Vector boson pair production in NNLO QCD

Dirk Rathlev

with M. Grazzini, S. Kallweit, A. Torre, arXiv:1309:7000

Universität Zürich

2.12.2013

Outline

- 1 Introduction
- 2 The method
- 3 results for $pp \to Z\gamma \to \ell^+\ell^-\gamma$
- **4** Outlook: $pp \to W^{\pm} \gamma \to \ell^{\pm} \nu_{\ell} \gamma$
- **5** Conclusion

Motivation

- fully exclusive NNLO QCD calculations are desirable for several reasons
 - increased accuracy
 - reduced scale dependence
 - more realistic jet treatment
 - in some regions, NLO is effectively LO
 - · all partonic channels consistently included
- available fully exclusive NNLO computations:
 - ullet pp
 ightarrow H [Anastasiou, Melnikov, Petriello (2005); Catani, Grazzini (2007)]
 - ullet pp
 ightarrow V [Melnikov, Petriello (2006); Catani, Cieri, Ferrera, de Florian, Grazzini (2009)]
 - $e^+e^- o {\sf three\ jets\ [Gehrmann-De\ Ridder,\ Gehrmann,\ Glover,\ Heinrich\ (2007)]}$
 - ullet pp o WH [Ferrera, Grazzini, Tramontano (2011)]
 - ullet $pp
 ightarrow \gamma \gamma$ production [Catani, Cieri, de Florian, Ferrera, Grazzini (2011)]
 - ullet $pp
 ightarrow {\sf dijet} \ (gg \ {\sf channel}) \ {\sf [Gehrmann-De \ Ridder, \ Gehrmann, \ Glover, \ Pires} \ (2013)]$
 - $pp o t ar{t}$ (total cross section presented) (Czakon, Mitov (2012); Czakon, Fiedler, Mitov (2013))
 - ullet $pp
 ightarrow H + {
 m jet} \left(gg \ {
 m channel}
 ight)$ [Boughezal, Caola, Melnikov, Petriello, Schulze (2013)]

Vector boson pair production

- ullet vector boson pair production pp o VV' logical next step in the NNLO program
 - important standard model test
 - background for Higgs analyses and BSM searches
 - experimental accuracy is approaching uncertainty of NLO prediction
 - some moderate excesses in the experimental data

	$\sigma \left(pp ightarrow W^+W^- + X ight) \left[ext{pb} ight]$	SM NLO [pb]
ATLAS 7 TeV	$51.9 \pm 2.0 \pm 3.9 \pm 2.0$	$44.7^{+2.1}_{-1.9}$
CMS 7 TeV	$52.4 \pm 2.0 \pm 4.5 \pm 1.2$	$44.7^{+2.1}_{-1.9}$
CMS 8 TeV	$69.9 \pm 2.8 \pm 5.6 \pm 3.1$	$44.7^{+2.1}_{-1.9}$ $44.7^{+2.1}_{-1.9}$ $57.3^{+2.4}_{-1.6}$

Status of $pp \rightarrow VV'$

- ullet NNLO QCD calculation of $\gamma\gamma$ done [Catani, Cieri, de Florian, Ferrera, Grazzini (2011)]
- next step: $Z\gamma$ and $W\gamma$
 - QCD NLO corrections available [Ohnemus (1993); Baur, Han, Ohnemus (1998);
 - de Florian, Signer (2000); Campbell, Ellis, Williams (2011)]

 loop-induced gg contribution [Amettler, Gava, Paver, Treleani (1985); van der Bij, Glover (1988);

Adamson, de Florian, Signer (2003)]

- electroweak corrections available [Hollik, Meier (2004); Accomando, Denner, Meier (2006)]
- necessary ingredients:
 - $pp \rightarrow V\gamma + 2$ partons at tree level, available
 - ullet $pp
 ightarrow V \gamma + 1$ parton at one loop, available [Campbell, Hartanto, Williams (2012)]
 - ullet $pp o V\gamma$ at two loops, available [Matsuura, van der Marck, van Neerven (1989);

Gehrmann, Tancredi (2012)]

- $gg o V\gamma$ loop-induced, available
- we obtain tree- and one-loop amplitudes from OpenLoops + Collier library [Cascioli, Maierhofer, Pozzorini (2012); Denner, Dittmaier, Hofer; Denner, Dittmaier (2005)]
- MC generator: inhouse solution [Kallweit]
- use q_T subtraction [Catani, Grazzini (2007)] for handling of IR divergences

q_T subtraction method I

- consider a process $c\overline{c} \to F$, c = q or c = g; final state F is colorless
- then

$$d\sigma_{(N)NLO}^F\Big|_{q_T \neq 0} = d\sigma_{(N)LO}^{F+jets}$$

- singular for $q_T \to 0$, but limiting behaviour is known from transverse momentum resummation program [Bozzi, Catani, de Florian, Grazzini (2006)]
- define counterterm $\mathrm{d}\sigma^{\mathit{CT}} = \Sigma(q_T/Q) \otimes \mathrm{d}\sigma_{\mathit{LO}}, \quad Q \equiv \mathit{m_F}$
- add $q_T = 0$ piece to obtain the full result:

$$d\sigma_{(N)NLO}^{F} = \mathcal{H}_{(N)NLO}^{F} \otimes d\sigma_{LO} + \left[d\sigma_{(N)LO}^{F+jets} - d\sigma_{(N)NLO}^{CT} \right]$$

q_T subtraction method II

$$d\sigma_{(N)NLO}^{F} = \mathcal{H}_{(N)NLO}^{F} \otimes d\sigma_{LO} + \left[d\sigma_{(N)LO}^{F+jets} - \underbrace{\sum_{(N)NLO} \otimes d\sigma_{LO}}_{=d\sigma_{(N)NLO}^{CT}} \right]$$

- $d\sigma_{NLO}^{F+jets}$ can be treated by known techniques (Catani-Seymour dipoles, ...)
- $\Sigma(q_T/Q) = \left(\frac{\alpha_S}{\pi}\right) \Sigma^{(1)}(q_T/Q) + \left(\frac{\alpha_S}{\pi}\right)^2 \Sigma^{(2)}(q_T/Q) + \dots$
- counterterm is universal (up to a trivial process dependence; differs for c=g or c=q) and $\Sigma^{(1)}$ and $\Sigma^{(2)}$ are known explicitly
- $\left[\mathrm{d}\sigma^{F+jets}_{(N)LO}-\mathrm{d}\sigma^{CT}
 ight]$ finite for $q_T/Q o 0$

q_T subtraction method III

$$\mathrm{d}\sigma_{(N)NLO}^{\textit{F}} = \frac{\mathcal{H}_{(N)NLO}^{\textit{F}}}{(N)NLO} \otimes \mathrm{d}\sigma_{LO} + \left[\mathrm{d}\sigma_{(N)LO}^{\textit{F}+jets} - \mathrm{d}\sigma_{(N)NLO}^{\textit{CT}}\right]$$

•
$$\mathcal{H}^{F} = \underbrace{1}_{\text{tree level}} + \underbrace{\left(\frac{\alpha_{S}}{\pi}\right)\mathcal{H}^{F(1)}}_{\text{(finite) one-loop amplitude}} + \underbrace{\left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{F(2)}}_{\text{(finite) two-loop amplitude}} + \dots$$

- $oldsymbol{\cdot}$ $\mathcal{H}^{\emph{F}}$ contains the loop corrections to the Born level subprocess
- explicit process independent relations between $\mathcal{H}^{F(1)}$ [de Florian, Grazzini (2001)], $\mathcal{H}^{F(2)}$ [Catani, Cieri, de Florian, Ferrera, Grazzini (2013)] and the corresponding renormalized loop amplitudes \mathcal{M}^F are known:

$$\begin{split} \mathcal{H}^{F(1)} &= \mathcal{M}^{F(1)} - \widetilde{I}^{(1)}(\varepsilon) \mathcal{M}^{F(0)} \\ \mathcal{H}^{F(2)} &= \mathcal{M}^{F(2)} - \widetilde{I}^{(1)}(\varepsilon) \mathcal{M}^{F(1)} - \widetilde{I}^{(2)}(\varepsilon) \mathcal{M}^{F(0)}. \end{split}$$

Photon isolation

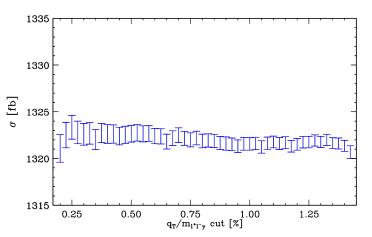
- two contributions to photon production:
 - direct production in the hard process, e.g. genuine $\ell^+\ell^-\gamma$ production
 - non-perturbative fragmentation of a hard parton
- in experiments, impose hard cone isolation: $\sum_{\delta<\delta_0} E_T^{had} \leq \varepsilon_\gamma E_T^\gamma$
- only infrared safe when combined with fragmentation contribution due to quark-photon collinear singularity
- smooth cone isolation [Frixione (1998)]: define $\chi(\delta) = \left(\frac{1-\cos(\delta)}{1-\cos(\delta_0)}\right)^n$,

$$\sum_{\delta' < \delta} E_T^{had} \le \varepsilon_\gamma E_T^\gamma \, \chi(\delta) \quad \text{for all} \quad \delta \le \delta_0$$

smooth cone isolation eliminates fragmentation contribution completely

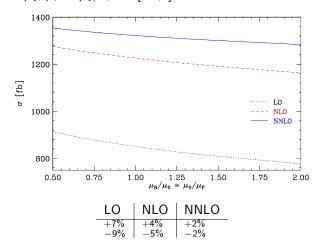
$Z\gamma$: Setup and cross sections

- we present results for $pp \to \ell^+\ell^-\gamma + X$
- setup close to the ATLAS analysis [ATLAS collaboration (2013)]

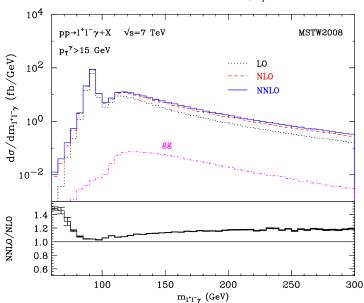

•
$$p_T^\gamma > 15\,\mathrm{GeV}$$
 or $p_T^\gamma > 40\,\mathrm{GeV}$, $|\eta^\gamma| < 2.37$

- $p_T^{\ell} > 25 \, \text{GeV}$, $|\eta^{\ell}| < 2.47$
- $m_{\ell\ell} > 40 \, \text{GeV}$
- $\Delta R(\ell, \gamma) > 0.7$, $\Delta R(\ell/\gamma, jet) > 0.3$
- cross sections:

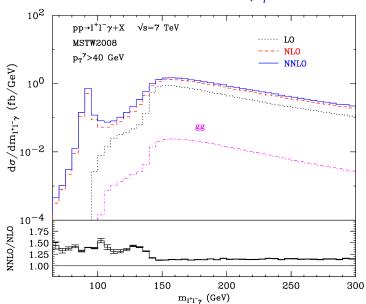
		LO	NLO	NNLO	exp.
$p_T^\gamma > 15{ m GeV}$	σ [pb]	0.851(1)	1.226(1)	1.323(3)	1.31(12)
	rel. correction		44%	8%	
$p_T^{\gamma} > 40\mathrm{GeV}$	σ [fb]	77.45(3)	132.90(8)	153.3(5)	
	rel. correction		72%	16%	
CMS setup	σ [pb]	1.334(1)	1.891(1)	2.021(5)	
[CMS collaboration (2013)]	rel. correction		42%	7%	


Stability

• check independence of phase space regulator (small cut on q_T/Q)



Scale uncertainty


- check scale variation; tiny at NLO due to an accidental cancellation
- follow proposition by [Campbell, Ellis, Williams (2011)] and vary $\mu_R = a\mu_0, \ \mu_F = \mu_0/a, \ a \in [0.5,2]$

Invariant mass distribution, $p_T^\gamma > 15\,\mathrm{GeV}$

Invariant mass distribution, $p_T^{\gamma} > 40 \,\text{GeV}$

$W\gamma$ measurement

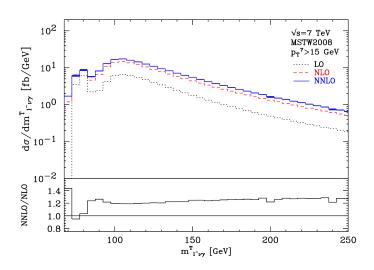
• $\sim 2\sigma$ excess in ATLAS measurement, but NLO corrections are large $(\sim 100\%)$

	$\sigma^{ m ext-fid}[m pb]$	$\sigma^{ m ext-fid}[m pb]$
	MCFM Prediction	
	$N_{ m jet} \geq 0$	
$e\nu\gamma$	$2.74 \pm 0.05 \text{ (stat)} \pm 0.32 \text{ (syst)} \pm 0.14 \text{ (lumi)}$	1.96 ± 0.17
$\mu\nu\gamma$	$2.80 \pm 0.05 \text{ (stat)} \pm 0.37 \text{ (syst)} \pm 0.14 \text{ (lumi)}$	1.96 ± 0.17
$\ell \nu \gamma$	$2.77 \pm 0.03 \text{ (stat)} \pm 0.33 \text{ (syst)} \pm 0.14 \text{ (lumi)}$	1.96 ± 0.17
$e^+e^-\gamma$	$1.30 \pm 0.03 \text{ (stat)} \pm 0.13 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
$\mu^+\mu^-\gamma$	$1.32 \pm 0.03 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
$\ell^+\ell^-\gamma$	$1.31 \pm 0.02 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.05 \text{ (lumi)}$	1.18 ± 0.05
$ u \bar{\nu} \gamma$	$0.133 \pm 0.013 \text{ (stat)} \pm 0.020 \text{ (syst)} \pm 0.005 \text{ (lumi)}$	0.156 ± 0.012

[ATLAS collaboration (2013)]

could be a NNLO effect

$W\gamma$: Setup and cross sections


• setup close to the ATLAS analysis [ATLAS collaboration (2013)] same setup as for $Z\gamma$, except for

•
$$m_{\ell\ell} > 40 \, \text{GeV}$$
 \rightarrow $p_{T.miss} > 35 \, \text{GeV}$

• **preliminary:** $V_{CKM} = 1$, partially unchecked

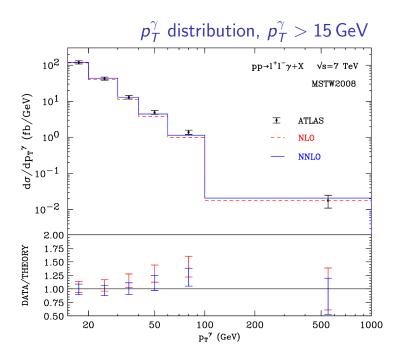
		LO	NLO	NNLO	exp.
W^+	σ [pb]	0.511(1)	1.154(1)	1.395(9)	
	rel. correction		126%	21%	
W ⁻	σ [pb]	0.395(1)	0.908(2)	1.093(8)	
	rel. correction		130%	20%	
total	σ [pb]	0.906(1)	2.062(2)	2.488(12)	2.77(34)
	rel. correction		128%	20%	

Transverse mass distribution, $p_T^{\gamma} > 15 \,\text{GeV}$

Conclusion

- results for fully differential NNLO QCD computation of $Z\gamma$ production
 - good apparent convergence of perturbative series (e.g. ATLAS cuts: $K_{NNLO/NLO}=1.08,\ K_{NLO/LO}=1.44$)
 - K factor not uniform and strongly cut dependent. Corrections can vary between 7% and 16% for typical LHC cuts
 - loop-induced gg contribution very small, does not capture most of the NNLO correction
 - more phenomenology will follow
 - $pp o Z\gamma o
 u_\ell \overline{
 u}_\ell \gamma$ to be done, simpler than $Z\gamma o \ell^+ \ell^- \gamma$
- first results for $W\gamma$ production
 - NNLO corrections are $\sim 20\%$
 - · more detailed studies to follow

$Z\gamma$: ATLAS and CMS setup


- ATLAS inspired setup [ATLAS collaboration (2013)]
 - $p_T^\gamma > 15\,\mathrm{GeV}$ or $p_T^\gamma > 40\,\mathrm{GeV}$, $|\eta^\gamma| < 2.37$, $p_T^\ell > 25\,\mathrm{GeV}$, $|\eta^\ell| < 2.47$
 - $m_{\ell\ell} > 40 \, \text{GeV}$
 - $\Delta R(\ell, \gamma) > 0.7$
 - $\Delta R(\ell/\gamma, jet) > 0.3$, where $E_T^{jet} > 30 \, {\rm GeV}$ and $|\eta^{jet}| < 4.4$, jets clustered using the anti- k_T algorithm with radius D=0.4
 - smooth cone isolation with $\delta_0=0.4$ and $\varepsilon=0.5$
 - $\mu_R = \mu_F = \sqrt{m_Z^2 + (p_T^{\gamma})^2}$
- CMS inspired setup [CMS collaboration (2013)]
 - $p_T^{\gamma} > 15 \,\text{GeV}$, $|\eta^{\gamma}| < 2.5$, $p_T^{\ell} > 20 \,\text{GeV}$, $|\eta^{\ell}| < 2.5$
 - $m_{\ell\ell} > 50 \, {\rm GeV}$
 - $\Delta R(\ell, \gamma) > 0.7$
 - smooth cone isolation with $\delta_0=0.15$ and $\varepsilon=0.05$

•
$$\mu_R = \mu_F = \sqrt{m_Z^2 + (p_T^{\gamma})^2}$$

Contributions by channel

	$q\overline{q}$	gq	$g\overline{q}$	gg	qq	$\overline{q}\overline{q}$	total [fb]
LO	851						851
NLO	1255	-6	-23				1226
NNLO	1364	-16	-38	6	6	1	1323

- $q\overline{q}$ the dominant channel at each order and also has the largest corrections
- gq and $g\overline{q}$ have negative weight
- gg is tiny

