

TRD Upgrades TDR Status

03.06.13

J. Lehnert

EB TDR Chapter Concept

Content suggested by editorial board

•	Sub system specifications	
	 Consequences of overall specifications 	ok
•	Implementation architecture	
	 Segmentation and data rates 	ok
	 Front-end board 	ok
	 Read-out board; Interface to back-end/DAQ 	ok
	 Trigger & busy handling 	discussed above
•	Schedule, funding and institutes	

In addition for TRD:

- Detector capability
- New data format: content, offline performance

TDR Concept

• Detector Rate Capability

- expected currents in Run3: extrapolation from existing data (PbPb, pPb, pp)
- feasibility of HW: HV supplies,...

• Aging of HW components shortly summarize some of the following aspects:

- Compile information on HV problems: when appear in which chambers; conclusions on reasons
- Feedback from investigations of Sec17 chambers if suitable
- (statistics of FEE issues)

• FEE Readout Rate Capability

- FEE readout rate limits
- Power consumption and rate limits

Modified Readout Data Format(s)

- Description of alternative formats:
 - (extended) tracklets
 - (full raw data for electron candidates only)
- Achievable rates
- Offline performance
 - Tracking
 - dEdx, PID
 - Approaches for calibration, alignment,..
- Readout CRU
 - TRD-specific interface and CRU;
 - Basic functionality similar to readout path of existing GTU (without L1 downscaling)
 - Discuss also trigger and busy

Rate Capability

- To which extend is TDR standalone or should refer to Lol?
- Rates: focus on specifications instead of max. rates
- distinguish: interaction vs readout rate

LV Limitations

- Measured (rate dependent) D18 currents vs rate in various scenarios
 - Tracklet only readout (PT- L0 sequences) with variable amount of tracklets
 - Raw data readout with various L1 rejection (PT L0 nn% L1)
- First conclusion (detailed analysis will follow)
 - ~ 60A / 100 kHz rate (PT, L0); 62A / 100kHz with 2% L1a
 - − 85A in CONFIGURED \rightarrow current <150A up to >100kHz readout rate

CRU

- Interface: FEE optical "standard" CRU
- Input (per sector): 60 x 2Gb/s with low duty cycle
- FEE readout
 - Accept data at 60x 2Gb/s
 - Accept tracklet only, no tracklet, tracklet+full raw data
 - robust handling of FEE data transfer (format errors)
 - Buffer depth: static or dynamic event buffer size?

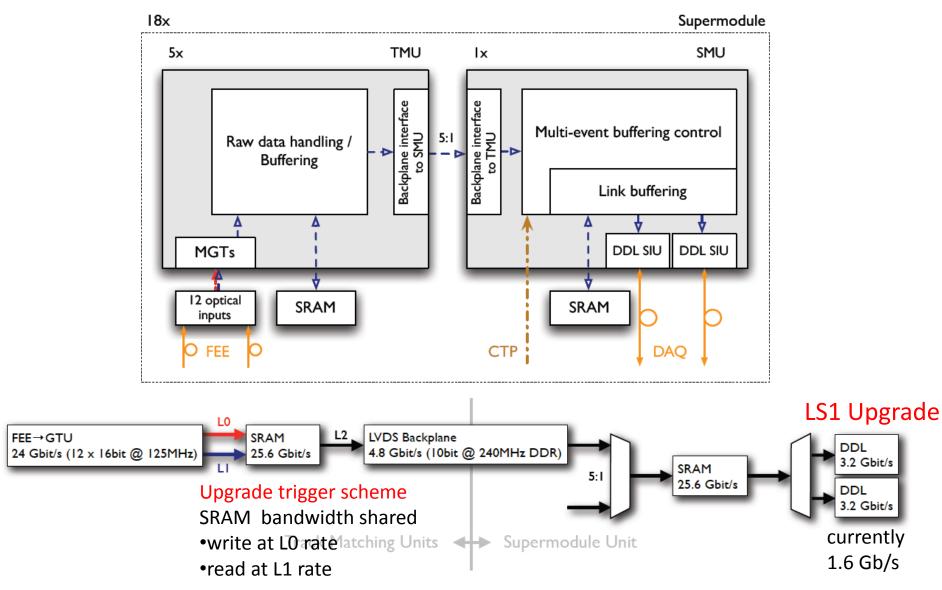
Questions:

- CRU: number of input links (15 x 1Gb/s?)
- Trigger distribution: latency, format
 - As current scheme: from CTP to FEE and in parallel to readout board
- Busy: from CRUs
- N_DDL / CRU: 1 or more
- TRD (L1) trigger in Run3?

Backup Slides

Readout Upgrade – ALICE CRU

	Reduced Raw Data	Tracklet Data
FEE event readout time [µs /event]	19.5	7
FEE readout rate at 100% deadtime [kHz]	51.2	<143 100 (*)
Readout data throughput at maximal FEE readout rate [GB/s]	33.4	<38.2 26.7 (*)
Readout rate at 50 kHz interaction rate [kHz]	25.3	37
Corresponding readout data throughput [GB/s]	16.5	9.7
Corresponding deadtime [%]	49	26


R_int kHz	R_read kHz	Deadtime fraction	FEE_rd duty cycle	N_links	Data vol. Gb/s/sect	Data vol. Gb/s/link
50	37	26	4	5	4.3	0.08
100	59	41	6	8	6.9	0.12
50	37	26	8	10	8.6	0.15
100	59	41	12	15	13.8	0.23

Note:

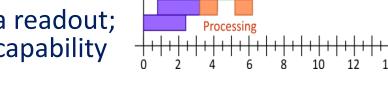
- Deadtime/event: 7us
- N_links assumes 1Gb/s links

GTU - Data Transfer Bandwidth

S. Kirsch

TRD FEE Readout Upgrades - Concept

ALICE after LS2


 continuous readout (ITS, TPC) or high rate readout of MB triggered data: up to 50kHz PbPb

TRD FEE

- single event buffer → FEE event sequence imposes rate limits: drift - processing – tracklet readout – full raw data readout
- no hardware upgrade conceivable

FEE readout modifications

 basic idea: no ADC raw data readout; use FEE (TRAP) processing capability to reduce amount of data

First Readout Stage

Second Readout Stage

Interaction

Drift &

Pipelining

- readout of reduced raw data
 - variable amount of processed information such as tracklet fit parameters, charge sums and other PID-related variables
- modified tracklet readout
 - severe restriction in data volume: four 32bit words / MCM/event

t [us]

TRD FEE Readout Upgrades - Rates

Rates

• rate limits and data volumes

	Zero Suppr. ADC Data	Reduced Raw Data	Tracklet Data
FEE event readout time [µs /event]	36.5	19.5	7
FEE readout rate at 100% deadtime [kHz]	27.4	51.2	<143 100 (*)
Readout data throughput at maximal FEE readout rate [GB/s]	81.5	33.4	<38.2 26.7 (*)
Readout rate at 50 kHz interaction rate [kHz]	17.7	25.3	37
Corresponding readout data throughput [GB/s]	52.4	16.5	9.7
Corresponding deadtime [%]	65	49	26

(*) further rate limitation coming from the low voltage system, shown are alternative numbers for 100 kHz max. rate

 very preliminary numbers for data volume and event readout time with the new readout modes