tībb hadroproduction at NLO accuracy matched with parton shower

Zoltán Trócsányi

University of Debrecen and MTA-DE Particle Physics Research Group

in collaboration with A. Kardos, M.V. Garzelli

Nemzeti Fejlesztési Ügynökség www.ujszechenyiterv.gov.hu 06 40 638 638

MAGYARORSZÁG MEGÚJUL

A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

Outline

- Motivation
- Method
- Predictions at fixed order
- Comparison LHEF to NLO
- Predictions with SMC
- Conclusions

Motivation

▶ pp \rightarrow ttH process is heavily investigated to measure the ttH coupling

- ▶ pp \rightarrow ttH process is heavily investigated to measure the ttH coupling
- signal is small, the background is overwhelming, e.g.
 - σ(tTH) = 0.130 pb for m_H = 125 GeV
 - σ(tt) = 245.8 pb at √s = 8 TeV
- and is also very uncertain

- ▶ pp \rightarrow ttH process is heavily investigated to measure the ttH coupling
- signal is small, the background is overwhelming, e.g.
 - σ(tTH) = 0.130 pb for m_H = 125 GeV
 - $\sigma(t\bar{t}) = 245.8 \text{ pb at } \sqrt{s} = 8 \text{ TeV}$
- and is also very uncertain
 - experimentally: systematics, JES, b-tagging
 - theoretically: scale uncertainties, effect of PS and hadronization
- ▶ small signal production requires the use of the dominant H decay channel, $H \rightarrow b\bar{b}$ for m_H = 125 GeV

(more recently $H \rightarrow \gamma \gamma$ with excellent mass resolution)

- ▶ pp \rightarrow ttH process is heavily investigated to measure the ttH coupling
- signal is small, the background is overwhelming, e.g.
 - σ(tTH) = 0.130 pb for m_H = 125 GeV
 - $\sigma(t\bar{t}) = 245.8 \text{ pb at } \sqrt{s} = 8 \text{ TeV}$
- and is also very uncertain
 - experimentally: systematics, JES, b-tagging
 - theoretically: scale uncertainties, effect of PS and hadronization
- ▶ small signal production requires the use of the dominant H decay channel, $H \rightarrow b\bar{b}$ for m_H = 125 GeV

(more recently $H \rightarrow \gamma \gamma$ with excellent mass resolution)

▶ $pp \rightarrow t\bar{t}b\bar{b}$ has to be understood: NLO+SMC

- ▶ pp \rightarrow ttH process is heavily investigated to measure the ttH coupling
- signal is small, the background is overwhelming, e.g.
 - σ(tTH) = 0.130 pb for m_H = 125 GeV
 - $\sigma(t\bar{t}) = 245.8 \text{ pb at } \sqrt{s} = 8 \text{ TeV}$
- and is also very uncertain
 - experimentally: systematics, JES, b-tagging
 - theoretically: scale uncertainties, effect of PS and hadronization
- ▶ small signal production requires the use of the dominant H decay channel, $H \rightarrow b\bar{b}$ for $m_H = 125 \text{ GeV}$

(more recently $H \rightarrow \gamma \gamma$ with excellent mass resolution)

- ▶ $pp \rightarrow t\bar{t}b\bar{b}$ has to be understood: NLO+SMC
- In this work we use massless b-quarks (3% error@LO)

Background composition

- Background composition for lepton+jets analysis
 - After requiring 2 b-tag the background is > 90% ttbar+jets/HF
 - We need a model giving a good prediction in a wide range of jets and tags multiplicities

Background composition

- Background composition for lepton+jets analysis
 - After requiring 2 b-tag the background is > 90% ttbar+jets/HF
 - We need a model giving a good prediction in a wide range of jets and tags multiplicities

Bredenstein et al [arXiv:0905.0110, 1001.4006]: NLO with massless b-quarks

- Bredenstein et al [arXiv:0905.0110, 1001.4006]: NLO with massless b-quarks
- Bevilacqua et al [arXiv:0907.4723]: NLO with massless b-quarks

- Bredenstein et al [arXiv:0905.0110, 1001.4006]: NLO with massless b-quarks
- Bevilacqua et al [arXiv:0907.4723]: NLO with massless b-quarks
- Garzelli, Kardos, ZT [arXiv:1303.6291,1307.1347]: PowHel (= NLO + SMC with POWHEG matching) with massless b-quarks

- Bredenstein et al [arXiv:0905.0110, 1001.4006]: NLO with massless b-quarks
- Bevilacqua et al [arXiv:0907.4723]: NLO with massless b-quarks
- Garzelli, Kardos, ZT [arXiv:1303.6291,1307.1347]: PowHel (= NLO + SMC with POWHEG matching) with massless b-quarks
- Cascioli et al [arXiv:1309.5912]: MC@NLO-type matching with massive b-quarks

Method

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

Standard MC first emission:

 $d\sigma_{\rm SMC} = B(\Phi_n) d\Phi_n \left[\Delta_{\rm SMC}(t_0) + \Delta_{\rm SMC}(t) \underbrace{\frac{\alpha_{\rm s}(t)}{2\pi} \frac{1}{t} P(z) \Theta(t - t_0) d\Phi_{\rm rad}^{\rm SMC}}_{k_{\perp} \to 0} \right]$ $= \lim_{k_{\perp} \to 0} R(\Phi_{n+1}) / B(\Phi_n)$

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

Standard MC first emission:

$$d\sigma_{\rm SMC} = B(\Phi_n) d\Phi_n \Delta_{\rm SMC}(t_0) + \Delta_{\rm SMC}(t) \underbrace{\frac{\alpha_{\rm s}(t)}{2\pi} \frac{1}{t} P(z) \Theta(t - t_0) d\Phi_{\rm rad}^{\rm SMC}}_{= \lim_{k_\perp \to 0} R(\Phi_{n+1})/B(\Phi_n)}$$

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

Standard MC first emission:

$$d\sigma_{\rm SMC} = B(\Phi_n) d\Phi_n \Delta_{\rm SMC}(t_0) + \Delta_{\rm SMC}(t) \frac{\alpha_{\rm s}(t)}{2\pi} \frac{1}{t} P(z) \Theta(t - t_0) d\Phi_{\rm rad}^{\rm SMC}$$
$$= \lim_{k_\perp \to 0} R(\Phi_{n+1}) / B(\Phi_n)$$

POWHEG MC first emission:

$$d\sigma = \bar{B}(\Phi_n) d\Phi_n \left[\Delta(\Phi_n, p_{\perp}^{\min}) + \Delta(\Phi_n, k_{\perp}) \frac{R(\Phi_{n+1})}{B(\Phi_n)} \Theta(k_{\perp} - p_{\perp}^{\min}) d\Phi_{\mathrm{rad}} \right]$$
$$\bar{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int \left[R(\Phi_{n+1}) - A(\Phi_{n+1}) \right] d\Phi_{\mathrm{rad}}$$

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

Standard MC first emission:

$$d\sigma_{\rm SMC} = B(\Phi_n) d\Phi_n \left[\Delta_{\rm SMC}(t_0) + \Delta_{\rm SMC}(t) \frac{\alpha_{\rm s}(t)}{2\pi} \frac{1}{t} P(z) \Theta(t - t_0) d\Phi_{\rm rad}^{\rm SMC} \right]$$
$$= \lim_{k_\perp \to 0} R(\Phi_{n+1}) / B(\Phi_n)$$

POWHEG MC first emission:

$$d\sigma = \bar{B}(\Phi_n) d\Phi_n \left[\Delta(\Phi_n, p_{\perp}^{\min}) + \Delta(\Phi_n, k_{\perp}) \frac{R(\Phi_{n+1})}{B(\Phi_n)} \Theta(k_{\perp} - p_{\perp}^{\min}) d\Phi_{rad} \right]$$
$$\bar{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int \left[R(\Phi_{n+1}) - A(\Phi_{n+1}) \right] d\Phi_{rad}$$
$$\int \bar{B}(\Phi_n) d\Phi_n = \sigma_{NLO}$$

Formal accuracy of the POWHEG MC

$$\begin{split} \langle O \rangle &= \int d\Phi_{\rm B} \widetilde{B} \left[\Delta(p_{\perp}, _{\rm min}) O(\Phi_{\rm B}) + \int d\Phi_{\rm rad} \Delta(p_{\perp}) \frac{R}{B} O(\Phi_{\rm R}) \right] = \\ &= \int d\Phi_{\rm B} \widetilde{B} \left[\Delta(p_{\perp}, _{\rm min}) O(\Phi_{\rm B}) + \int d\Phi_{\rm rad} \Delta(p_{\perp}) \frac{R}{B} O(\Phi_{\rm B}) \right] + \\ &= O(\Phi_{\rm B}) \\ &+ \int d\Phi_{\rm R} \Delta(p_{\perp}) \frac{\widetilde{B}}{B} R \left(O(\Phi_{\rm R}) - O(\Phi_{\rm B}) \right) = \\ &= \left\{ \int d\Phi_{\rm B} \widetilde{B} O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R \left(O(\Phi_{\rm R}) - O(\Phi_{\rm B}) \right) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm B}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm B} \left[B + V \right] O(\Phi_{\rm R}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\alpha_{\rm S})) = \\ &= \left\{ \int d\Phi_{\rm R} \left[A + V \right] O(\Phi_{\rm R}) + \int d\Phi_{\rm R} R O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\Phi_{\rm R})) = \\ &= \left\{ \int d\Phi_{\rm R} \left[A + V \right] O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\Phi_{\rm R}) = \\ &= \left\{ \int d\Phi_{\rm R} \left[A + V \right] O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\Phi_{\rm R}) = \\ &= \left\{ \int d\Phi_{\rm R} \left[A + V \right] O(\Phi_{\rm R}) \right\} (1 + \mathcal{O}(\Phi_{\rm$$

POWHEG-BOX framework

PowHel framework

RESULT of PowHel:

Les Houches file of Born and Born+1st radiation events (LHE) ready for processing with SMC followed by almost arbitrary experimental analysis

HELAC-1LOOP@dd framework

HELAC-1LOOP@dd framework

Predictions at fixed order

Comparison to Bevilacqua et al: 0907.4723

QCD corrections are

- QCD corrections are
 - large with scales $\mu_0 = m_t$ or $m_t + m_{b\bar{b}}/2$ (about 80%)

- QCD corrections are
 - large with scales $\mu_0 = m_t$ or $m_t + m_{b\bar{b}}/2$ (about 80%)
 - moderate with dynamical scale µ₀=(m_t² p_{T,b}p_{T,b})^{1/4} (about 25%) (proposed by Bredenstein et al in arXiv:1001.4006), implying better convergence

slide from talk by S.Pozzorini at HO10

LO and NLO scale dependence of $\sigma_{\mathrm{t\bar{t}b\bar{b}}}$

Variations around new central scale

 $\mu_0^2 = m_{\rm t} \sqrt{p_{\rm T,b} p_{\rm T,\bar{b}}}$

Good news for theory: improved convergence

- small correction & uncertainty $(K = 1.25 \pm 21\%)$
- shape of NLO curves: μ_0 close to maximum

Bad news for experiment: $\sigma_{t\bar{t}b\bar{b}}$ enhanced by factor 2.2^{*a*} wrt LO ATLAS simulations

$\sigma_{ m t\bar{t}b\bar{b}}$	LO	NLO	NLO/LO
$\mu_{\rm R,F} = E_{\rm thr}/2$	$449\mathrm{fb}$	$751\mathrm{fb}$	1.67
$\mu_{\rm R,F}^2 = m_{\rm t} \sqrt{p_{\rm T,b} p_{\rm T,\bar{b}}}$	$786\mathrm{fb}$	$978\mathrm{fb}$	1.24

 a (Partially) taken into account in Fat-Jet analysis!

- QCD corrections are
 - large with scales $\mu_{fix} = m_t$ or $m_t + m_{b\bar{b}}/2$ (about 70%)
 - moderate with dynamical scale µ_{dyn}= (m_t² p_{T,b}p_{T,b})^{1/4} (about 25%) (proposed by Bredenstein et al in arXiv:1001.4006), implying better convergence

but

μ_{dyn} is too small near threshold where cross section is largest, even for a b with p_T = 100 GeV and another b with p_T = 20 GeV μ_{dyn} = 90 GeV << m_t resulting in an artificially large xsection at LO

We propose the dynamical scale μ_{dyn} = H_T/2 where H_T is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

With this scale

We propose the dynamical scale μ_{dyn} = $H_T/2$ where H_T is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

With this scale

✓ the K factor is even smaller, implying good convergence

We propose the dynamical scale μ_{dyn} = $H_T/2$ where H_T is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

With this scale

- ✓ the K factor is even smaller, implying good convergence
- ✓ the cross sections are smaller upper the cross sections are smaller upper the section of t

We propose the dynamical scale μ_{dyn} = H_T/2 where H_T is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

We propose the dynamical scale μ_{dyn} = H_T/2 where H_T is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

Small changes in shapes of distributions

Comparison of LHEF to NLO

LHE vs. NLO

Message: we can trust the LHE's, so can make Predictions

LHE: distributions from events at BORN+1st radiation

Decay: on-shell decays of heavy particles (t-quarks), shower and hadronization effects turned off

PS: decays, parton showering (PYTHIA or HERWIG) included

LHE: distributions from events at BORN+1st radiation

Decay: on-shell decays of heavy particles (t-quarks), shower and hadronization effects turned off

PS: decays, parton showering (PYTHIA or HERWIG) included

Full SMC: decays, parton showering and hadronization are included by using PYTHIA or HERWIG

LHE: distributions from events at BORN+1st radiation

Decay: on-shell decays of heavy particles (t-quarks), shower and hadronization effects turned off

PS: decays, parton showering (PYTHIA or HERWIG) included

Full SMC: decays, parton showering and hadronization are included by using PYTHIA or HERWIG

Number and type of particles are very different => to study the effect of SMC we employ selection cuts to keep the cross section fixed

Selection cuts for decay vs. SMC

- Applied on the LHE's:
 - A track was considered as a possible jet constituent if |n^{track}|<5, t-quarks were excluded from the set of possible tracks. Jets were reconstructed with the anti-k_T algorithm using R=0.4.

Selection cuts for decay vs. SMC

- Applied on the LHE's:
 - A track was considered as a possible jet constituent if |n^{track}|<5, t-quarks were excluded from the set of possible tracks. Jets were reconstructed with the anti-k_T algorithm using R=0.4.
 - Events with invariant mass of the $b\overline{b}$ -jet pair below $m^{min}_{b\overline{b}} = 100 \text{ GeV}$ were discarded.

Selection cuts for decay vs. SMC

- Applied on the LHE's:
 - A track was considered as a possible jet constituent if |n^{track}|<5, t-quarks were excluded from the set of possible tracks. Jets were reconstructed with the anti-k_T algorithm using R=0.4.
 - Events with invariant mass of the $b\overline{b}$ -jet pair below $m^{min}_{b\overline{b}} = 100 \text{ GeV}$ were discarded.
- Applied on LHE's and checked also on the existing particles at different stages of evolution:
 - ▶ we require p_{Tmin,j} = 25 GeV and
 - at least two, one b- & one \overline{b} -jet with $|\eta_{b(\overline{b})}| < 2.5$.

Effects of SMC are important for hadronic variables, except rapidities, small on hardest leptonic ones

Cuts for background study for ttH

Applied after full SMC

we require

- at least six jets with $p_{Tmin,j} = 20 \text{ GeV}$ and $|n_j| < 5$
- at least two b-jets & two \overline{b} -jets with $|\eta_{b(\overline{b})}| < 2.7$, with MCTRUTH tagging
- at least one isolated (with R=0.4) lepton with $p_{Tmin,\ell}$ = 20 GeV and $|\eta_{\ell}| < 2.5$
- $p_T^{miss} = 15 \text{ GeV}$

to disentangle background in the semileptonic $t\overline{t}$ decay

ttH signal on ttbb background

Conclusions

Conclusions

- ✓ First computation of pp → ttbb at NLO + SMC accuracy [A. Kardos and Z.T. arXiv:1303.6291 contained a bug in the code computing the jet function, lead to false predictions - now corrected]
- \checkmark NLO cross sections agree with published predictions
- ✓ Effects of SMC are often important, depending on shower setup, variables and cuts strongly
- ✓ LHE event files for pp →tt, ttH, ttW, ttZ, ttjet, ttbb processes available, to put into SMC and perform experimental analyses on events with hadrons (all produced within the LHCPhenonet project)

the end