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Modern
Parton Showers
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Parton shower evolution (*FSR)
(*)FSR: Final State Radiation.
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from «the creators» of

VINCIA

and the antenna 
formalism

PYTHIA



VINCIA Collaboration

VINCIA

What is it?
Plug-in to PYTHIA 8 http://vincia.hepforge.org

What does it do?
“(Multiplicatively) Matched Markov antenna showers”

Antenna:  VINCIA uses antennae, instead of Altarelli-Paresi splitting kernels.
Markov: markovian condition for the shower; no memory of the path.
Multiplicative matching to exact Matrix Elements.

Extensive (and automated) uncertainty estimates
Systematic variations of shower functions, evolution variables, μR , etc. 

→ A vector of output weights for each event (central value = unity = unweighted)

Who is doing it?
Giele, Kosower, Skands (GKS), initiators
+ Collaborations with 

A. Larkoski, J. Lopez-Villarejo (sector showers, helicity-dependence), 

A. Gehrmann-de-Ridder, M. Ritzmann (mass effects, initial-state radiation), 

E. Laenen, L. Hartgring (one-loop corrections) 

5

The VINCIA Code 

http://projects.hepforge.org/vincia/
http://projects.hepforge.org/vincia/
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VINCIA Collaboration

Matching

619

MC@NLO & POWHEG MLM & CKKW

LO for 1st emission
LL for 2nd emission and beyond

“Matching Scale”
→ hierarchies not matched

Legs
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The VINCIA Code PYTHIA 8

+

Subtraction & Slicing
combine different samples 

for the same event

Multiplicative Markov
‘on-the-fly’ correction
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MC@NLO & POWHEG MLM & CKKW
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“Matching Scale”
→ hierarchies not matched
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The VINCIA Code 

Cutting Edge: 
Embedding virtual amplitudes
= Next Perturbative Order
→ Precision Monte Carlos

PYTHIA 8

+

Note: other teams working on alternative strategies 
with similar goals

Subtraction & Slicing
combine different samples 

for the same event

Multiplicative Markov
‘on-the-fly’ correction



VINCIA Collaboration

Quantifying Precision

7

0 0.1 0.2 0.3 0.4

T
1/

N
 d

N
/d

B

-310

-210

-110

1

10 L3 
Vincia

Total Jet Broadening (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.150

0 0.1 0.2 0.3 0.4

R
el

.U
nc

.

0

1

Def Rµ Finite QMatch Ord 2
C1/N

 (udsc)TB
0 0.1 0.2 0.3 0.4

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

0 0.1 0.2 0.3 0.4

T
1/

N
 d

N
/d

B

-310

-210

-110

1

10 L3 
Vincia

Total Jet Broadening (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + MadGraph 4.426 + Pythia 8.150

0 0.1 0.2 0.3 0.4

R
el

.U
nc

.

0

1

Def Rµ Finite QMatch Ord 2
C1/N

 (udsc)TB
0 0.1 0.2 0.3 0.4

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

VinciaMatching:order = 3VinciaMatching:order = 0

Note: VINCIA so far only developed for final-state radiation (fragmentation)
Initial State under development



VINCIA Collaboration

SPEED

8

Efficient Matching with Sector Showers
J. Lopez-Villarejo & PS : JHEP 1111 (2011) 150 
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Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 
gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

Markovian (VINCIA)
Constant of order milliseconds

Traditional Method (CKKW)

~ Two orders of 

magnitudeFrom minutes to hours
Traditional Method (CKKW)

Markovian (VINCIA)

(Why we believe Multiplicative Markov is the method of choice for complex problems)

(with helicity-dependence?)

http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608


VINCIA Collaboration

Future prospects

9

• ISR (ongoing), NLO-multileg matching (ongoing), subleading log shower... 
Big challenges!

• Extend the team? (computer scientists, theoretical physicists)

• Keep building a free, opensource and transparent code.
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Future prospects

9

• ISR (ongoing), NLO-multileg matching (ongoing), subleading log shower... 
Big challenges!

• Extend the team? (computer scientists, theoretical physicists)

• Keep building a free, opensource and transparent code.

➡ Improve documentation for developers.
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Documenting
big simulation codes in C++
(for developers) J. J. Lopez-Villarejo



Documenting big simulation codes in C++

Motivation

11

• Big simulation codes involve collaborations of several authors
✴ in distant locations,
✴ with different expertise levels.

• New powerful physics features to be added → «pure» physicists. 

• Issues with speed and capacity of computers → «pure» programmers.

• Approaching the standards of coding in professional (for-profit) sectors: 
blueprints first!.

• What does the code do at a single glance? → transparency



Documenting big simulation codes in C++

Identified strategies

12

• Increase modularity (e.g., by effective use of object-
orientation). Only one (a few) ‘small’ entities have to be 
modified each time.

• Improve documentation for authors: an intermediary stage 
between the physics idea (paper) and the actual realization 
(code)



Documenting big simulation codes in C++

Identified strategies

12

• Increase modularity (e.g., by effective use of object-
orientation). Only one (a few) ‘small’ entities have to be 
modified each time.

• Improve documentation for authors: an intermediary stage 
between the physics idea (paper) and the actual realization 
(code)



Documenting big simulation codes in C++

The Role of Documentation

13

author’s ideas 

documentation

CODING 
(other person?
professional?)

PHYSICS
(theoretical physicist)

code 
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The Role of Documentation

13

author’s ideas 

documentation

CODING 
(other person?
professional?)

PHYSICS
(theoretical physicist)

→ UML diagrams...

code 



Documenting big simulation codes in C++

UML Diagrams

14

The Unified Modeling Language (UML) offers a 
standard way to visualize a system's architectural 

blueprints
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The Unified Modeling Language (UML) offers a 
standard way to visualize a system's architectural 

blueprints



Documenting big simulation codes in C++

UML Structure Diagrams

15

class diagram: 
how objects relate to each other?

• Doxygen is a free software 
generating automatically call 
(structure) diagrams from a 
C++ code.

• Diagram labels can be 
modified and extended 
through comments written 
directly in the code.

Doxygen: http://www.doxygen.org/

static

http://moritz.sourceforge.net
http://moritz.sourceforge.net


Documenting big simulation codes in C++

UML Behavior Diagrams

16

• Developing free software 
which will generate 
automatically high-level 
workflow diagrams from 
annotated C++ code.

• User can browse among 
related activities and zoom 
in/out (more or less detail).

dynamic!

activity diagram / workflow: 
what is the sequence of actions?Flowgen: public release after testing in VINCIA



Documenting big simulation codes in C++ 17

Implementation



Documenting big simulation codes in C++

Workflow Generator

18

• A Python script controls sequential reading of sources, 
calls to other elements and writing of the output.

• Clang (clang.llvm.org) is used to get the semantics of the 
source code.

• PlantUML (plantuml.sourceforge.net) is used to draw 
the workflow diagrams.

Flowgen: public release after testing in VINCIA



Documenting big simulation codes in C++

Workflow generator’s workflow

19

Flowgen: public release after testing in VINCIA
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The tool in practice



Documenting big simulation codes in C++

Flowgen: source input

21

Flowgen: public release after testing in VINCIA



Documenting big simulation codes in C++

Flowgen: diagram output

22

Flowgen: public release after testing in VINCIA



Documenting big simulation codes in C++

Flowgen: diagram output

22

Flowgen: public release after testing in VINCIA

• What does the code do at a single glance? → transparency



Documenting big simulation codes in C++

Conclusions and Outlook

23

• We are in the era of precision Monte Carlo parton 
showers. NLO multileg matching is under development. 
VINCIA proposes a multiplicative matching approach. 

• VINCIA goes for transparency: documenting through 
high-level workflows of the annotated C++ code.

• Other collaborations may benefit from a similar 
approach to ours. Flowgen is opensource.



Documenting big simulation codes in C++

Conclusions and Outlook

23

• We are in the era of precision Monte Carlo parton 
showers. NLO multileg matching is under development. 
VINCIA proposes a multiplicative matching approach. 

• VINCIA goes for transparency: documenting through 
high-level workflows of the annotated C++ code.

• Other collaborations may benefit from a similar 
approach to ours. Flowgen is opensource.

INTERESTED IN THIS PROJECT? 



Backup



Documenting big simulation codes in C++

Users documentation

25

• In VINCIA, keep separate, for the moment.

• A subset of the author’s documentation? future 
possibility.

authors 
documentation

authors 
documentation

users 
documentation

users 
documentation



Documenting big simulation codes in C++

Flowgen: diagram output

26
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Polarization

27

Larkoski, Lopez-Villarejo, Skands,  arXiv:1301.0933 (2012)

http://arXiv.org/abs/arXiv:1301.0933
http://arXiv.org/abs/arXiv:1301.0933
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signatures)
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Including helicity information 
(massless)

New spin-dependent antenna functions.

Advantages:
- Treat processes with spin information (observational 
signatures)

- Speed gain for matching:
  |Mp1,p2,p3,p4|2 = |M+,+,+,+|2 + |M+,+,+,-|2 + |M+,+,-,-|2 + |M+,-,-,-|2 + ...

Helicity structures are independent at the level of probabilities

Larkoski, Lopez-Villarejo, Skands,  arXiv:1301.0933 (2012)
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- Speed gain for matching:
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28

- Speed gain for matching:
  

|Mp1,p2,p3,p4|2 = |M+,+,+,+|2 + |M+,+,+,-|2 + |M+,+,-,-|2 + |M+,-,-,-|2 + ...

Helicity structures are independent at the level of probabilities
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LEP event shapes
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Figure 20: Comparison to the L3 light-flavor data set [55] (black points) at the Z pole for the 1−T (left),
C (middle), and D (right) event shape variables. VINCIAis shown in thin blue lines, with shaded light-
blue bands representing the perturbative uncertainty estimate. The middle pane on each plot illustrates
the relative composition of the VINCIA uncertainty band. For comparison, the PYTHIA8 result is shown
with a thick red line with open circles.

8 Comparison to LEP Data

To keep questions of mass effects separate (the implementation of which will be reported on in a separate
paper [51]), we shall here mainly compare to a useful data set presented by the L3 collaboration [55], in
which the contributions from light flavors (defined as u, d, s, c) has been separated from that of events
containing b quarks.

Unfortunately, however, the L3 light-flavor data set does not contain jet observables. We therefore
include comparisons also to ALPEH and DELPHI jet observables that include all flavors, using a pre-
liminary implementation of mass effects in VINCIA [51]. Since the largest correction specific to b quarks
is simply the B meson decay, for which we rely on PYTHIA’s string hadronization and hadron decay
model, we believe these comparisons are still meaningful, even if we must postpone a full discussion of
them to the follow-up study in ref. [51].

In Fig. 20, we compare default VINCIA and PYTHIA to the L3 light-flavor data for the Thrust (left)
and the C (middle) andD (right) event shape parameters [55]. Dashed vertical lines indicate the bound-
aries between the 3- and 4-jet regions for the Thrust and C parameter (the right-most dashed line on the
Thrust plot indicates the boundary of the 5-jet region). The D parameter measures the deviation from
planar events and is a 4-jet observable over its entire range. Despite substantial differences in the shower
modeling, matching level, and hadronization tune parameters, the two models give almost identical re-
sults. Further, since PYTHIA is already giving a very good description of this data, there is little for the
additional matching in VINCIA to improve on here.

Still on Fig. 20, VINCIA’s uncertainty bands give about a 20% uncertainty over most of the observ-
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PYTHIA 8 already doing a very good job

VINCIA adds uncertainty bands + can look at more exclusive observables?
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Multijet resolution scales

y45 = scale at which 5th jet becomes resolved ~ 
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Figure 23: Comparison to ALEPH jet resolution measurements [56] (black points) at the Z pole. VIN-
CIAis shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty
estimate. The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty
band. For comparison, the PYTHIA8 result is shown with a thick red line with open circles.

from matching to the 4-parton matrix elements, and both codes are able to describe the 4-jet angles
within a roughly 5% margin, which is comparable to the experimental precision.

Finally, in Fig. 23, we compare to the jet resolutions measured by the ALEPH experiment [56].
Firstly, note that pure PYTHIA is basically able to describe all the distributions, within the experimental
accuracy, despite its being matched only to Z → 3 partons. On the one hand, this is good, since it
implies that the PYTHIA 8 shower is delivering a quite good approximation to QCD also beyond the
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Figure 22: Comparison to DELPHI 4-jet angle measurements (black points) at the Z pole. VINCIAis
shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty estimate.
The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty band. For
comparison, the PYTHIA8 result is shown with a thick red line with open circles.

better understanding of the full uncertainties. All we can say at this level is that the charged-multiplicity
distribution appears to suffer from a larger perturbative uncertainty than the fragmentation spectrum.

A further set of variables that is interesting in the context of differential multi-jet production are the
so-called four-jet angles, which were also measured at LEP. Not having found a public data repository
containing this particular data, however, we instead resorted to extracting the data point values from the
HERWIG++ source code [35], where it is encoded for validation and tuning purposes. A comparison
between this data and default VINCIA and PYTHIA is shown in Fig. 22. Again, it is clear that PYTHIA
itself is already doing a very good job. Since PYTHIA is not matched to 4-jet matrix elements and
also does not contain explicit spin correlations in the shower, this may at first be surprising. However,
PYTHIA does correlate the production and decay planes of gluons in the shower, and thereby includes
the leading effect of gluon polarization. The VINCIA shower, on the other hand, contains no polarization
effects a priori. In VINCIA’s case, the effective correlations of the four-jet angles are instead coming
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Interesting to look at more exclusive observables, but which ones?

4-jet angles

Sensitive to 
polarization effects

Good News
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Non-trivial 
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Higher-order matching needed?

PYTHIA 8 already 
doing a very good 
job on these 
observables

31



VINCIA Collaboration

Approximations

32

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 4!Z
Vincia 1.025 + MadGraph 4.426

Strong Ordering
 3!Matched to Z

GGG
PS"

-ordDm
ARI

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 5!Z
Vincia 1.025 + MadGraph 4.426

Strong Ordering
3!Matched to Z

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 6!Z
Vincia 1.025 + MadGraph 4.426

Strong Ordering
3!Matched to Z

Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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S T RO N G  O R D E R I N G

Q: How well do showers do?
Exp: Compare to data. Difficult to interpret; all-orders cocktail including 

hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log10(PS/ME)
(fourth order)(third order)(second order)

Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations
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2→4

Generate Branchings without imposing strong ordering
At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching
+ smooth ordering beyond matched multiplicities
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p⊥ and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z → 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p⊥, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including

35

last branching

2
Z/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T1
/p

2 T2p
ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg!Z
VINCIA 1.025

ANT = DEF

AR"   KIN = 

 (smooth)T
2   ORD = p

>4<R

!
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
#

! Soft   |   1st Branching   |   Hard # 

2
Z/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T1
/p

2 T2p
ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg!Z
VINCIA 1.025

ANT = DEF

AR"   KIN = 

 (smooth)2
D   ORD = m

>4<R

!
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
#

! Soft   |   1st Branching   |   Hard # 

Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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Distribution of Log10(PSLO/MELO) (inverse ~ matching coefficient)
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z → 5 and Z → 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z → qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full
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Remaining matching 
corrections are small
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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fixed order pQCD  

When (X) branches to (X+1):
Gain one (X+1). Lose one (X). 

(*)Unitarity: Conservation of probability. 

KLN Theorem

Relates Loops and Real emission.
Cancels IR divergences at each order

Imposed by Event evolution: 

shower pQCD
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Pevent ≈ Phard/pQCD ⊗ Psoft/Had

Factorization → Split the problem into pieces

+ Quantum mechanics → Probabilities: dσ

dΩ
∼ Pevent
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(*) Bootstrapping: refers to a self-sustaining process that proceeds without external help
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Radioactive decay

→ evolution equation with kernel:
                                    P(Q)=
     which depends on evolution variable

dσX+1

dσX

Parton shower

→ Evolves in time, t

→ evolution equation with kernel:
                       P(t)=λ, decay constant

→ Evolves in resolution Q ~ virtuality,
     energy, …

→ Markov: probability to decay is
     independent of process

→ Markov: probability to branch is
     independent of process, 
     only depends on Q  (a priori).

→ Probability not to evolve (no-decay) 
     is exponential, exp{-λt}

→ Probability not to evolve (no-branch)
     is exponential, exp{-∫P(Q’)dQ’}
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What does a basic 
parton shower

do?
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pQCD with parton showers

Resummation
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