcia)