$\dagger \bar{\dagger} b \bar{b}$ hadroproduction at NLO accuracy matched with parton shower

Zoltán Trócsányi

University of Debrecen
and
MTA-DE Particle Physics Research Group

in collaboration with
A. Kardos, M.V. Garzelli

Outline

- Motivation
- Method
- Predictions at fixed order
- Comparison LHEF to NLO
- Predictions with SMC
- Conclusions

Motivation

Need for $\dagger \bar{\dagger} b \bar{b}$ at the hadron level

- $\mathrm{pp} \rightarrow \dagger \dagger \mathrm{H}$ process is heavily investigated to measure the $\dagger \dagger$ H coupling

Need for $\dagger \bar{\dagger} b \bar{b}$ at the hadron level

$\mathrm{pp} \rightarrow \dagger \bar{\dagger} \mathrm{H}$ process is heavily investigated to measure the $\dagger \dagger \mathrm{H}$ coupling

- signal is small, the background is overwhelming, e.g.

$$
\begin{aligned}
& \quad \sigma(\dagger \bar{\dagger} \mathrm{H})=0.130 \mathrm{pb} \text { for } \mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV} \\
& \\
& \sigma(\overline{\dagger t})=245.8 \mathrm{pb} \text { at } \sqrt{\mathrm{s}}=8 \mathrm{TeV}
\end{aligned}
$$

- and is also very uncertain

Need for $\dagger \overline{\mathrm{T}} \mathrm{b} \overline{\mathrm{b}}$ at the hadron level

- $\mathrm{pp} \rightarrow \dagger \mp \mathrm{H}$ process is heavily investigated to measure the $\dagger \bar{\dagger}$ H coupling
- signal is small, the background is overwhelming, e.g.
- $\sigma(\bar{\dagger}-\mathrm{H})=0.130 \mathrm{pb}$ for $\mathrm{m}_{H}=125 \mathrm{GeV}$
- $\sigma(\dagger \bar{\dagger})=245.8 \mathrm{pb}$ at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$
- and is also very uncertain
- experimentally: systematics, JES, b-tagging
- theoretically: scale uncertainties, effect of PS and hadronization
- small signal production requires the use of the dominant H decay channel, $H \rightarrow b \bar{b}$ for $m_{H}=125 \mathrm{GeV}$
(more recently $H \rightarrow$ Yy with excellent mass resolution)

Need for $\dagger \overline{\mathrm{T}} \mathrm{b} \overline{\mathrm{b}}$ at the hadron level

- $\mathrm{pp} \rightarrow \dagger \mp \mathrm{H}$ process is heavily investigated to measure the $\dagger \bar{\dagger} \mathrm{H}$ coupling
- signal is small, the background is overwhelming, e.g.
- $\sigma(\mp \bar{\dagger}-\mathrm{H})=0.130 \mathrm{pb}$ for $\mathrm{m}_{H}=125 \mathrm{GeV}$
- $\sigma(\dagger \bar{\dagger})=245.8 \mathrm{pb}$ at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$
- and is also very uncertain
- experimentally: systematics, JES, b-tagging
- theoretically: scale uncertainties, effect of PS and hadronization
- small signal production requires the use of the dominant H decay channel, $H \rightarrow b \bar{b}$ for $m_{H}=125 \mathrm{GeV}$
(more recently $H \rightarrow$ Yy with excellent mass resolution)
- $\mathrm{pp} \rightarrow \dagger \bar{\dagger} \overline{\mathrm{b}}$ has to be understood: NLO+SMC

Need for $\dagger \overline{\mathrm{T}} \mathrm{b} \overline{\mathrm{b}}$ at the hadron level

- $\mathrm{pp} \rightarrow \dagger \mp \mathrm{H}$ process is heavily investigated to measure the $\dagger \bar{\dagger} \mathrm{H}$ coupling
- signal is small, the background is overwhelming, e.g.
- $\sigma(\dagger \bar{\dagger} H)=0.130 \mathrm{pb}$ for $\mathrm{m}_{H}=125 \mathrm{GeV}$
- $\sigma(\dagger \bar{\dagger})=245.8 \mathrm{pb}$ at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$
- and is also very uncertain
- experimentally: systematics, JES, b-tagging
- theoretically: scale uncertainties, effect of PS and hadronization
- small signal production requires the use of the dominant H decay channel, $H \rightarrow b \bar{b}$ for $m_{H}=125 \mathrm{GeV}$
(more recently $H \rightarrow$ Yy with excellent mass resolution)
- $\mathrm{pp} \rightarrow+\bar{\dagger} \mathrm{b} \overline{\mathrm{b}}$ has to be understood: NLO+SMC
- In this work we use massless b-quarks (3\% error@LO)

Background composition

- Background composition for lepton+jets analysis
- After requiring 2 b-tag the background is $>90 \%$ ttbar+jets/HF
- We need a model giving a good prediction in a wide range of jets and tags multiplicities

Background composition

- Background composition for lepton+jets analysis
- After requiring 2 b-tag the background is $>90 \%$ ttbar+jets/HF
- We need a model giving a good prediction in a wide range of jets and tags multiplicities

History of $+\overline{+} \mathrm{b} \overline{\mathrm{b}}$ beyond lowest order

History of $+\overline{+} \mathrm{b} \overline{\mathrm{b}}$ beyond lowest order

- Bredenstein et al [arXiv:0905.0110, 1001.4006]: NLO with massless b-quarks

History of t+̄b̄b beyond lowest order

- Bredenstein et al [arXiv:0905.0110, 1001.4006]: NLO with massless b-quarks
- Bevilacqua et al [arXiv:0907.4723]: NLO with massless b-quarks

History of t $\overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ beyond lowest order

- Bredenstein et al [arXiv:0905.0110, 1001.4006]: NLO with massless b-quarks
- Bevilacqua et al [arXiv:0907.4723]: NLO with massless b-quarks
- Garzelli, Kardos, ZT [arXiv:1303.6291,1307.1347]: PowHel (= NLO + SMC with POWHEG matching) with massless b-quarks

History of t $\overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ beyond lowest order

- Bredenstein et al [arXiv:0905.0110, 1001.4006]: NLO with massless b-quarks
- Bevilacqua et al [arXiv:0907.4723]:

NLO with massless b-quarks

- Garzelli, Kardos, ZT [arXiv:1303.6291,1307.1347]: PowHel (= NLO + SMC with POWHEG matching) with massless b-quarks
- Cascioli et al [arXiv:1309.5912]: MC@NLO-type matching with massive b-quarks

Method

From standard SMC to POWHEG MC

From standard SMC to POWHEG MC

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

From standard SMC to POWHEG MC

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

- Standard MC first emission:

$$
\begin{aligned}
& \mathrm{d} \sigma_{\mathrm{SMC}}=B\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}[\Delta_{\mathrm{SMC}}\left(t_{0}\right)+\Delta_{\mathrm{SMC}}(t) \underbrace{\frac{\alpha_{\mathrm{s}}(t)}{2 \pi} \frac{1}{t} P(z)} \Theta\left(t-t_{0}\right) \mathrm{d} \Phi_{\mathrm{rad}}^{\mathrm{SMC}}] \\
&=\lim _{k_{\perp} \rightarrow 0} R\left(\Phi_{n+1}\right) / B\left(\Phi_{n}\right)
\end{aligned}
$$

From standard SMC to POWHEG MC

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

- Standard MC first emission:

$$
\begin{aligned}
& \mathrm{d} \sigma_{\mathrm{SMC}}=B\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}[\Delta_{\mathrm{SMC}}\left(t_{0}\right)+\Delta_{\mathrm{SMC}}(t) \underbrace{\frac{\alpha_{\mathrm{s}}(t)}{2 \pi} \frac{1}{t} P(z)} \Theta\left(t-t_{0}\right) \mathrm{d} \Phi_{\mathrm{rad}}^{\mathrm{SMC}}] \\
& B\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}=\sigma_{\mathrm{LO}} \quad=\lim _{k_{\perp} \rightarrow 0} R\left(\Phi_{n+1}\right) / B\left(\Phi_{n}\right)
\end{aligned}
$$

From standard SMC to POWHEG MC

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

- Standard MC first emission:

$$
\begin{gathered}
\mathrm{d} \sigma_{\mathrm{SMC}}=B\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}[\Delta_{\mathrm{SMC}}\left(t_{0}\right)+\Delta_{\mathrm{SMC}}(t) \underbrace{}_{=\underbrace{\frac{\alpha_{\mathrm{s}}(t)}{2 \pi} \frac{1}{t}}_{k_{\perp} \rightarrow 0} P(z)} \Theta\left(\Phi_{n+1}\right) / B\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}=\sigma_{\mathrm{LO}})
\end{gathered}
$$

- POWHEG MC first emission:

$$
\begin{gathered}
\mathrm{d} \sigma=\bar{B}\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}\left[\Delta\left(\Phi_{n}, p_{\perp}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n}, k_{\perp}\right) \frac{R\left(\Phi_{n+1}\right)}{B\left(\Phi_{n}\right)} \Theta\left(k_{\perp}-p_{\perp}^{\min }\right) \mathrm{d} \Phi_{\mathrm{rad}}\right] \\
\bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+V\left(\Phi_{n}\right)+\int\left[R\left(\Phi_{n+1}\right)-A\left(\Phi_{n+1}\right)\right] \mathrm{d} \Phi_{\mathrm{rad}}
\end{gathered}
$$

From standard SMC to POWHEG MC

SMC idea: use probabilistic picture of parton splitting in the collinear approximation, iterate splitting to high orders

- Standard MC first emission:

$$
\begin{gathered}
\mathrm{d} \sigma_{\mathrm{SMC}}=B\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}[\Delta_{\mathrm{SMC}}\left(t_{0}\right)+\Delta_{\mathrm{SMC}}(t) \underbrace{}_{=\underbrace{\frac{\alpha_{\mathrm{s}}(t)}{2 \pi} \frac{1}{t}}_{k_{\perp} \rightarrow 0} P\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}=\sigma_{\mathrm{LO}}} \Theta\left(t-t_{0}\right) \mathrm{d} \Phi_{\mathrm{rad}}^{\mathrm{SMC}}) / B\left(\Phi_{n}\right)
\end{gathered}
$$

- POWHEG MC first emission:
$\mathrm{d} \sigma=\bar{B}\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}\left[\Delta\left(\Phi_{n}, p_{\perp}^{\min }\right)+\Delta\left(\Phi_{n}, k_{\perp}\right) \frac{R\left(\Phi_{n+1}\right)}{B\left(\Phi_{n}\right)} \Theta\left(k_{\perp}-p_{\perp}^{\min }\right) \mathrm{d} \Phi_{\mathrm{rad}}\right]$
$\bar{B}(9)=B\left(\Phi_{n}\right)+V\left(\Phi_{n}\right)+\int\left[R\left(\Phi_{n+1}\right)-A\left(\Phi_{n+1}\right)\right] \mathrm{d} \Phi_{\mathrm{rad}}$
$\bar{B}\left(\Phi_{n}\right) \mathrm{d} \Phi_{n}=\sigma_{\mathrm{NLO}}$

Formal accuracy of the POWHEG MC

$$
\begin{aligned}
\langle O\rangle & =\int \mathrm{d} \Phi_{\mathrm{B}} \widetilde{B}\left[\Delta\left(p_{\perp, \min }\right) O\left(\Phi_{\mathrm{B}}\right)+\int \mathrm{d} \Phi_{\mathrm{rad}} \Delta\left(p_{\perp}\right) \frac{R}{B} O\left(\Phi_{\mathrm{R}}\right)\right]= \\
& =\int \mathrm{d} \Phi_{\mathrm{B}} \widetilde{B} \underbrace{\left[\Delta\left(p_{\perp, \min }\right) O\left(\Phi_{\mathrm{B}}\right)+\int \mathrm{d} \Phi_{\mathrm{rad}} \Delta\left(p_{\perp}\right) \frac{R}{B} O\left(\Phi_{\mathrm{B}}\right)\right]}_{=O\left(\Phi_{\mathrm{B}}\right)}+
\end{aligned}
$$

$$
+\int \mathrm{d} \Phi_{\mathrm{R}} \Delta\left(p_{\perp}\right) \frac{\widetilde{B}}{B} R\left(O\left(\Phi_{\mathrm{R}}\right)-O\left(\Phi_{\mathrm{B}}\right)\right)=
$$

$$
=\left\{\int \mathrm{d} \Phi_{\mathrm{B}} \widetilde{B} O\left(\Phi_{\mathrm{B}}\right)+\int \mathrm{d} \Phi_{\mathrm{R}} R\left(O\left(\Phi_{\mathrm{R}}\right)-O\left(\Phi_{\mathrm{B}}\right)\right)\right\}\left(1+\mathcal{O}\left(\alpha_{\mathrm{S}}\right)\right)=
$$

$$
=\left\{\int \mathrm{d} \Phi_{\mathrm{B}}[B+V] O\left(\Phi_{\mathrm{B}}\right)+\int \mathrm{d} \Phi_{\mathrm{R}} R O\left(\Phi_{\mathrm{R}}\right)\right\}\left(1+\mathcal{O}\left(\alpha_{\mathrm{S}}\right)\right)
$$

Substitute $\Delta\left(p_{\perp}\right) \frac{\widetilde{B}}{B}=1+O\left(\alpha_{\mathrm{S}}\right)$

POWHEG-BOX framework

PowHel framework

Les Houches file of Born and Born+1st radiation events (LHE) ready for processing with SMC followed by almost arbitrary experimental analysis

HELAC-1LOOP@dd framework

HELAC-1LOOP@dd framework

Predictions at fixed order

Comparison to Bevilacqua et al: 0907.4723

Choice of scales

- QCD corrections are

Choice of scales

- QCD corrections are
- large with scales $\mu_{0}=m_{+}$or $m_{+}+m_{b} \bar{L} / 2$ (about 80%)

Choice of scales

- QCD corrections are
- large with scales $\mu_{0}=m_{+}$or $m_{+}+m_{b} \bar{b} / 2$ (about 80%)
- moderate with dynamical scale $\mu_{0}=\left(m_{+}{ }^{2} \mathrm{P}_{T, b} \mathrm{P}_{T, \bar{b}}\right)^{1 / 4}$ (about 25\%) (proposed by Bredenstein et al in arXiv:1001.4006), implying better convergence

$\underline{\mathrm{LO} \text { and NLO scale dependence of } \sigma_{\mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}}}$
Variations around new central scale

$$
\mu_{0}^{2}=m_{\mathrm{t}} \sqrt{p_{\mathrm{T}, \mathrm{~b}} p_{\mathrm{T}, \overline{\mathrm{~b}}}}
$$

Good news for theory: improved convergence

- small correction \& uncertainty $(K=1.25 \pm 21 \%)$
- shape of NLO curves: μ_{0} close to maximum

Bad news for experiment: $\sigma_{\text {t̄̄b̄ }}$ enhanced by factor 2.2 ${ }^{a}$ wrt LO ATLAS simulations

$\sigma_{\mathrm{t} \mathrm{t} \mathrm{b}}$	LO	NLO	$\mathrm{NLO} / \mathrm{LO}$
$\mu_{\mathrm{R}, \mathrm{F}}=E_{\mathrm{thr}} / 2$	449 fb	751 fb	1.67
$\mu_{\mathrm{R}, \mathrm{F}}^{2}=m_{\mathrm{t}} \sqrt{p_{\mathrm{T}, \mathrm{b}} p_{\mathrm{T}, \overline{\mathrm{b}}}}$	786 fb	978 fb	1.24

${ }^{a}$ (Partially) taken into account in Fat-Jet analysis!

Choice of scales

QCD corrections are

- large with scales $\mu_{f i x}=m_{+}$or $m_{+}+m_{b \bar{b}} / 2$ (about 70\%)
- moderate with dynamical scale $\mu_{\text {dyn }}=\left(m_{+}^{2} p_{\left.T, b P_{T, \bar{b}}\right)^{1 / 4}}\right.$ (about 25\%) (proposed by Bredenstein et al in arXiv:1001.4006), implying better convergence

but

- Hdyn is too small near threshold where cross section is largest, even for $a b$ with $p_{T}=100 \mathrm{GeV}$ and another b with $p_{T}=20 \mathrm{GeV} \mu_{\text {dyn }}=90 \mathrm{GeV} \ll m_{+}$ resulting in an artificially large xsection at LO

Choice of scales

We propose the dynamical scale $\mu_{\text {dyn }}=H_{T} / 2$ where H_{T} is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

With this scale

Choice of scales

We propose the dynamical scale $\mu_{d y n}=H_{T} / 2$ where H_{T} is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

With this scale
\checkmark the K factor is even smaller, implying good convergence

Choice of scales

We propose the dynamical scale $\mu_{\text {dyn }}=H_{T} / 2$ where H_{T} is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

With this scale
\checkmark the K factor is even smaller, implying good convergence
\checkmark the cross sections are smaller (with BDDP cuts):

Choice of scales

We propose the dynamical scale $\mu_{\text {dyn }}=H_{T} / 2$ where H_{T} is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

With this scale
\checkmark the K factor is even smaller, implying good convergence
\checkmark the cross sections are smaller (with BDDP cuts):

$$
\sigma_{L O}=534 \mathrm{fb}, \sigma_{N L O}=630 \mathrm{fb}, K=1.18
$$

Choice of scales

We propose the dynamical scale $\mu_{\text {dyn }}=H_{T} / 2$ where H_{T} is the scalar sum of transverse masses of final state particles that is a good scale also near threshold

With this scale
\checkmark the K factor is even smaller, implying good convergence
\checkmark the cross sections are smaller (with BDDP cuts):

$$
\sigma_{L O}=534 \mathrm{fb}, \sigma_{N L O}=630 \mathrm{fb}, \mathrm{~K}=1.18
$$

scale dependence: ${ }^{+32 \%}{ }_{-22 \%}$, largest if $\mu_{R}=\mu_{F}=\mu_{d y n}$

Small changes in shapes of distributions

Comparison of LHEF to NLO

LHE vs. NLO

Message: we can trust the LHE's, so can make Predictions

Four possible forms of predictions

LHE: distributions from events at BORN+1st radiation
Decay: on-shell decays of heavy particles (t-quarks), shower and hadronization effects turned off

PS: decays, parton showering (PYTHIA or HERWIG) included

Four possible forms of predictions

LHE: distributions from events at BORN+1st radiation
Decay: on-shell decays of heavy particles (\dagger-quarks), shower and hadronization effects turned off

PS: decays, parton showering (PYTHIA or HERWIG) included

Full SMC: decays, parton showering and hadronization are included by using PYTHIA or HERWIG

Four possible forms of predictions

LHE: distributions from events at BORN+1st radiation
Decay: on-shell decays of heavy particles (\dagger-quarks), shower and hadronization effects turned off

PS: decays, parton showering (PYTHIA or HERWIG) included

Full SMC: decays, parton showering and hadronization are included by using PYTHIA or HERWIG

Number and type of particles are very different => to study the effect of SMC we employ selection cuts to keep the cross section fixed

Selection cuts for decay vs. SMC

- Applied on the LHE's:
- A track was considered as a possible jet constituent if $\left|\eta^{\text {track }}\right|<5$, t-quarks were excluded from the set of possible tracks. Jets were reconstructed with the anti-kT algorithm using $\mathrm{R}=0.4$.

Selection cuts for decay vs. SMC

- Applied on the LHE's:
- A track was considered as a possible jet constituent if $\left|\eta^{\text {track }}\right|<5, t$-quarks were excluded from the set of possible tracks. Jets were reconstructed with the anti- k_{T} algorithm using $\mathrm{R}=0.4$.
- Events with invariant mass of the b̄ -jet pair below $m^{\text {min }_{b \bar{b}}}=100 \mathrm{GeV}$ were discarded.

Selection cuts for decay vs. SMC

- Applied on the LHE's:
- A track was considered as a possible jet constituent if $\left|\eta^{\text {track }}\right|<5, t$-quarks were excluded from the set of possible tracks. Jets were reconstructed with the anti-kT algorithm using $\mathrm{R}=0.4$.
- Events with invariant mass of the b̄ -jet pair below $m^{\text {min }_{b \bar{b}}}=100 \mathrm{GeV}$ were discarded.
- Applied on LHE's and checked also on the existing particles at different stages of evolution:
- we require $\mathrm{p}_{\mathrm{Tmin}, \mathrm{j}}=25 \mathrm{GeV}$ and
- at least two, one b- \& one \bar{b}-jet with $\left|n_{b}(\bar{b})\right|<2.5$.

Decay vs. full SMC at $8 \mathrm{TeV}, \mu=H_{T} / 4$

Decay vs. full SMC at $8 \mathrm{TeV}, \mu=H_{T} / 4$

Effects of SMC are important for hadronic variables, except rapidities, small on hardest leptonic ones

Cuts for background study for ttH

Applied after full SMC

- a track was considered as a possible jet constituent if $\mathrm{ln}^{\text {track }} \mid<5$, jets were reconstructed with the anti-kT algorithm using $\mathrm{R}=0.4$
we require
- at least six jets with $p_{\text {Tmin, },}=20 \mathrm{GeV}$ and $\left|n_{\mathrm{j}}\right|<5$
- at least two b-jets \& two $\overline{\mathrm{b}}$-jets with $\left|\eta_{b} \overline{\overline{(})}\right|<2.7$, with MCTRUTH tagging
- at least one isolated (with $\mathrm{R}=0.4$) lepton with PTmin,e
$=20 \mathrm{GeV}$ and $\left|n_{n}\right|<2.5$
- $\mathrm{PT}^{\text {miss }}=15 \mathrm{GeV}$
to disentangle background in the semileptonic $\dagger \mp$ decay

$\bar{\dagger} \bar{H} H$ signal on $\dagger \bar{\dagger} b \bar{b}$ background

Conclusions

Conclusions

\checkmark First computation of $\mathrm{pp} \rightarrow \dagger \dagger \mathrm{t} \overline{\mathrm{B}}$ at $\mathrm{NLO}+$ SMC accuracy [A. Kardos and Z.T. arXiv:1303.6291 contained a bug in the code computing the jet function, lead to false predictions - now corrected]
\checkmark NLO cross sections agree with published predictions
\checkmark Effects of SMC are often important, depending on shower setup, variables and cuts strongly
\checkmark LHE event files for $\mathrm{pp} \rightarrow+\bar{\mp}, \dagger \bar{\dagger} H, \dagger \mp \mathrm{~F},+\bar{\dagger} Z, \dagger \mp j e t,+\mp \mathrm{F} \overline{\mathrm{D}}$ processes available, to put into SMC and perform experimental analyses on events with hadrons (all produced within the LHCPhenonet project)
the end

