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‣ and is also very uncertain
‣ experimentally: systematics, JES, b-tagging
‣ theoretically: scale uncertainties, effect of PS 

and hadronization
‣ small signal production requires the use of the 

dominant H decay channel, H → bb for mH = 125 GeV 

(more recently H → γγ with excellent mass resolution)

‣ pp → ttbb has to be understood: NLO+SMC
‣ In this work we use massless b-quarks (3% error@LO)
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Formal accuracy of the POWHEG MC
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POWHEG-BOX framework
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PowHel framework

POWHEG-BOX HELAC-NLO

PowHel

RESULT of PowHel:

Les Houches file of Born and Born+1st radiation 
events (LHE) ready for processing with SMC followed 
by almost arbitrary experimental analysis
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Predictions at fixed order



Comparison to Bevilacqua et al: 0907.4723
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LO and NLO scale dependence of σtt̄bb̄

Variations around new central scale

µ2
0 = mt

√
pT,bpT,b̄

Good news for theory: improved convergence

• small correction & uncertainty (K = 1.25± 21%)

• shape of NLO curves: µ0 close to maximum

Bad news for experiment: σtt̄bb̄ enhanced by

factor 2.2a wrt LO ATLAS simulations

σtt̄bb̄ LO NLO NLO/LO

µR,F = Ethr/2 449 fb 751 fb 1.67

µ2
R,F = mt

√pT,bpT,b̄ 786 fb 978 fb 1.24

a(Partially) taken into account in Fat-Jet analysis!
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Choice of scales

‣ QCD corrections are 

‣ large with scales µfix = mt or mt+mbb/2 (about 70%)

‣ moderate with dynamical scale µdyn= (mt2 pT,bpT,b)1/4 

(about 25%) (proposed by Bredenstein et al in 
arXiv:1001.4006), implying better convergence

but

‣ µdyn is too small near threshold where cross 
section is largest, even for a b with pT = 100 GeV 
and another b with pT = 20 GeV  µdyn = 90 GeV << mt 
resulting in an artificially large xsection at LO

−

−
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Choice of scales

We propose the dynamical scale µdyn= HT/2 where HT 
is the scalar sum of transverse masses of final state 

particles that is a good scale also near threshold

 With this scale 

✓ the K factor is even smaller,                           
implying good convergence

✓ the cross sections are smaller                                   
(with BDDP cuts):

σLO = 534 fb,  σNLO = 630 fb,  K = 1.18

scale dependence: +32%-22%, largest if µR = µF = µdyn
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Small changes in shapes of distributions
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Comparison of LHEF to NLO



LHE vs. NLO
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Message:
we can trust the LHE’s, so can make 

Predictions



LHE: distributions from events at BORN+1st radiation 

Decay: on-shell decays of heavy particles (t-quarks), 
shower and hadronization effects turned off

PS: decays, parton showering (PYTHIA or HERWIG) 
included

Four possible forms of predictions
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LHE: distributions from events at BORN+1st radiation 

Decay: on-shell decays of heavy particles (t-quarks), 
shower and hadronization effects turned off

PS: decays, parton showering (PYTHIA or HERWIG) 
included

Full SMC: decays, parton showering and hadronization 
are included by using PYTHIA or HERWIG

Number and type of particles are very different =>             
to study the effect of SMC we employ selection cuts 

to keep the cross section fixed

Four possible forms of predictions



Selection cuts for decay vs. SMC

‣ Applied on the LHE’s:
‣ A track was considered as a possible jet 

constituent if |ηtrack|<5, t-quarks were excluded 
from the set of possible tracks. Jets were 
reconstructed with the anti-kT algorithm using 
R=0.4.
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Selection cuts for decay vs. SMC

‣ Applied on the LHE’s:
‣ A track was considered as a possible jet 

constituent if |ηtrack|<5, t-quarks were excluded 
from the set of possible tracks. Jets were 
reconstructed with the anti-kT algorithm using 
R=0.4.

‣ Events with invariant mass of the bb-jet pair below 
mminbb = 100 GeV were discarded.

‣ Applied on LHE’s and checked also on the existing 
particles at different stages of evolution:

‣ we require pTmin,j = 25 GeV and

‣ at least two, one b- & one b-jet with |ηb(b)|<2.5.

−

− −
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Decay vs. full SMC at 8TeV, µ = HT/4
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Decay vs. full SMC at 8TeV, µ = HT/4
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Effects of SMC are important for hadronic variables, 
except rapidities, small on hardest leptonic ones



Cuts for background study for ttH

Applied after full SMC
‣ a track was considered as a possible jet constituent if 

|ηtrack|<5, jets were reconstructed with the anti-kT 
algorithm using R=0.4

we require

‣ at least six jets with pTmin,j = 20 GeV and |ηj|<5

‣ at least two b-jets & two b-jets with |ηb(b)|<2.7, 
with MCTRUTH tagging

‣ at least one isolated (with R=0.4) lepton with pTmin,l 
= 20 GeV and |ηl|<2.5

‣ pTmiss = 15 GeV
to disentangle background in the semileptonic tt decay

− −

−



ttH signal on ttbb background−−−
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Conclusions



✓ First computation of pp → ttbb at NLO + SMC 
accuracy [A. Kardos and Z.T. arXiv:1303.6291 
contained a bug in the code computing the jet 
function, lead to false predictions - now corrected]

✓ NLO cross sections agree with published predictions

✓ Effects of SMC are often important, depending on 
shower setup, variables and cuts strongly

✓ LHE event files for pp →tt, ttH, ttW, ttZ, ttjet, ttbb 
processes available, to put into SMC and perform 
experimental analyses on events with hadrons           
(all produced within the LHCPhenonet project)

Conclusions
− −

− − − − − − −



the end


