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Introduction

Perturbative predictions for Higgs boson production obtained in the large
top mass limit

Perturbative corrections are sizeable. Fixed-order and resummed predictions
are available for different observables and perturbative uncertainties are
under control

One should wonder if corrections to the heavy-top approximation are of the
order of such uncertainties

A precise assessment is necessary when experimental uncertainties become as
small as ~ 10%




State of the art

¢ Exact treatment of quark masses in Higgs production cross section

(distributions) is available up to NLLO (LLO) ,
HIGL.U, MCFM, HPRO, SusHi, ...

¢  Some terms of the 1 /m}* expansion calculated for NLLO distributions
Harlander, Neumann, Ozeren, Wiesemann

§  Mass effects have been implemented to 1LO accuracy for distributions in
Monte Carlo event generators (Herwig, POWHEG, MC@NI1L.O, ...)

Corcella et al.; Bagnaschi et al.; Frixione et al.

¢ ...and included in resummed predictions for

¢ Higgs transverse momentum py, g Spectrum
Mantler, Wiesemann; Grazzini, Sargsyan

# leading jet py jet spectrum Banfi, Zanderighi, PFM

¢ The present talk analyses the impact of top and bottom quarks on leading-jet
and Higgs-boson transverse momentum spectrum




WiCW of Sudakov resummation (heavy-top ca:

¢  Momentum-space resummation of In(m g /p;) can be carried out in the
CAESAR framework

¢  The resummation of large logarithms leads to different logarithmic
structures for py g and P jet

S(py) ~ eRTPOF%R’) R' = dR(p;)/dIn(Q/p;)

Sudakoy Radiator Multiple-emissions effects
£ for pu € for pejet
. I'(1—R'/2
F(R) = e~ R e 5 /2) | O(NNLL) F(R') =1+ O(NNLL)

I'(1+ R'/2)




¢  Momentum-space resummation of In(m g /p;) can be carried out in the
CAESAR framework

¢  The resummation of large logarithms leads to different logarithmic

structures for py g and P jet

S(pe) ~ 6RTpt)f R')

R' = dR(py)/dIn(Q/py)

Multiple-emissions effects

Sudakov Radiator
@ for Pt H
e T(1—R'/2)
V= e HE NNLL
A Nk T'(1+ R'/2) el )

Singularity at R’ = 2 !!!

It appears when cancellations between emissions Pt
dominate over the Sudakov suppression in generating a
small p; 1

It can be avoided by performing a Fourier-space

resummation . :
Collins et al. ; Bozzi et al.

#  for p jet
F(R') =1+ O(NNLL)



¢  Momentum-space resummation of In(m g /p;) can be carried out in the
CAESAR framework

¢  The resummation of large logarithms leads to different logarithmic

structures for py g and P jet

Z@ONefwafw

R' = dR(py)/dIn(Q/py)

Multiple-emissions effects

Sudakov Radiator
@ for Pt H
e T(1—R'/2)
V= e HE NNLL
A Nk T'(1+ R'/2) el )

Singularity at R’ = 2 !!!

It corresponds to pyu =~ 4.8 GeV, for Q = mpy /2

Pushed to lower values both by lowering () and by higher-
order resummation (known up to NNL.L)

#  for p jet
F(R') =1+ O(NNLL)



¢  Momentum-space resummation of In(mg /py) can be carried out in the
CAESAR framework

¢  The resummation of large logarithms leads to different logarithmic
structures for py g and P jet

> (pg) ~ eRTpt)]—" R R = dR(py)/d1In(Q/ps)

S0 QLR Multiple-emissions effects

¢ for pru § for pjet
F(R) = 637,?8 ; g:g; + O(NNLL) F(R) :/ 1 + O(NNLL)
Singularityat R/ — 2 !I! No clustering at NLL !

Banfi, Salam, Zanderighi

It corresponds to po g =~ 4.8 GeV, for Q = my /2 Dependence on jet-radius enters at NNLL

No divergence in momentum-space resummation

Pushed to lower values both by lowering () and by higher-
order resummation (known up to NNL.L)




¢  When quark masses mp, m; are taken into account, new non-factorizing

logarithmic terms pop up in the regime m; << p; << m3

p
e.g. including top and bottom quarks at relative order O(a,) % t

'

ANy - -

¢  softlimit (squared amplitude)

~ (me/m)* In* (mj /p) {((({

A non-factorizing terms completely cancel
¢  collinear limit (squared amplitude) in the top-bottom interference

~ (myme)? /miy In®(mg /pf) In* (m /p7)

T interference terms survive and give a
dominant contribution

¢ T'hese new terms vanish for p; < my, so that the standard factorization of soft
and collinear singularities is preserved as p; — 0




In the region p; ~ 25 — 30 GeV the logarithms In(p; /my) should be
resummed. All-order structure so far unknown. Phase-space suppression kills

them at high p

"They can be formally treated as a finite remainder that vanishes when py — 0

As any remainder, the non-factorizing terms are thus computed at fixed-order
and matched to the resummed calculation

S(ps) ~ Clos, br, kr, Q, ma, My, my)e” 2P F(R') + remainder




¢ Intheregion p; ~ 25 — 30 GeV the logarithms In(p; /my) should be
resummed. All-order structure so far unknown. Phase-space suppression kills

them at high p

¢ They can be formally treated as a finite remainder that vanishes when p; — 0

¢  Asany remainder, the non-factorizing terms are thus computed at fixed-order
and matched to the resummed calculation

S(ps) ~ Clos, br, kr, Q, ma, My, my)e” 2P F(R') + remainder

Prefactor contains coefhicient functions as in the heavy-top limit and full virtual corrections with
both top and bottom quarks running in the loop.
It contains large logarithms In(m g /ms)
Spira et al.; Harlander et al.; Bonciani et al.




Implementation of mass eflects

[T

¢ Intheregion p; ~ 25 — 30 GeV the logarithms In(p; /my) should be
resummed. All-order structure so far unknown. Phase-space suppression kills

them at high p

¢ They can be formally treated as a finite remainder that vanishes when p; — 0

¢ Asany remainder, the non-factorizing terms are thus computed at fixed-order
and matched to the resummed calculation

Resummation of logarithms In(m /pt) asin the large-m; limit

S(ps) ~ Clos, bR, kr, Q, mu, mp, my e~ FP) F(R)|+ remainder

Prefactor contains coefhicient functions as in the heavy-top limit and full virtual corrections with
both top and bottom quarks running in the loop.
It contains large logarithms In(m g /ms)
Spira et al.; Harlander et al.; Bonciani et al.




Implementation of mass eflects

[T

¢ Intheregion p; ~ 25 — 30 GeV the logarithms In(p; /my) should be
resummed. All-order structure so far unknown. Phase-space suppression kills

them at high p

¢ They can be formally treated as a finite remainder that vanishes when p; — 0

¢ Asany remainder, the non-factorizing terms are thus computed at fixed-order
and matched to the resummed calculation

[t contains power suppressed terms and non-factorizing logs In(py /ms)

Resummation of logarithms In(m /pt) asin the large-m; limit

\ 4

S(ps) ~ Clos, bR, kr, Q, mu, mp, my e~ FP) F(R)|+Hremainder

Prefactor contains coefhicient functions as in the heavy-top limit and full virtual corrections with
both top and bottom quarks running in the loop.
It contains large logarithms In(m g /ms)
Spira et al.; Harlander et al.; Bonciani et al.




Matching to fixed order

—_—— - — e —

¢ Resummation and matching up to NNLL+NNLO for pt jet, Pt have been
implemented in the programme JetVHeto, including mass effects

¢  We use approximate relative O(a?2) corrections obtained as

my —only hnnlo-v2.0 - Grazzini, Sargsyan
2 0 2
Eép)prox (p ) — O_(T)nt — 00 27(77,2—>oo (pt)

¢  When matching to the NNLL resummed result, one is to replace the
expansion of the resummation formula at O(a?) with the modified one

Zmatched (pt) — Eres (pt)/UO
x (1 + 30 () — ZR(0) + T e ) {ZE @) |- SR @) /00 (2 (90) — TR (pe)) )

o t v

Eggg(pt) o O(_)mt—>oo Elggg,mt—)oo(pt)
0

¢ This ensures NNLL accuracy in the Sudakov region. However, the difference
between the matched and fixed-order result will be of O(a?) rather

than O(a?) !




Results for jet-veto efficiency
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Results for jet-veto efficiency
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Results for jet-veto efficiency
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Results for jet-veto efficiency
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Results for jet-veto efficiency
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Results for no-jet cross section
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The effect of top-quark amounts to an over-all rescaling
whilst the bottom quark distorts the shape of the spectrum.

The total effect is small: ~ 3% at small transverse
momentum and < 2% in the high-Ps,veto region
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NLIL+NILO matching significantly differs from fixed-order result in the intermediate pt region

Reason: large logarithmic left-over at O(a?) in the resummation
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NLIL+NILO matching significantly differs from fixed-order result in the intermediate pt region

Reason: large logarithmic left-over at O(a?) in the resummation
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NLIL+NILO matching significantly differs from fixed-order result in the intermediate pt region

Reason: large logarithmic left-over at O(a?) in the resummation
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Higher-order matching (i.e. NLL+ NNLO, NNLL+NNILO) technically solves the problem.

True in the heavy-top limit for which the exact NNLO is known : O(a?) mismatch

When mass effects are included, an approximate NNLO is used : still has an O(a?) mismatch
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To investigate this effect, one can use the correct O(a?) expansion of the resummation formula in the matching
schemes. This leads to a O(a?) difference between the matched and the fixed-order distributions.

Correct expansion of the resummation formula

Y (1 30 () = S () + 5

Zmatched (pt) — Eres. (pt ) /00

fo,approx

(pt)
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However, this solution spoils the logarithmic accuracy in the Sudakov region

Resulting distributions as in the heavy-top case, i.e. no effect due to non-factorizing terms
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Conclusions

¢  Exact mass effects now implemented in resummed predictions for both the
leading-jet and the Higgs-boson transverse momentum

¢ Their impact is found to be small (ratio to large-m; distributions in the
range ~ [—4%, +6%] with approximate NNLO). Numerically similar
impact on py et and py.u

§  Assessment of theory uncertainties in the vetoed cross section robust against
uncertaintites associated with higher-order non-factorizing terms

¢ EKither full NNLO calculation with exact treatment of quark masses or
resummation of the new logarithms desirable to assess such effects more
precisely




