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 Focusing on IR singularities: general ideas 
• Related with low-energy and collinear configurations 

 
 
 

 
• Associated with degenerate states (the experiments are not able to 

distinguish two particles which are very close neither they can detect 
low-energy particles) 

Collinear configuration Soft configuration 

Virtual corrections 

+ 
Real corrections 

= Finite result 

(Classical example extracted from Field, R. – Applications of perturbative QCD) 3 



 Collinear limit (1->2 processes) 
• It is useful to introduce some kinematical variables to parametrize 

collinear momenta. 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 

Particles 1 and 2 become 
collinear. n and p are null-vectors 
(p is the collinear direction) 

zi are the 
momentum 
fractions 

Null-vector associated  
to the parent parton 

General parametrization 

Collinear 
direction 

Transverse 
component 

Approach to the 
collinear limit 
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(For more details see: Catani, de Florian and Rodrigo, arXiv:1112.4405 [hep-ph]) 



 Collinear limit (general) 
• We will work in the LC-gauge (n is the quantization vector). This 

allows to obtain factorization formulas. 
• Generalize kinematics variables 

 
 
 

• Matrix elements have an specific (divergent) behaviour in the 
collinear limit: 
 
 

• Only keep the most divergent contributions in s (collinear subscales) 

• Multiple scales in the multiple collinear limit       Increase difficulty 
 
 

 
 
 
 

(For more details see: Catani, de Florian and Rodrigo, arXiv:1112.4405 [hep-ph]) 
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Null-vector associated  
to the parent parton 

Involves collinear 
particles (2 or more) 



 Collinear factorization in color space: We introduce the splitting 
matrices in color+spin space; they describe the divergent 
behaviour of scattering amplitudes in the collinear limit 
• Tree-level factorization 

 
• One-loop level factorization 

 
 
 

with the reduced scattering amplitude 
 Some remarks: 

• It is important to note that these expressions only consider the most 
divergent contributions in the collinear limit 

• Splitting functions are recovered if we project over color and remove 
color dependence 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Splitting matrix at 
LO 

Splitting matrix at 
NLO 
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(For more details see: Catani, de Florian and Rodrigo, arXiv:1112.4405 [hep-ph]) 



 Collinear factorization in color space 
• General structure of one-loop splitting matrices (1->2) 

 
 
 
 

• More details: 
 SpH contains only rational functions of the momenta and only 

depends on collinear particles. 
 IC contains trascendental functions and can depend of non-collinear 

particles (through colour correlations). This contribution introduces 
a violation of strict collinear factorization. 

 It can be extended to the multiple collinear limit. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Tree-level splitting 
matrix 

One-loop 
splitting matrix 

Finite 
contribution 

Singular 
contribution 
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(For more details see: Catani, de Florian and Rodrigo, arXiv:1112.4405 [hep-ph]) 



 Collinear factorization in color space 
• Divergent structure of one-loop splitting matrices (1->2) 
 Time-like region (TL): sij>0 for all particles 
 Space-like region (SL): sij<0 for some i,j 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Diagonal in 
color space 

Explicit correlation with non-
collinear particles in SL region 

Color 
correlations 
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Sum over all partons 

Presence of branch-cuts! 

(For more details see: Catani, de Florian and Rodrigo, arXiv:1112.4405 [hep-ph]) 



 Dimensional regularization (DREG): Introduction 
• Change space-time dimension to allow integrals to converge (both 

loop and phase space)      4           DST 

• Regulates both UV and IR singularities using the same procedure (but 
not necessarily the same regulator)          Make divergences explicit! 

 
 
 
 
 
 

• When applied to virtual corrections, only loop momenta must be D-
dimensional; the external momenta and the number of polarizations 
(both internal and external) can be chosen  

 
 
 
 
 

Scalar integrals (depend on 
scalar products and DST) 

       Tensor-type integrals 

Structure involving physical momenta and metric tensors 

       DREG scheme definition 

DST-dimensional 
metric tensor 
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 Dimensional regularization (DREG): Schemes definitions 
We can play with many parameters. Each choice defines a DREG scheme. 

• Dirac algebra dimension: 
 
 

• Trace of identity matrix in Dirac’s matrices space: 
 
 
 

 
 
 
 
 
 
 
 
 
 

Number of fermion 
polarizations 

For more details see:   Catani, Seymour and Trócsányi, arXiv:hep-ph/9610553 
                                         de Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph] 

External particles 

Fermions in loops 
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 Dimensional regularization (DREG): Schemes definitions 
We can play with many parameters. Each choice defines a DREG scheme. 

• Internal gluon’s polarization tensor: 
 
 
 
 
 

• Sum over external gluon’s polarizations: 
 
 

 
 
 
 
 
 
 
 
 
 

Light-cone gauge 
reference vector 

For more details see:   Catani, Seymour and Trócsányi, arXiv:hep-ph/9610553 
                                         de Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph] 

Reference vector 
(consider Q=n) 

Number of internal 
gluons’ polarizations 

Number of external 
gluons’ polarizations 
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 Dimensional regularization (DREG): Schemes definition 
Commonly used 
• CDR: All momenta and polarizations in 4-2ε dimensions (δ=1,αR=1,α=1) 
• HV: Internal polarizations in 4-2ε dimensions but external particles with 

physical 4-dimensional polarizations (δ=1,αR=1,α=0) 
• FDH: All particles have physical 4-dimensional polarizations (δ=0,αR=1) 

Other choices 
• HSA/HSB («hybrid-schemes»): Momenta in 4-2ε dimensions but αR=0 

(metric tensor inside gluon polarization tensor is 4-dimensional) 
• TSC («toy scheme» introduced in hep-ph/9610553): Like CDR, but 

fermions are in 4-2ε dimensions. 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 

For more details see:   Catani, Seymour and Trócsányi, arXiv:hep-ph/9610553 
                                         de Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph] 12 



 Dimensional regularization (DREG): Schemes definition 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 

For more details see:   Catani, Seymour and Trócsányi, arXiv:hep-ph/9610553 
                                         de Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph] 13 

Common schemes 

Other choices (with usual 
fermion polarizations) 

CDR with 2-2ε 
fermionic DF 



 Relation between splitting amplitudes and Altarelli-Parisi kernels: 
• Altarelli-Parisi kernels are related to the collinear behaviour of 

squared matrix elements. They also control the evolution of PDF’s and 
FF’s (through DGLAP equations). 
 LO contribution 
 
 
 NLO contribution 

 
 

• They are a key component in the dipole formalism, parton shower 
algorithms, evolution of PDF’s and FF’s, etc. 

 
 
 
 
 
 
 
 
 
 
 

See:  Catani, de Florian and Rodrigo, arXiv:hep-ph/0312067 and arXiv:1112.4405 [hep-ph] 
 Catani, Seymour and Trócsányi, arXiv:hep-ph/9610553 14 

Normalization (depends 
on the number of 
collinear particles) 



 Motivation and objectives 
• Double collinear splittings are known up to NNLO 
• Both amplitude and squared-amplitude results are available 
• Deep study of scheme dependence performed at LO 
• We extended the analysis to NLO (in QCD+QED) and studied the 

consistency of some DREG configurations (HSA,HSB,TSC…) 
• Main motivation: understand transition rules between schemes and 

apply them to higher-order splittings 
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More details in De Florian, Rodrigo and GS, arXiv:1310.6841 and references therein 



 Collinear factorization in color space: Graphical motivation for 
double splittings (gluon parent) 

 
 
 
 
 
 
 

 Important remarks: 
• Splitting functions and matrices are computed using a on-shell 

massless parent particle, but off-shell kinematics  
 

 
 
 
 
 
 
 
 
 
 

Intermediate particle 
propagator in the collinear 
limit (dominant contribution) 
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 Collinear factorization in color space: Graphical motivation for 
double splittings (quark parent) 

 
 
 
 
 
 
 

 Important remarks: 
• Splitting functions and matrices are computed using a on-shell 

massless parent particle, but off-shell kinematics  
 

 
 
 
 
 
 
 
 
 
 

Intermediate particle 
propagator in the collinear 
limit (dominant contribution) 
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 Scheme dependence: Consistency 
• Divergent structure must be compatible with Catani’s formula for IR 

singularities 
 
 
 

• Gluon polarization tensor must fulfill some physical requirements 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

18 (See De Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph]) 

Divergent factor in TL 
kinematics (scheme-
independent) 

Always valid if n and external 
momenta are null extensions of 4-
vectors (implicit in our choices) 

Potential problems if αR=0… 



 Scheme dependence: q->gq (example) 
• Replace the incoming polarization spinor by a massless physical one, 

associated with the light-like vector     . 
• Use the usual Feynman rules to write the amplitude. 
• Use off-shell kinematics (parent parton with a tiny virtuality). 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

19 (See De Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph]) 

LO splitting amplitude 

NLO correction 



 Scheme dependence: q->gq (example) 
• Explicit results: 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

20 (See De Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph]) 

Additional pole in 
HSA configuration! 

IR divergences don’t agree 
with expected structure! 



 Scheme dependence: q->gq (example) 
• Introduce scalar-gluons (associated with ε–polarizations) 
• Typical scalar-particle propagator and Feynman rules 

21 (See De Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph]) 



 Scheme dependence: q->gq (example) 
• Compute                           with the previous rules 
• Add this contribution to q->gq in HSA configuration 

 
 
 
 

• Additional poles cancel, but we recover CDR results… 
• CDR is the consistent version of HSA 
• In fact, we show that 

 
 

which is compatible with the interpretation of extra-polarizations as 
scalar-particles  

22 (See De Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph]) 



 Scheme dependence: q->gq (example) 
• Starting from FDH we can recover HV results by adding (internal) 

scalar-gluons contributions which are compatible with helicity-
conservation 
 

23 (See De Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph]) 



 Scheme dependence: Conclusions 
• HSA/HSB schemes are incomplete versions of CDR/HV 
• Scalar-gluons can be used to connect different schemes 
• Playing with the number of fermion’s polarizations introduces O(ε0) 

differences among results 
• TSC scheme seems to be compatible with supersymmetric Ward’s 

identity at NLO 
 
 

when considering 

24 (See De Florian, Rodrigo and GS, arXiv:1310.6841 [hep-ph]) 



 Motivation and objectives 
• We are interested in computing triple-collinear splitting functions (at 

amplitude level and AP kernels) at NLO 
• Only partial results available at NLO 

 
 
 
 
 
 
 

• Presence of different scales           Difficult computation! 
• Start to work with QCD+QED and splittings with photons (simpler 

color structure) 
 

 
 
 
 
 
 
 
 
 
 

(See Catani, de Florian and Rodrigo, arXiv:hep-ph/0312067 and arXiv:1112.4405 [hep-ph]) 
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Antisymmetric contribution to 
q->qQQbar AP kernel at NLO 
(Catani, de Florian, Rodrigo; 
Phys.Lett. B586, 323-331,2004) 



 Divergent behaviour of multiple-collinear splitting amplitudes 
• Extension for QCD+QED in TL kinematics (strict factorization) 

 
 
 
 
 
 
 
 
 

• Useful to test our results (only the divergent structure…) 
• Transition rules well known 

 
 
 
 
 
 
 
 
 
 

(See Catani, de Florian and Rodrigo, arXiv:hep-ph/0312067 and arXiv:1112.4405 [hep-ph]) 

Scheme-dependence (up to ε0) 

Multiple 
scales 
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 Computation strategy 
• Use Feynman diagram approach and follow the recipe applied to 

double collinear splittings 
• Work at squared-amplitude level (i.e. AP kernels), in TL region and in 

CDR          Easier calculation!         Transition rules to change scheme! 
• Use IBP and other techniques to simplify loop-integrals in the LCG 
• Expand the result up to O(ε0)         Transcendentality 

 

 
 
 
 
 
 
 
 
 
 

(Catani, de Florian, Rodrigo and GS, in preparation) 27 

Finite remainder 

Divergent contribution 
(also includes O(ε0) terms) 

Set of functions of 
transcendentality i 



 Status: 
• Splitting functions with photons fully computed at NLO 

 
 
 
 
 
 
 
 
 

• Divergent structure compatible with Catani’s formula 
• Symmetries used to both reduce and check results 
• Very lengthy expressions          Manual simplification… 

 
 
 
 
 
 

(Catani, de Florian, Rodrigo and GS, in preparation) 28 



 Splitting amplitudes describe collinear factorization properties 
and are process-independent quantities (except, maybe, in some 
kinematical configurations). 

 Changing (well-defined) DREG scheme introduces O(ε0) 
differences among results. They can be interpreted in terms of 
scalar-gluons contributions. 

 DREG scheme consistency studied for all QCD and QCD+QED 
double-splittings at NLO. 

 Triple collinear splitting functions with photons fully computed at 
NLO. 

 We are computing triple collinear splittings in pure QCD at NLO 
(including amplitude level results) 
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