EMCal Readout Upgrade

Acknowledgements to:

- Hans Muller on SRU system
- Fan Zhang (Wuhan) for EMCal SRU and FEE Firmware development (and many of the slides/figures shown here).

- EMCal Readout has now (May 2013) been upgraded to SRU readout – same to be used for DCal.
 - Using Point-to-point DTC (Data-Timing-Control, DTC) link.
 - Minimum dead time: ~270 us \rightarrow ~19 us.
 - Expect to reach ~50kHz Min bias Pb+Pb
- Description of SRU application to EMCal has been submitted to NIM.

- Can be condensed to 2 page writeup for TDR

EMCal Signals

- EMCal(PHOS) : Dual gain range energy measurement
- EMCal peaking time = 200ns; typically 5 time samples (time also via peak fit with $\sigma_t \sim 1$ ns).
- PHOS peaking time = $2\mu s$; (typically 50 time samples?)

EMCal RCU based readout

For 1 EMCal Readout Partition = $\frac{1}{2}$ EMCal SM readout:

EMCal SM with RCU

- Data volume/readout partition (per RCU = ½ EMCal SM)
 - Total channel number: 20(FEE) * 32(Towers)*2(Gains) = 1280
 - Minimum byte count for a hit channel: 12
 - Byte count of the event header: 32
 - Byte count of the event trailer: 36

EMCal Data Volume/Occupancy

- Data volume/readout partition (per RCU = $\frac{1}{2}$ EMCal SM)
 - Total channel number: 2*32*20 = 1280
 - Minimum byte count for a hit channel: 12
 - Byte count of the event header: 32
 - Byte count of the event trailer: 36

$$N_{ch} \approx (N_{event} - 68) \div 12$$

			Min. Bias	Central	LED	Full
	$Empty^a$	p+p	Pb+Pb	Pb+Pb	$Calibration^b$	$\operatorname{Readout}^c$
$N_{event}(Bytes)$	750	1000	2.5k	5k	25k	35.9k
N_{ch}	60	80	220	420	1280^{d}	1280

Low occupancy: Even for the highest occupancy central Pb+Pb collisions ~1/3 of channels have hits

RCU reads out 640 ALTRO channels serially (64/FEC for 10 FEC)

- ALTRO channel address time $t_a = 0.5 \ \mu s$
 - Minimal readout time of 320 μ s for full readout with no data
- Maximum data transfer time $t_d^{max} = 0.15 \ \mu s$
- Plenty of ALTRO bus bandwidth (3.2 Gb/s), but
- Bandwidth utilization on ALTRO bus is less than 25% for EMCal

Solutions

 Implement the Sparse Readout with the old EMCal/DCal readout system.

- Minimum dead time: ~400 μ s \rightarrow ~270 μ s.

- Apply RD51 Scalable Readout System (SRS)

 Using Point-to-point DTC (Data-Timing-Control, DTC) link.
 - Minimum dead time: ~270 μ s \rightarrow ~36 μ s.
 - Using LG Readout Suppression
 - Minimum dead time: ~36 μ s \rightarrow ~19 μ s.
 - Using 10 GbE transmission (possible for future)
 - Decrease dead time by 50% for very large events.

Limitation of RCU-based readout

Readout time spent on the ALTRO bus is bottleneck.

June 3, 2013

Using SRU on the EMCal/DCal: Replace GTL bus with point-to-point Links

Developed by H.Muller in context of RD51

Performance Estimation

Readout time on the ALTRO bus is x10 lower.

Solution 2B: Low Gain Readout Suppression

Low Gain channels are occupied as frequently as High Gain channels, but LG data is used in offline analysis only when HG is saturated (~16GeV for EMCal). Read LG only when HG near saturation reduces occupancy x2.

LG Readout Suppression

Check (readout) LG channel only if HG of tower is near saturation

Solution 2 C: Using 10 GbE

The dead time of large events (>3.6 kBytes) is decreased by ~50%. Ready to be implemented, but not apparently necessary.

- DTC daughter card to be mounted on FEC
- Upgrade FEE firmware
- SRU module
- Custom SRU firmware for EMCal

DTC daughter card: Provide interface compatibility

- Provide interface compatibility between existing FEE with both old and new system topologies.
- Avoid to produce more than 600 new FEE boards
- DTC daughter cards have been installed on all the FEE boards, and SRU-FEC communication has been verified for all FEC on EMCal.

Test setup

EMCal Readout Upgrade - T.Awes

Dead Time Lab Test Result

			Min. Bias	Central
	$Empty^{a}$	p+p	Pb+Pb	Pb+Pb
N_s^{chan} (bytes)	12	12	12	12
N^{fee}_{chan}	3	4	11	21
N_s^{fee} (bytes)	36	48	132	252
N_{chan}^{part}	60	80	220	420
N_s^{part} (bytes)	788	1028	2708	5108
$R_{est.}^{full}(\rm kHz)$	29.0	28.9	28.3	27.7
$R_{meas.}^{full}$ (kHz)	27.8	27.8	27.8	23.7
$R_{est.}^{lgs}(\rm kHz)$	53.4	53.2	51.7	39.1
$R_{meas.}^{lgm}(kHz)$	45.1	44.7	43.2	33.6

Busy time a bit higher than expected – Firmware optimization still underway

EMCal RCU-> SRU

- Changeover from RCU to SRU complete (May)
- Firmware work still underway:
 - TRU trigger modules
 - SRU firmware optimization & robustness

Schroff 19" chassis

- EMCal Readout has now (May 2013) been upgraded to SRU readout – same to be used for DCal.
 - Using Point-to-point DTC (Data-Timing-Control, DTC) link.
 - Minimum dead time: ~270 us \rightarrow ~19 us.
 - Expect to reach ~50kHz Min bias Pb+Pb
- Description of SRU application to EMCal has been submitted to NIM.

- Can be condensed to 2 page writeup for TDR

FEE Firmware Upgrade

- Memory resource usage: ~90%
 - Logic element: 95%
 - Block memory: 72%

SRU Firmware Development

• Resource Usage:

- Block Memory: 140*36Kb Block RAM (54%)
- Lookup Table (LUT): 53 K (66%)
- Registers: 46 K (29%)

DTC link protocol

