Heavy quark effects in resummed predictions for Higgs boson production

P. F. Monni Rudolf Peierls Centre for Theoretical Physics University of Oxford

Work in collaboration with A. Banfi and G. Zanderighi

CERN 3th December 2013

- Perturbative predictions for Higgs boson production obtained in the large top mass limit
- Perturbative corrections are sizeable. Fixed-order and resummed predictions are available for different observables and perturbative uncertainties are under control
- One should wonder if corrections to the heavy-top approximation are of the order of such uncertainties
- A precise assessment is necessary when experimental uncertainties become as small as $\sim 10\%$

Exact treatment of quark masses in Higgs production cross section (distributions) is available up to NLO (LO)

HIGLU, MCFM, HPRO, SusHi, ...

Some terms of the $1/m_t^n$ expansion calculated for NLO distributions

Harlander, Neumann, Ozeren, Wiesemann

Mass effects have been implemented to LO accuracy for distributions in Monte Carlo event generators (Herwig, POWHEG, MC@NLO, ...)

Corcella et al.; Bagnaschi et al.; Frixione et al.

- \Im ... and included in resummed predictions for
 - Higgs transverse momentum $p_{t,H}$ spectrum

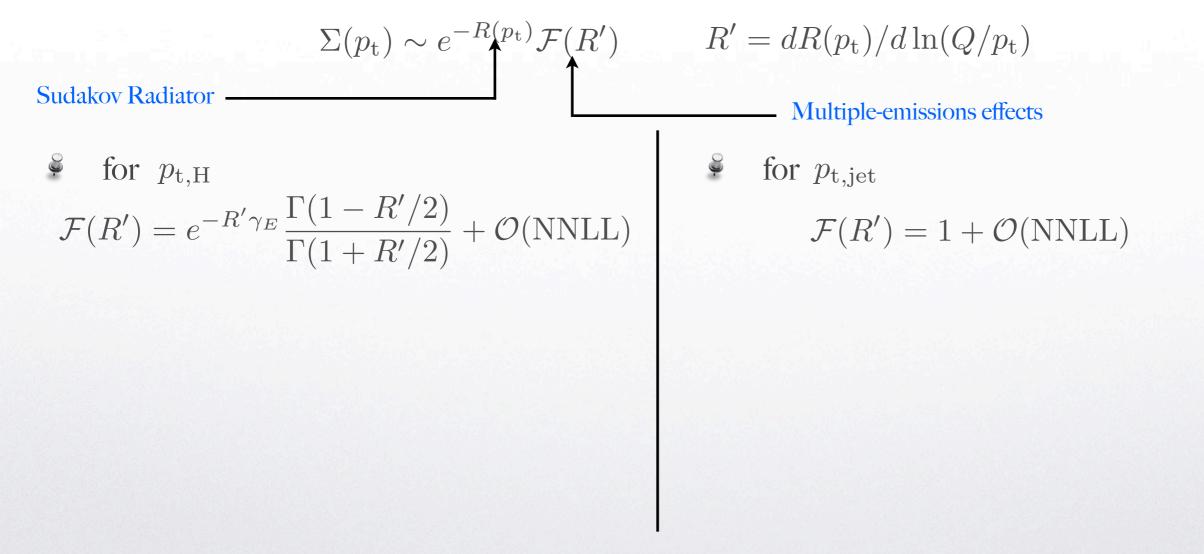
Mantler, Wiesemann; Grazzini, Sargsyan

 \Im leading jet $p_{t,jet}$ spectrum

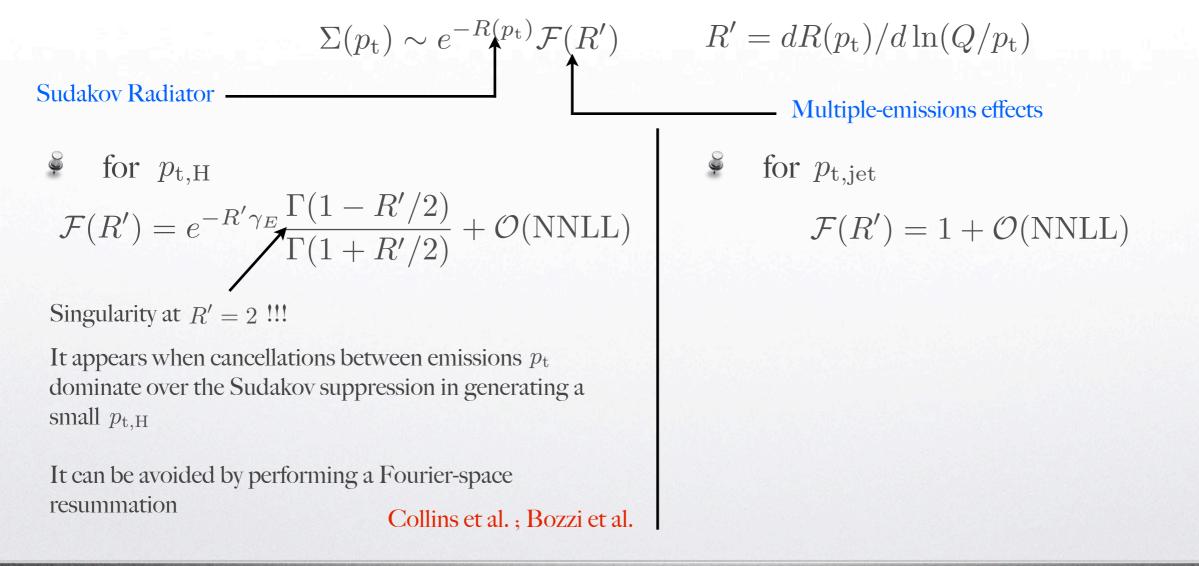
Banfi, Zanderighi, PFM

The present talk analyses the impact of top and bottom quarks on leading-jet and Higgs-boson transverse momentum spectrum

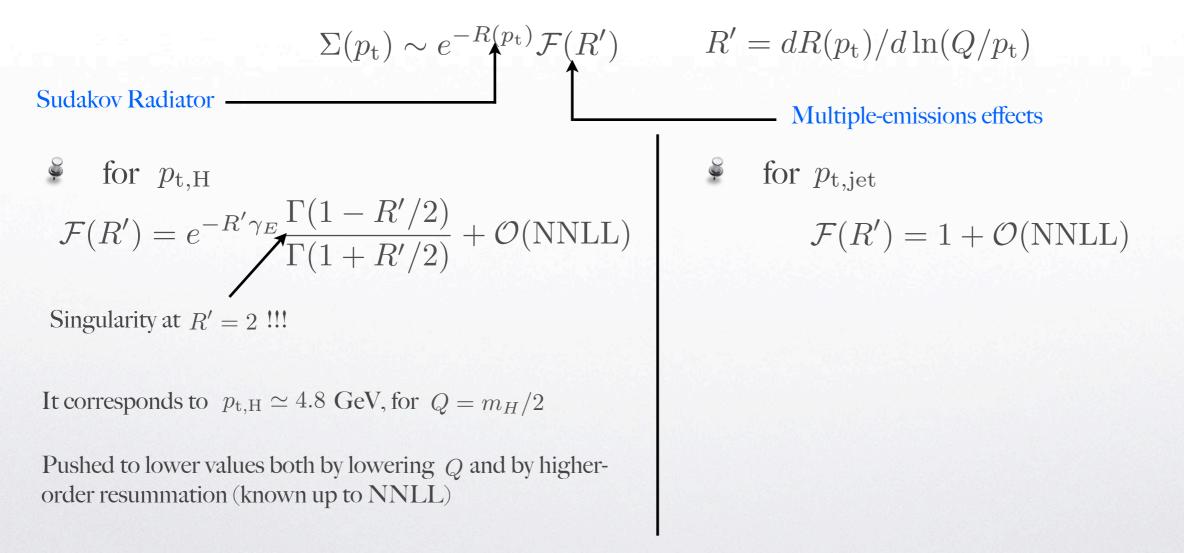
- Momentum-space resummation of $\ln(m_H/p_t)$ can be carried out in the CAESAR framework
- For the resummation of large logarithms leads to different logarithmic structures for $p_{t,H}$ and $p_{t,jet}$



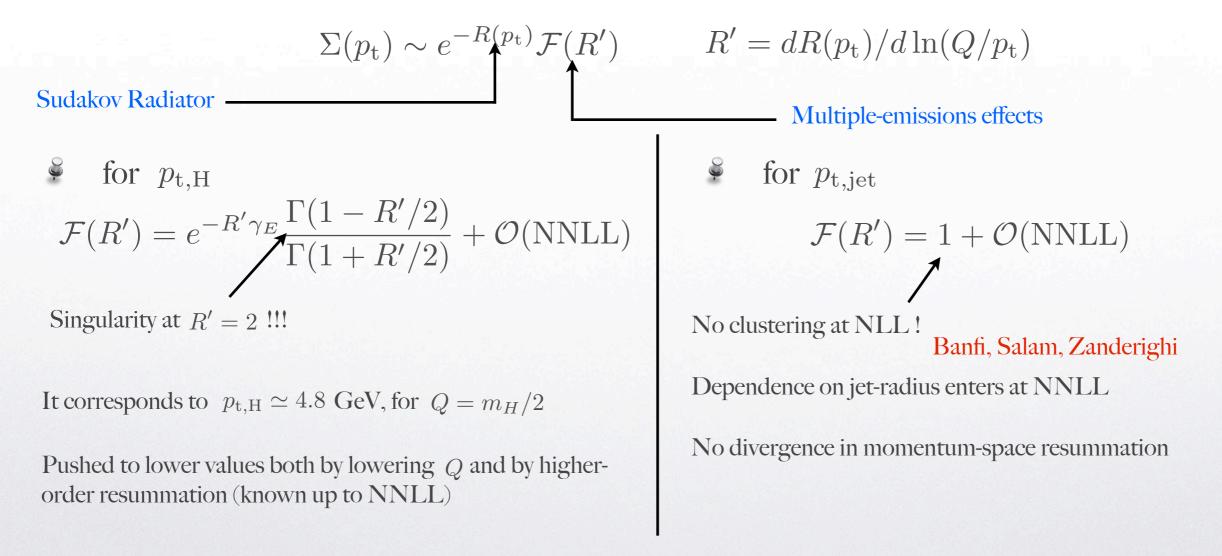
- Momentum-space resummation of $\ln(m_H/p_t)$ can be carried out in the CAESAR framework
- For the resummation of large logarithms leads to different logarithmic structures for $p_{t,H}$ and $p_{t,jet}$

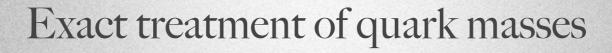


- Solution Momentum-space resummation of $\ln(m_H/p_t)$ can be carried out in the CAESAR framework
- For the resummation of large logarithms leads to different logarithmic structures for $p_{t,H}$ and $p_{t,jet}$

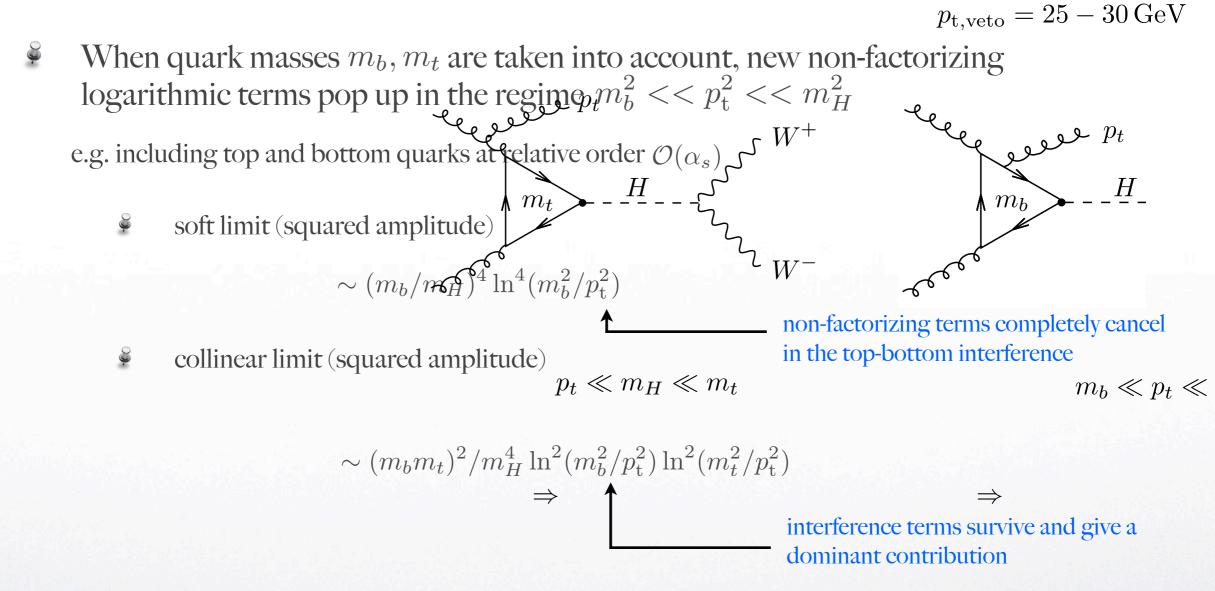


- Momentum-space resummation of $\ln(m_H/p_t)$ can be carried out in the CAESAR framework
- For the resummation of large logarithms leads to different logarithmic structures for $p_{t,H}$ and $p_{t,jet}$

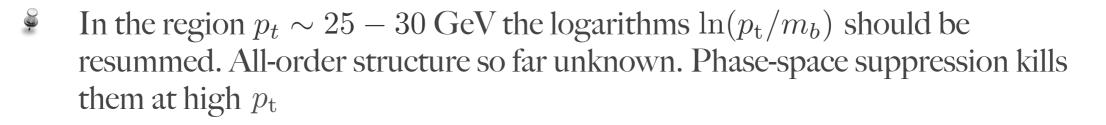




 $m = 25 - 20 C_{o}$

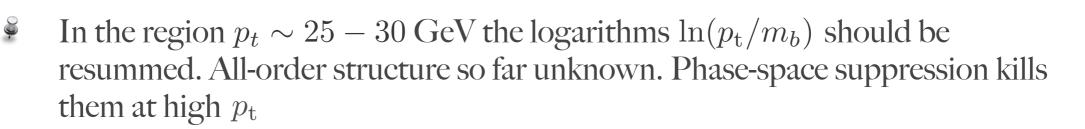


For the provide the standard factorization of soft and collinear singularities is preserved as $p_t \rightarrow 0$



- As any remainder, the non-factorizing terms are thus computed at fixed-order and matched to the resummed calculation

 $\Sigma(p_{t}) \sim C(\alpha_{s}, \mu_{R}, \mu_{F}, Q, m_{H}, m_{b}, m_{t})e^{-R(p_{t})}\mathcal{F}(R') + \text{remainder}$



- As any remainder, the non-factorizing terms are thus computed at fixed-order and matched to the resummed calculation

$$\Sigma(p_{\rm t}) \sim C(\alpha_s, \mu_R, \mu_F, Q, m_H, m_b, m_t) e^{-R(p_{\rm t})} \mathcal{F}(R') + \text{remainder}$$

Prefactor contains coefficient functions as in the heavy-top limit and full virtual corrections with both top and bottom quarks running in the loop. It contains large logarithms $\ln(m_H/m_b)$

Spira et al.; Harlander et al.; Bonciani et al.

In the region $p_t \sim 25 - 30$ GeV the logarithms $\ln(p_t/m_b)$ should be resummed. All-order structure so far unknown. Phase-space suppression kills them at high p_t

- As any remainder, the non-factorizing terms are thus computed at fixed-order and matched to the resummed calculation

Resummation of logarithms $\ln(m_H/p_t)$ as in the large- m_t limit

$$\Sigma(p_{t}) \sim C(\alpha_{s}, \mu_{R}, \mu_{F}, Q, m_{H}, m_{b}, m_{t}) e^{-R(p_{t})} \mathcal{F}(R') + \text{remainder}$$

Prefactor contains coefficient functions as in the heavy-top limit and full virtual corrections with both top and bottom quarks running in the loop. It contains large logarithms $\ln(m_H/m_b)$

- In the region $p_t \sim 25 30$ GeV the logarithms $\ln(p_t/m_b)$ should be resummed. All-order structure so far unknown. Phase-space suppression kills them at high p_t
- They can be formally treated as a finite remainder that vanishes when $p_t \rightarrow 0$
- As any remainder, the non-factorizing terms are thus computed at fixed-order and matched to the resummed calculation

It contains power suppressed terms and non-factorizing logs $\ln(p_t/m_b)$

Resummation of logarithms $\ln(m_H/p_t)$ as in the large- m_t limit

$$\Sigma(p_{t}) \sim C(\alpha_{s}, \mu_{R}, \mu_{F}, Q, m_{H}, m_{b}, m_{t}) e^{-R(p_{t})} \mathcal{F}(R') + \text{remainder}$$

Prefactor contains coefficient functions as in the heavy-top limit and full virtual corrections with both top and bottom quarks running in the loop. It contains large logarithms $\ln(m_H/m_b)$

Spira et al.; Harlander et al.; Bonciani et al.

- Resummation and matching up to NNLL+NNLO for $p_{t,jet}$, $p_{t,H}$ have been implemented in the programme JetVHeto, including mass effects
- We use approximate relative $\mathcal{O}(\alpha_s^2)$ corrections obtained as

$$\Sigma_{\text{approx}}^{(2)}(p_{\text{t}}) = \frac{\sigma_0^{m_t - \text{only}}}{\sigma_0^{m_t \to \infty}} \Sigma_{m_t \to \infty}^{(2)}(p_{\text{t}})$$

hnnlo-v2.0 - Grazzini, Sargsyan

When matching to the NNLL resummed result, one is to replace the expansion of the resummation formula at $\mathcal{O}(\alpha_s^2)$ with the modified one

$$\Sigma_{\text{matched}}(p_{t}) = \Sigma_{\text{res}}(p_{t})/\sigma_{0}$$

$$\times \left(1 + \Sigma_{\text{fo}}^{(1)}(p_{t}) - \Sigma_{\text{res}}^{(1)}(p_{t}) + \Sigma_{\text{fo,approx}}^{(2)}(p_{t}) - \Sigma_{\text{res}}^{(2)}(p_{t}) - \Sigma_{\text{res}}^{(1)}(p_{t})/\sigma_{0}\left(\Sigma_{\text{fo}}^{(1)}(p_{t}) - \Sigma_{\text{res}}^{(1)}(p_{t})\right)\right)$$

$$\Sigma_{\text{res}}^{(2)}(p_{t}) = \frac{\sigma_{0}^{m_{t} - \text{only}}}{\sigma_{0}^{m_{t} \to \infty}} \Sigma_{\text{res},m_{t} \to \infty}^{(2)}(p_{t})$$

This ensures NNLL accuracy in the Sudakov region. However, the difference between the matched and fixed-order result will be of $\mathcal{O}(\alpha_s^2)$ rather than $\mathcal{O}(\alpha_s^3)$!!

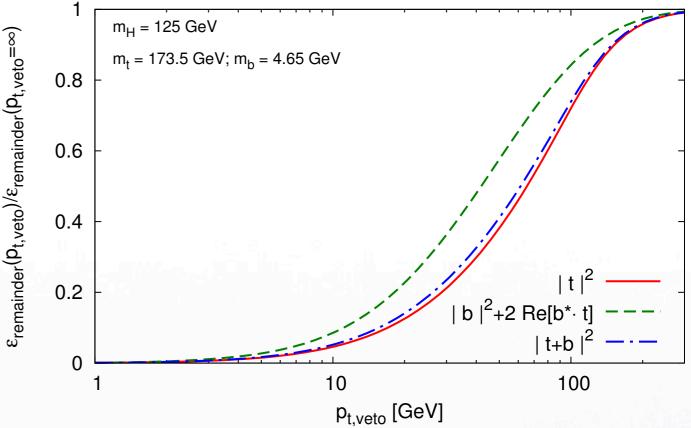
Results for jet-veto efficiency

The remainder is larger for the bottom-induced contribution (squared bottom amplitude plus top-bottom interference) and suggests to choose the corresponding resummation scale to be smaller than the one associated to t

i.

The top-quark contribution
$$Q_1 \simeq m_H/2, Q_2 \simeq m_H/4$$

 $Q_1 \simeq m_H/2, Q_2 \simeq m_H/4$
 $Q_1 \simeq m_H/2, Q_2 \simeq m_H/4$
 $Q_2 = m_H/2$
 $Q_2 = m_H/4$
 $Q_2 = m_H/4$
 $Q_2 = m_H/2$
 $Q_2 = m_H/4$
 $Q_2 = m_H/2$
 $Q_2 = m_H/2$



The dependence of the matched NNLL+NNLO bottominduced contribution on the associated resummation scale is negligible beyond ~ 40 GeV.

Results for jet-veto efficiency

The remainder is larger for the bottom-induced contribut interferen resumma the top-q

i.e.

Emainder is larger for the bottom-induced
bution (squared bottom amplitude plus top-bottom
erence) and suggests to choose the corresponding
mation scale to be smaller than the one associated to
p-quark contribution
$$Q_1 \simeq m_H/2, \ Q_2 \simeq m_H/4$$

$$Q_1 \simeq m_H/2, \ Q_2 \simeq m_H/4$$

$$Q_1 \simeq m_H/2, \ Q_2 \simeq m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = m_H/4$$

$$Q_2 = m_H/4$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 10 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 10 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 10 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 10 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 10 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 10 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 125 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 125 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 125 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

$$Q_2 = 125 \text{ GeV}$$

$$Q_2 = 125 \text{ GeV}$$

$$Q_1 = 125 \text{ GeV}$$

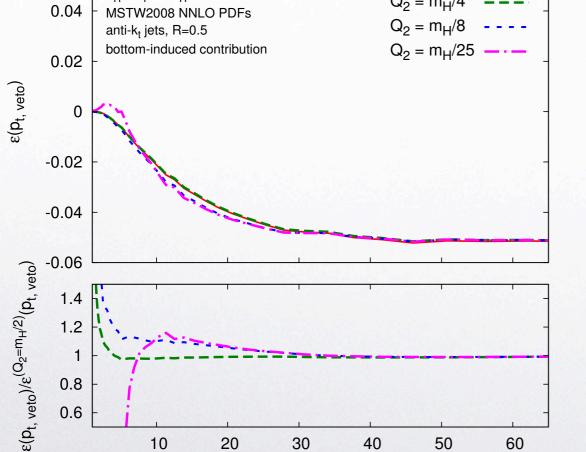
$$Q_2 = 125 \text{ GeV}$$

$$Q_1 = 125$$

1

m_H = 125 GeV

induced contribution on the associated resummation scale is negligible beyond ~ 40 GeV.



p_{t,veto} [GeV]

Results for jet-veto efficiency

1

m_H = 125 GeV

The remainder is larger for the bottom-induced contribution (squared bottom amplitude plus top-bottom)

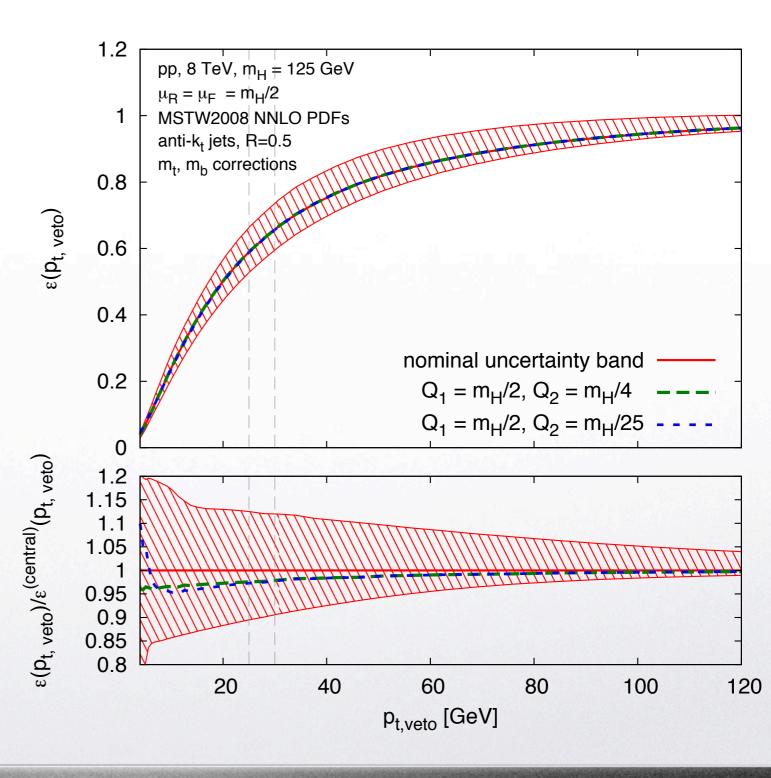
p_{t,veto} [GeV]

The remainder is larger for the bottom-induced
somtribution (squared bottom amplitude plus top-bottom
interference) and suggests to choose the corresponding
esummation scale to be smaller than the one associated to
the top-quark contribution
.e.
$$Q_1 \simeq m_H/2, Q_2 \simeq m_H/4$$

 $Q_1 \simeq m_H/2, Q_2 \simeq m_H/4$
 $Q_2 = m_H/2 = 0.2$
 $Q_2 = m_H/8 = 0.5$
 $Q_2 = m_H/2 = 0.2$
 Q_2

The bottom-induced renormalization scale Q_2 variation has a moderate impact on the total (top+bottom) jet-veto efficiency. Therefore we decide to set $Q_2 = Q_1 = m_H/2$ as our default central value

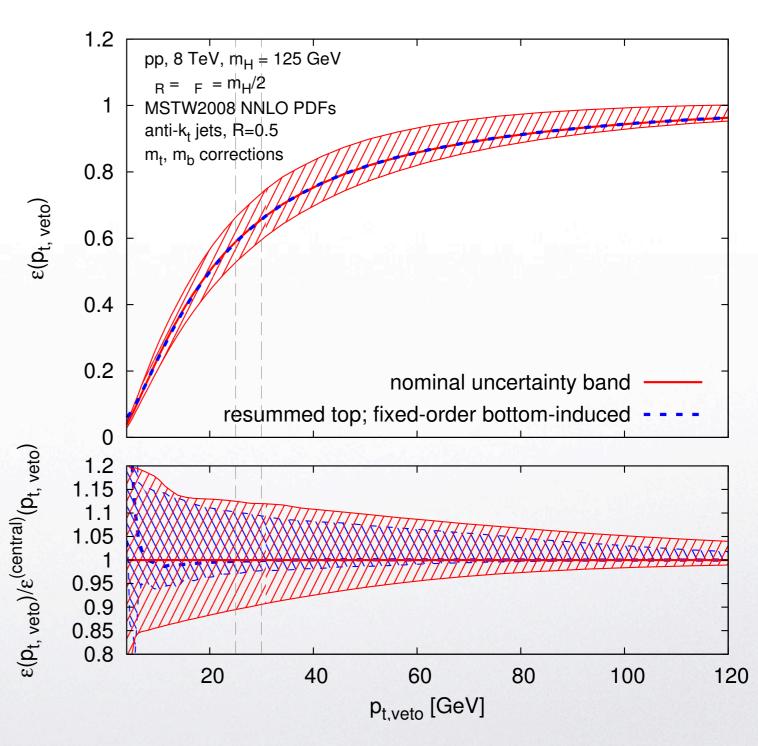
Uncertainty band is the envelope of renormalization, factorization and resummation scale variations + spread between three matching schemes



To assess the uncertainty associated with the unknown higher-order mass effects, we design different matching schemes in which the non-factorizing terms are treated (enhanced) differently

I) treat bottom-induced terms at fixed-order

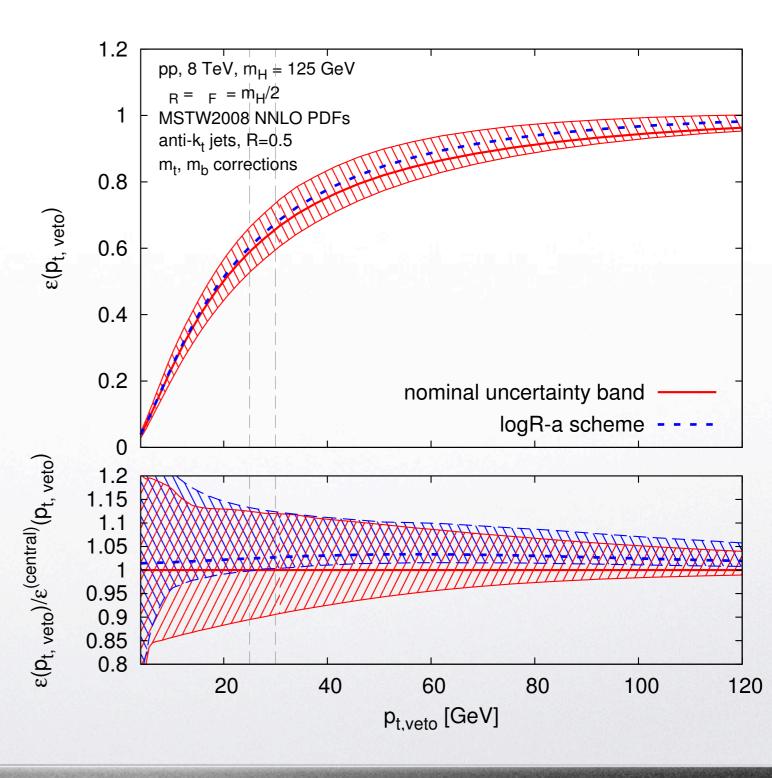
The blue uncertainty band is the envelope of renormalization and factorization scales for the fixed-order bottom-induced part and of renormalization, factorization and resummation scales for the resummed top contribution



To assess the uncertainty associated with the unknown higher-order mass effects, we design different matching schemes in which the non-factorizing terms are treated (enhanced) differently

2) exponentiate the bottom-induced contribution

The blue uncertainty band is the envelope of renormalization, factorization and resummation scales

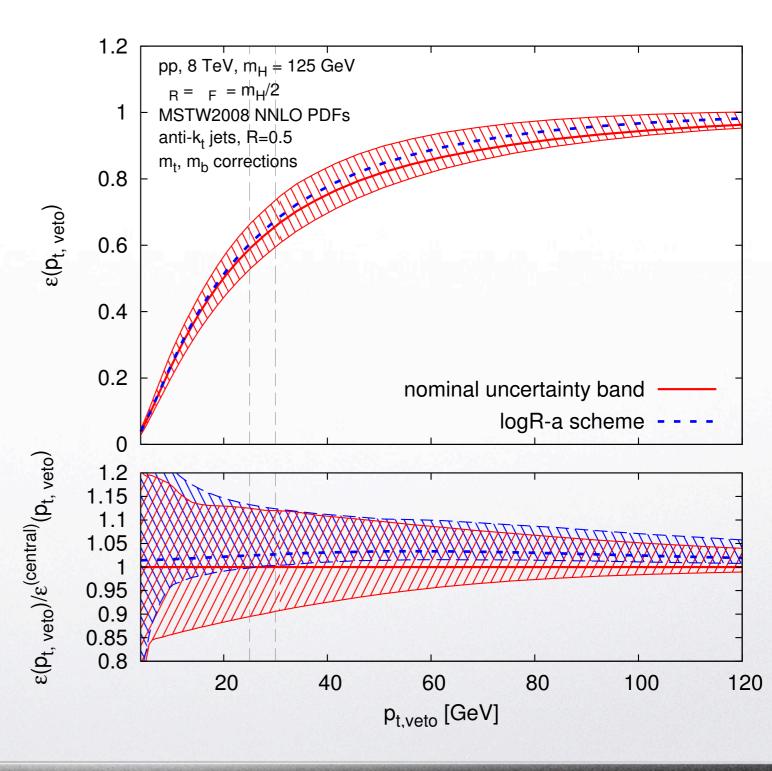


To assess the uncertainty associated with the unknown higher-order mass effects, we design different matching schemes in which the non-factorizing terms are treated (enhanced) differently

2) exponentiate the bottom-induced contribution

The blue uncertainty band is the envelope of renormalization, factorization and resummation scales

In both cases we observe that the central values are within our nominal uncertainty band - conservative estimate



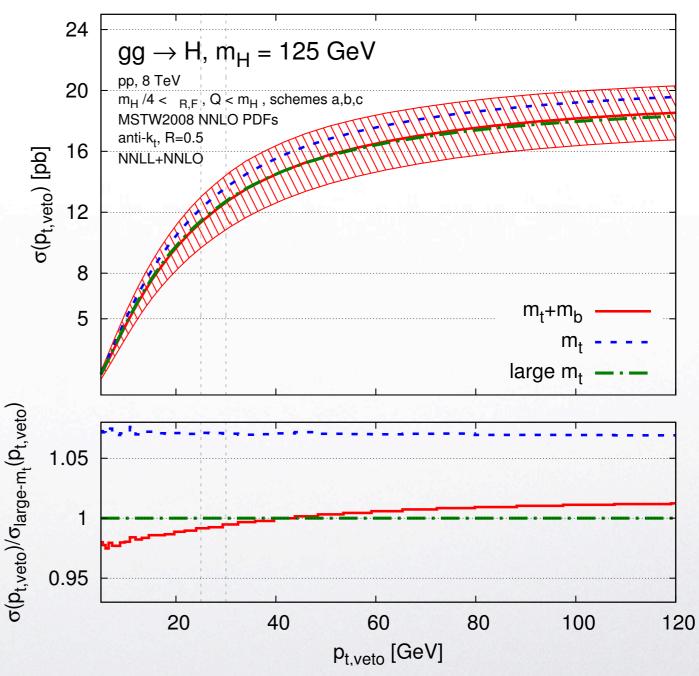
î

The effect of top-quark amounts to an over

The effect of top-quark amounts to an over-all rescaling whilst the bottom quark distorts the shape of the spectrum.

The total effect is small: $\sim 3\%$ at small transverse momentum and $\leq 2\%$ in the high- $p_{t,veto}$ region

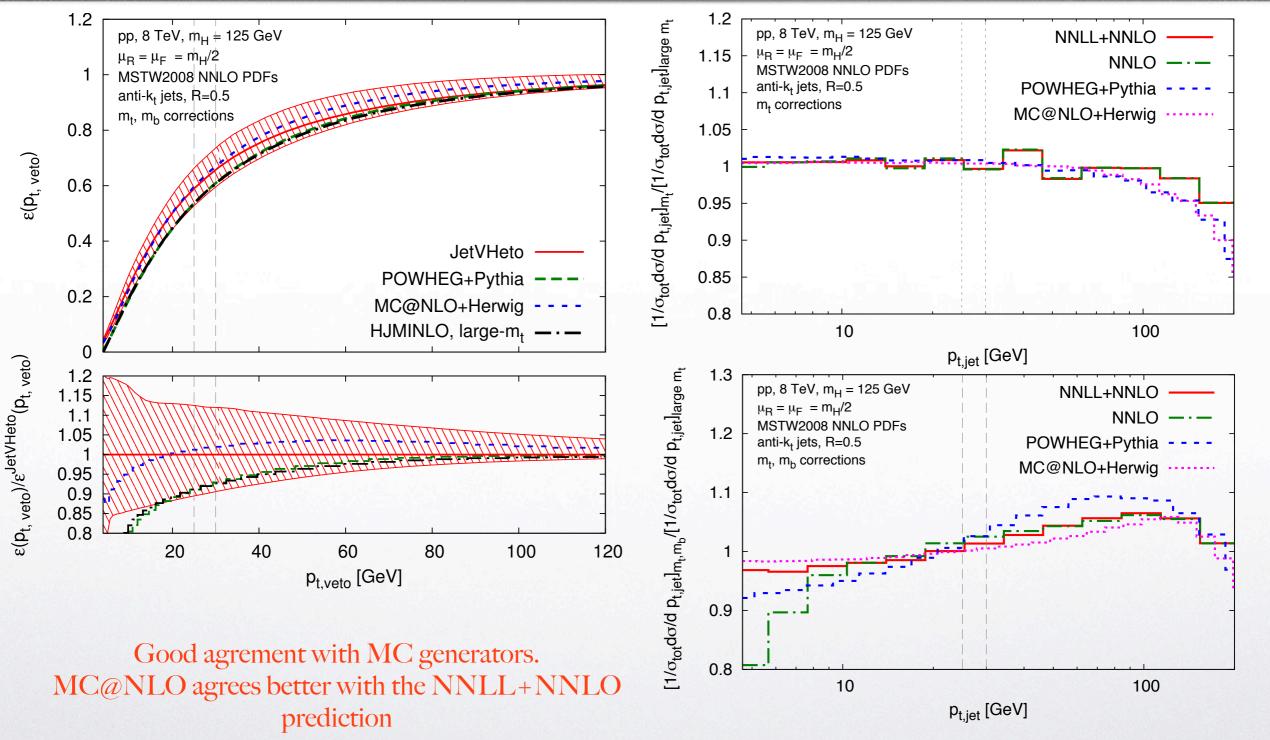
Uncertainty band obtained with the efficiency method, i.e. errors on jet-veto efficiency and total cross section treated as totally uncorrelated



[1/0 100 10 Comparison to Monte Carlo for jet-veto efficiency

0.8

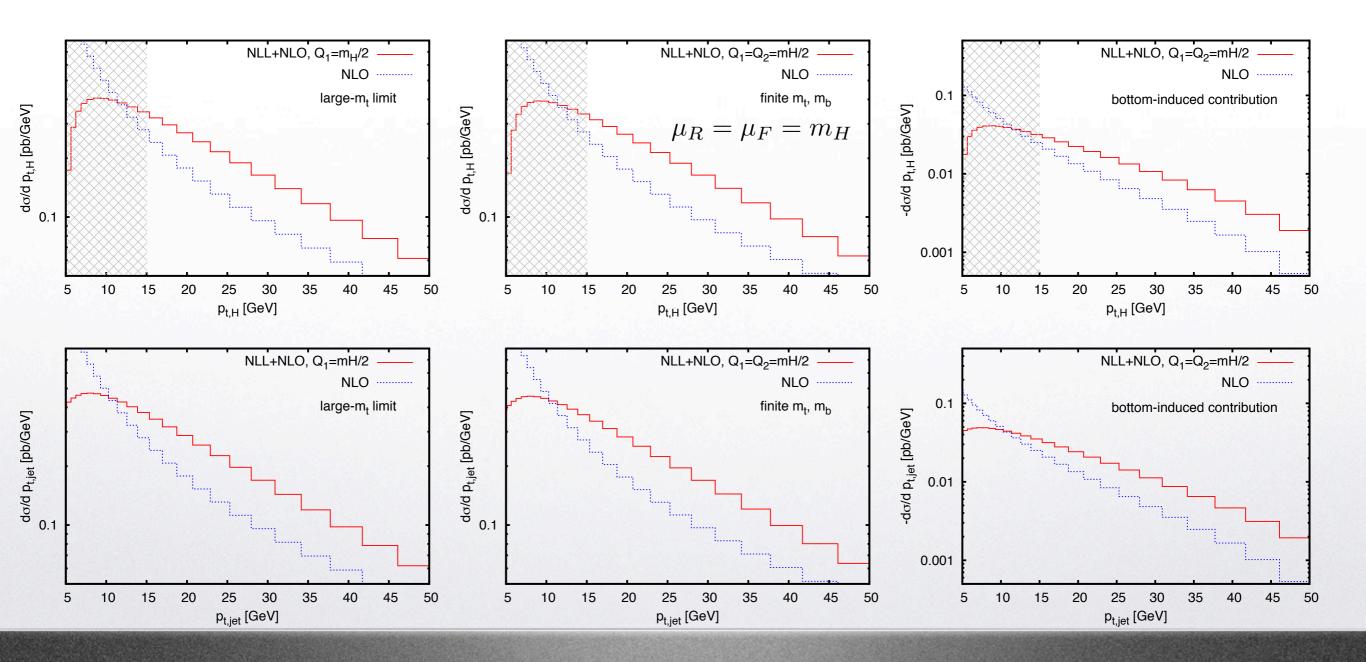
1



NNLO distributions obtained with hnnlo-v2.0

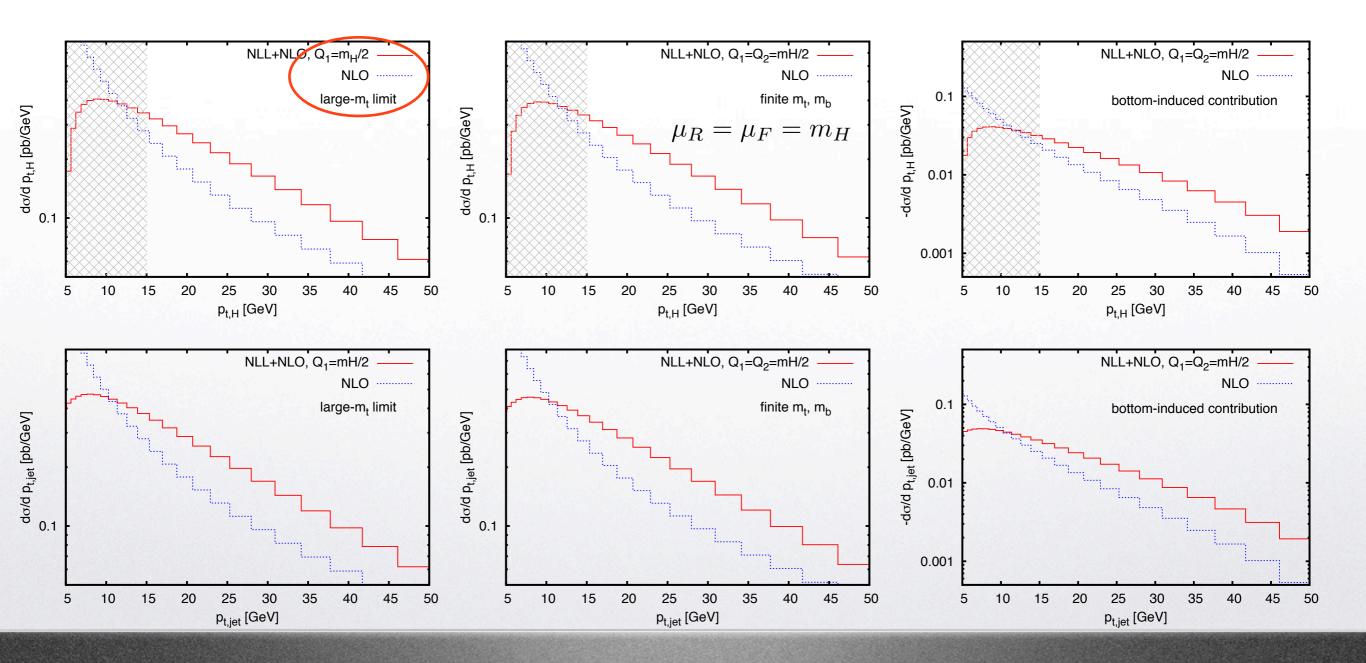
NLL+NLO matching significantly differs from fixed-order result in the intermediate p_t region

Reason: large logarithmic left-over at $\mathcal{O}(\alpha_s^2)$ in the resummation



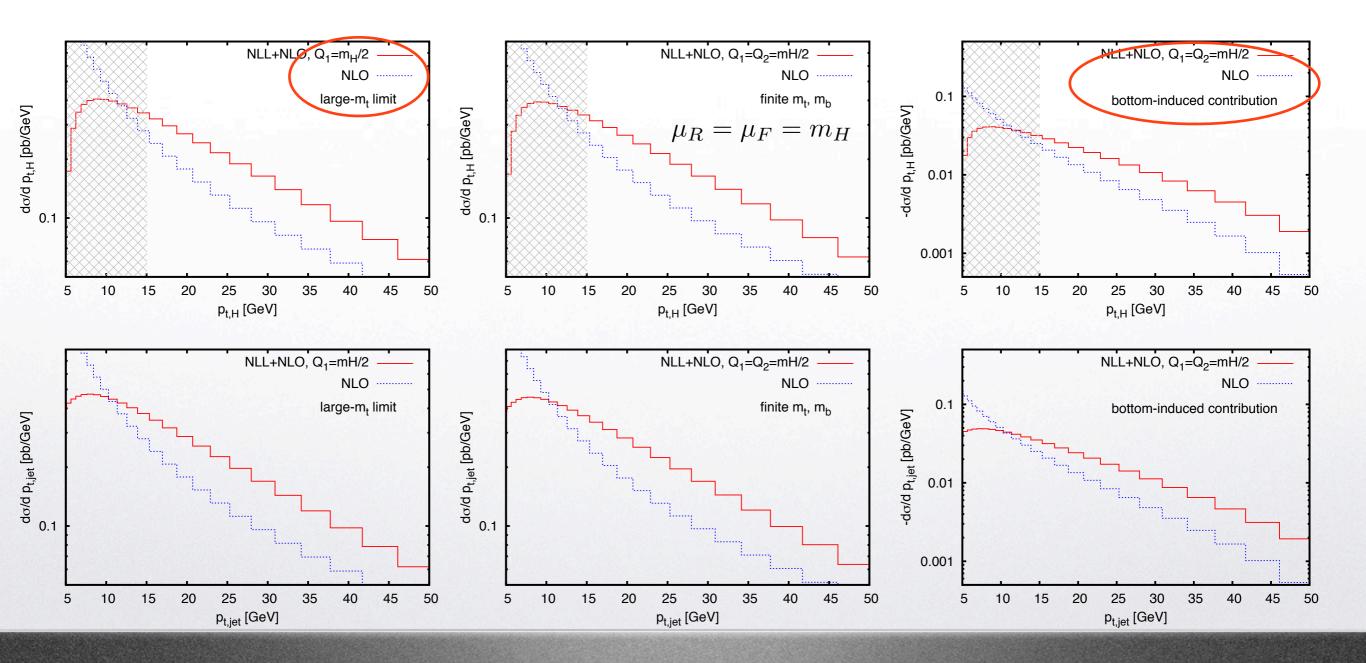
NLL+NLO matching significantly differs from fixed-order result in the intermediate p_t region

Reason: large logarithmic left-over at $\mathcal{O}(\alpha_s^2)$ in the resummation



NLL+NLO matching significantly differs from fixed-order result in the intermediate p_t region

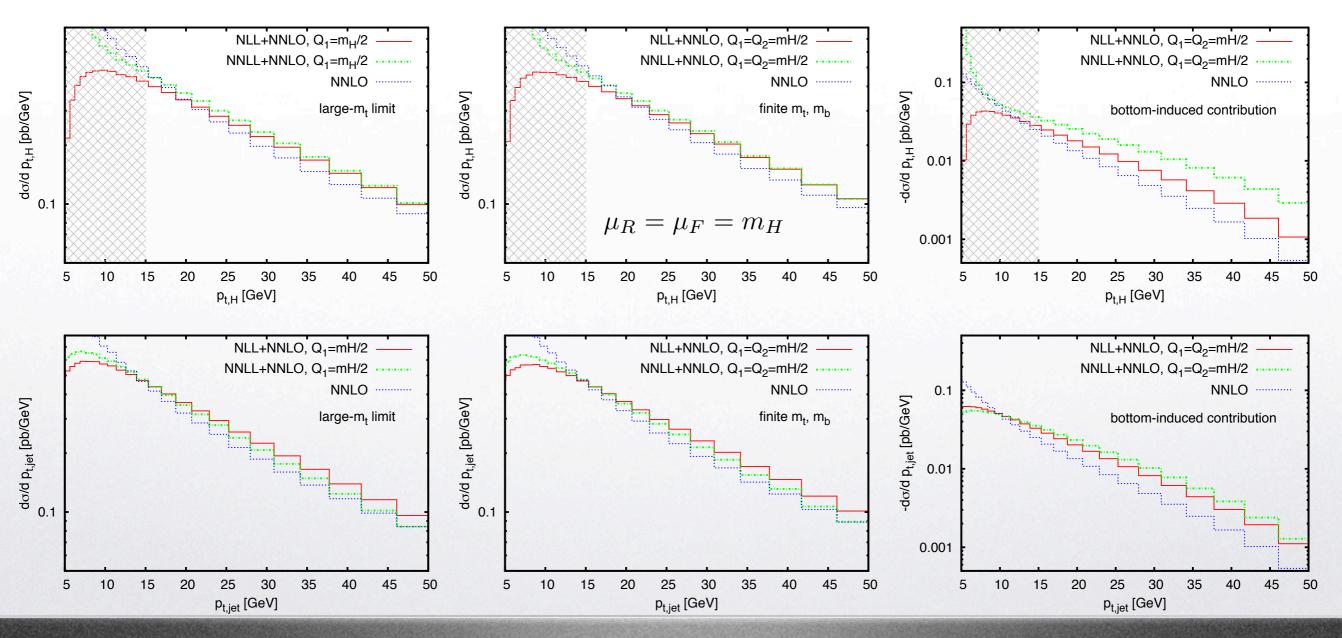
Reason: large logarithmic left-over at $\mathcal{O}(\alpha_s^2)$ in the resummation



 $Higher-order\ matching\ (i.e.\ NLL+NNLO,\ NNLL+NNLO)\ technically\ solves\ the\ problem.$

True in the heavy-top limit for which the exact NNLO is known : $\mathcal{O}(\alpha_s^3)$ mismatch

When mass effects are included, an approximate NNLO is used : still has an $\mathcal{O}(\alpha_s^2)$ mismatch



Comparison between leading-jet and Higgs p_t

To investigate this effect, one can use the correct $\mathcal{O}(\alpha_s^2)$ expansion of the resummation formula in the matching schemes. This leads to a $\mathcal{O}(\alpha_s^3)$ difference between the matched and the fixed-order distributions.

$$\Sigma_{\text{matched}}(p_{t}) = \Sigma_{\text{res}}(p_{t})/\sigma_{0}$$

$$\times \left(1 + \Sigma_{\text{fo}}^{(1)}(p_{t}) - \Sigma_{\text{res}}^{(1)}(p_{t}) + \Sigma_{\text{fo,approx}}^{(2)}(p_{t}) - \Sigma_{\text{res}}^{(2)}(p_{t}) - \Sigma_{\text{res}}^{(1)}(p_{t})/\sigma_{0}\left(\Sigma_{\text{fo}}^{(1)}(p_{t}) - \Sigma_{\text{res}}^{(1)}(p_{t})\right)\right)$$

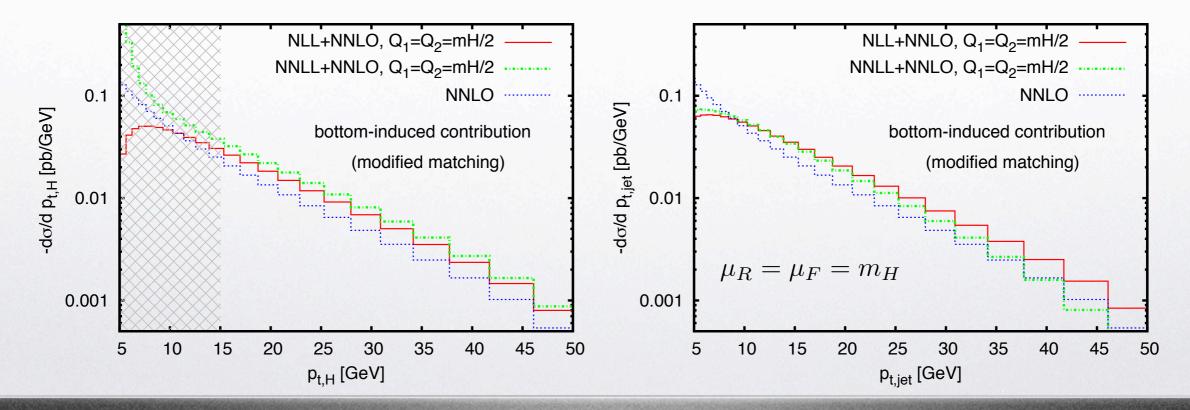
 \rightarrow /

 $\langle \neg$

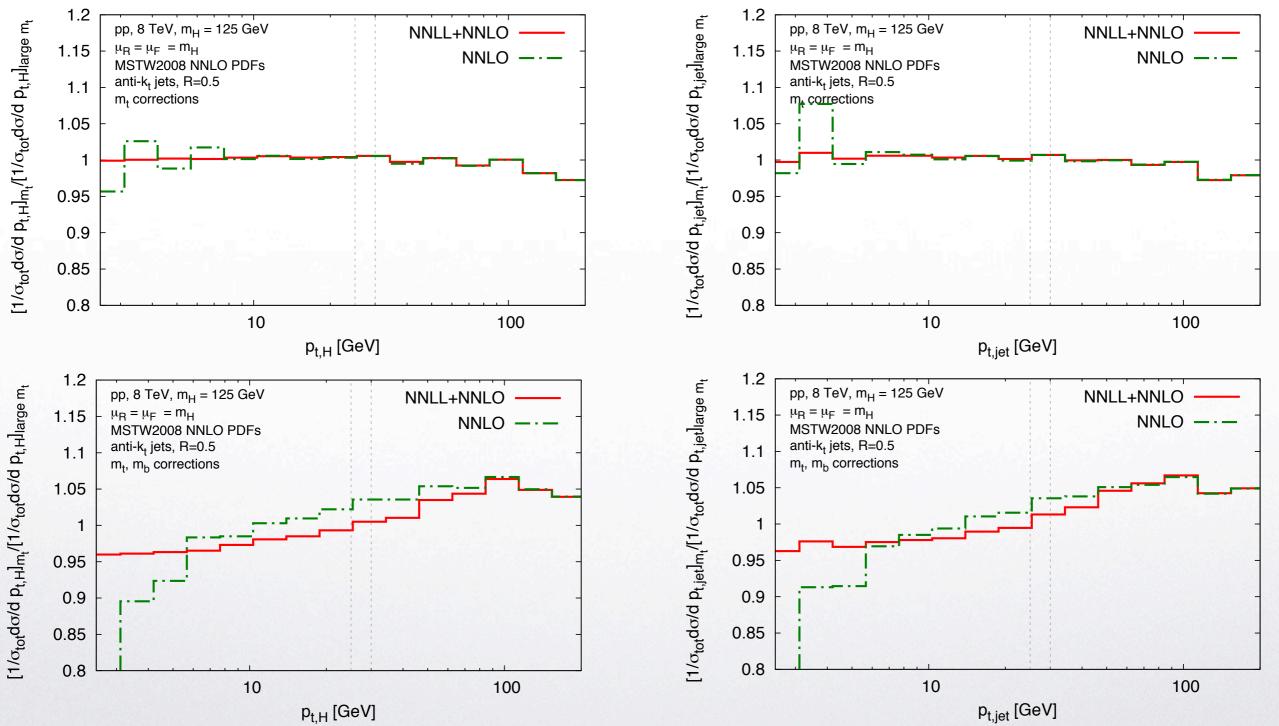
Correct expansion of the resummation formula

However, this solution spoils the logarithmic accuracy in the Sudakov region

Resulting distributions as in the heavy-top case, i.e. no effect due to non-factorizing terms



Comparison between leading-jet and Higgs $p_{\rm t}$



- Exact mass effects now implemented in resummed predictions for both the leading-jet and the Higgs-boson transverse momentum
- For the the second term of the small (ratio to large- m_t distributions in the range $\sim [-4\%, +6\%]$ with approximate NNLO). Numerically similar impact on $p_{t,jet}$ and $p_{t,H}$
- Assessment of theory uncertainties in the vetoed cross section robust against uncertaintites associated with higher-order non-factorizing terms
- Either full NNLO calculation with exact treatment of quark masses or resummation of the new logarithms desirable to assess such effects more precisely