Soft Gluon Effects in Four Parton Hard-Scattering Processes

Alessandro Torre
Universität Zürich

LHCPhenonet annual meeting, CERN, 02 December 2013
with Stefano Catani and Massimiliano Grazzini
A.Torre 02 December 2013

Outline

1. Introduction: Sudakov Logs \& Threshold Resummation
2. One-particle inclusive cross section: a general NLO calculation of the large logarithmic terms
3. Soft-gluon resummation at fixed rapidity
4. Conclusions
A.Torre 02 December 2013

Threshold Resummation

- Perturbative QCD predictions are at the heart of our understanding of hard-scattering processes at high-energy colliders.
- At the partonic threshold, the imbalance between real emission (strongly inhibited) and virtual corrections leads to enhanced logarithmic terms, already at NLO.
- The large logarithms spoil the perturbative expansion ($\alpha_{s} \mathrm{~L} \sim 1$).

A reliable evaluation of any cross-section in the near-threshold region requires the all-order resummation of these logarithms.
[Sterman '87]
[Catani, Trentadue '89]
[Kidonakis, Laenen, Oderda, Sterman '98]
[Bonciani, Catani, Mangano, Nason '98]

Motivation

- Resummation nowadays available for several processes, involving only two partons (DY and H production) or more partons (photoproduction, high- p_{T} vector and H bosons, heavy quarks, jet and dihadron, single-hadron inclusive production) in QCD and SCET.
- We consider the single-hadron inclusive production at high hadron transverse momentum. Easily measurable at hadron colliders, it offers both a relevant test of the QCD factorization and quantitative information on the parton fragmentation functions.
- Soft-gluon resummation up to NLL for this process was performed in [De Florian,Vogelsang '05]. The quantitative effect is large, expecially at the typical energies of fixed-target collisions.

Aim

We want to study soft-gluon resummation for the transversemomentum cross section at fixed rapidity of the observed hadron.

- To this aim we compute the NLO QCD corrections close to the partonic threshold, directly factorized in color space.
- Using our general expression of the NLO cross section, we determine the one-loop hard-virtual amplitude that enters into the colour-space factorization structure of the resummation formula.

Related works (threshold resummation):

- Prompt-photon [Catani, Mangano, Nason '98] [Becher, Schwartz '10]
- One-particle integrated over rapidity [De Florian, Vogelsang '05]
- Double-particle at large invariant mass

One-hadron-inclusive cross-section

$$
\begin{array}{cc}
h_{1} h_{2} \rightarrow h_{3} X & a_{1} a_{2} \rightarrow a_{3} X \\
\frac{d \sigma_{h_{1} h_{2} h_{3}}}{d^{3} \boldsymbol{P}_{3} / E_{3}}\left(P_{i}\right)=\sum_{a_{i}} f_{h_{1} / a_{1}}^{\left(\mu_{F}\right)} \otimes f_{h_{2} / a_{2}}^{\left(\mu_{F}\right)} \otimes d_{h_{3} / a_{3}}^{\left(\mu_{f}\right)} \otimes \frac{d \hat{\sigma}_{a_{1} a_{2} a_{3}}}{d^{3} \boldsymbol{p}_{3} / p_{3}^{0}}\left(p_{i}, \mu_{F}, \mu_{f}\right) \\
d \eta d^{2} \boldsymbol{p}_{\perp}
\end{array}
$$

- At high p_{T} : leading contributions at the partonic threshold.

One-hadron-inclusive cross-section

$$
\begin{array}{cc}
h_{1} h_{2} \rightarrow h_{3} X & a_{1} a_{2} \rightarrow a_{3} X \\
\frac{d \sigma_{h_{1} h_{2} h_{3}}}{d^{3} \boldsymbol{P}_{3} / E_{3}}\left(P_{i}\right)=\sum_{a_{i}} f_{h_{1} / a_{1}}^{\left(\mu_{F}\right)} \otimes f_{h_{2} / a_{2}}^{\left(\mu_{F}\right)} \otimes d_{h_{3} / a_{3}}^{\left(\mu_{f}\right)} \otimes \frac{d \hat{\sigma}_{a_{1} a_{2} a_{3}}}{d^{3} \boldsymbol{p}_{3} / p_{3}^{0}}\left(p_{i}, \mu_{F}, \mu_{f}\right) \\
d \eta d^{2} \boldsymbol{p}_{\perp}
\end{array}
$$

- At high p_{T} : leading contributions at the partonic threshold.
- If $x=(s+t+u) / s \rightarrow 0$, these are:
- Constant terms $\delta(x) \rightarrow 1$
- Large Logs $\left(\frac{\ln ^{\ell} x}{x}\right)_{+} \rightarrow(\ln N)^{\ell+1}$
- While regular terms are suppressed: $\mathcal{O}(1 / N)$

NLO result near threshold

Already in the literature [Aversa,Chiappetta,Greco,Guillet '89]

In terms of the kinematical variables $v=1+t / s$ and $w=-u /(s+t)$, the partonic cross section can be written as

$$
\begin{aligned}
\frac{d \hat{\sigma}_{a_{1} a_{2} a_{3}}}{d^{3} \boldsymbol{p}_{3} / p_{3}^{0}}\left(p_{i} ; \mu_{F}, \mu_{f}\right) & =\frac{\alpha_{\mathrm{S}}^{2}\left(\mu_{R}^{2}\right)}{\pi s}\left[\frac{1}{v} \frac{d \hat{\sigma}^{(0)}(s, v)}{d v} \delta(1-w)\right. \\
& \left.+\frac{\alpha_{\mathrm{S}}\left(\mu_{R}^{2}\right)}{2 \pi} \frac{1}{v s} \mathcal{C}^{(1)}\left(s, v, w ; \mu_{R}, \mu_{F}, \mu_{f}\right)+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)\right]
\end{aligned}
$$

where the NLO term $\mathcal{C}^{(1)}$ has the structure

$$
\begin{gathered}
\mathcal{C}^{(1)}\left(s, v, w ; \mu_{R}, \mu_{F}, \mu_{f}\right)=\mathcal{C}_{3}(v)\left(\frac{\ln (1-w)}{1-w}\right)_{+}+\mathcal{C}_{2}\left(v ; s, \mu_{F}, \mu_{f}\right)\left(\frac{1}{1-w}\right)_{+} \\
+\mathcal{C}_{1}\left(v ; s, \mu_{R}, \mu_{F}, \mu_{f}\right) \delta(1-w)+\mathcal{C}_{0}\left(1-w, v ; s, \mu_{R}, \mu_{F}, \mu_{f}\right)
\end{gathered}
$$

We have performed an independent calculation, by using soft and collinear approximations.

- $a_{1} a_{2} \rightarrow a_{3} a_{4}$ @ 1-loop: [Kunszt,Signer,Trocsanyi '94]

$$
\left|\mathcal{M}^{(1)}\right\rangle=\boldsymbol{l}_{\text {sing }}^{(1)}\left|\mathcal{M}^{(0)}\right\rangle+\left|\mathcal{M}^{(1) \mathrm{fin}}\right\rangle
$$

The color operator $\boldsymbol{l}_{\text {sing }}^{(1)}$ embodies the one-loop IR divergence, while $\left|\mathcal{M}^{(1) \text { fin }}\right\rangle$ is finite as $\epsilon \rightarrow 0$. We use the expression

$$
\boldsymbol{l}_{\text {sing }}^{(1)}=\frac{1}{2} \frac{1}{\Gamma(1-\epsilon)}\left[\frac{1}{\epsilon^{2}} \sum_{\substack{i, j=1 \\ i \neq j}}^{4} \boldsymbol{T}_{i} \boldsymbol{T}_{j}\left(\frac{4 \pi \mu_{R}^{2} e^{-i \lambda_{j j} \pi}}{2 p_{i} \cdot p_{j}}\right)^{\epsilon}-\frac{1}{\epsilon} \sum_{i=1}^{4} \gamma_{a_{i}}\left(\frac{4 \pi \mu_{R}^{2} s}{u t}\right)^{\epsilon}\right]
$$

Full color structure: \boldsymbol{T}_{i} color operators.

- $a_{1} a_{2} \rightarrow a_{3} X$, with real emission of $X=\{2$ partons $\}$.

We use soft and collinear factorization formulae [Catani,Seymour '97]

- The soft configuration is treated via eikonal approximation.
- $X=\{$ hard-collinear pair $\}$? Matching to the full AP behaviour.
- Collinear-divergent counterterms (NLO PDFs).
- $a_{1} a_{2} \rightarrow a_{3} X$, with real emission of $X=\{2$ partons $\}$.

We use soft and collinear factorization formulae [Catani,Seymour '97]

- The soft configuration is treated via eikonal approximation.
- $X=\{$ hard-collinear pair $\}$? Matching to the full AP behaviour.
- Collinear-divergent counterterms (NLO PDFs).
- Our result has a rather compact form: one simple formula valid for all the flavour and colour channels.
\rightarrow It is factorized on the colour space: the coefficients of $(1 /(1-x))_{+}$ and $\delta(1-x)$ depend on colour-correlation operators $\boldsymbol{T}_{i} \boldsymbol{T}_{j}$.
\rightarrow It is consistent with (the dominant contribution of) known results:
- Photoproduction from $q g$ and $q \bar{q}$ channels [Gordon and Vogelsang '93]
- $q q$ and $q g$ scattering [Aversa,Chiappetta,Greco,Guillet '89]

$$
\begin{aligned}
& 16 \pi N^{(i n)} \mathcal{C}^{(1)}=\left\langle\mathcal{M}^{(0)}\right| \boldsymbol{C}^{(1)}\left|\mathcal{M}^{(0)}\right\rangle+\left(\left\langle\mathcal{M}^{(0)} \mid \mathcal{M}^{(1) \text { fin }}\right\rangle+\text { c.c. }\right) \delta(1-w)+\mathcal{O}\left((1-w)^{0}\right) \\
& \boldsymbol{C}_{a_{1} a_{2} a_{3} a_{4}}^{(1)}\left(s, v, w ; \mu_{R}, \mu_{F}, \mu_{f}\right)=2\left(\frac{\ln (1-w)}{1-w}\right)_{+}\left[2 \sum_{i=1}^{3} \boldsymbol{T}_{i}^{2}-\boldsymbol{T}_{4}^{2}\right] \\
&-\left(\frac{1}{1-w}\right)_{+} {\left[2 \sum_{i=1}^{3} \boldsymbol{T}_{i}^{2}\left(\ln \frac{1-v}{v}+\ln \frac{\mu_{F i}^{2}}{s}\right)-2 \boldsymbol{T}_{4}^{2} \ln (1-v)\right.} \\
&\left.+\gamma_{a_{4}}+8\left(\boldsymbol{T}_{1} \cdot \boldsymbol{T}_{3} \ln (1-v)+\boldsymbol{T}_{2} \cdot \boldsymbol{T}_{3} \ln v\right)\right] \\
&+\delta(1-w)\{ \frac{\pi^{2}}{2}\left(\boldsymbol{T}_{1}^{2}+\boldsymbol{T}_{2}^{2}+3 \boldsymbol{T}_{3}^{2}-\frac{4}{3} \boldsymbol{T}_{4}^{2}\right)-\sum_{i=1}^{3} \gamma_{a_{i}} \ln \frac{\mu_{F i}^{2}}{s v(1-v)}+\gamma_{a_{4}} \ln (1-v) \\
&-2 \boldsymbol{T}_{3}^{2} \ln v \ln \frac{\mu_{f}^{2}}{s}+2 \boldsymbol{T}_{2}^{2} \ln \frac{1-v}{v} \ln \frac{\mu_{F}^{2}}{s}+\ln v \ln (1-v)\left(\boldsymbol{T}_{4}^{2}-\boldsymbol{T}_{1}^{2}-\boldsymbol{T}_{2}^{2}-\boldsymbol{T}_{3}^{2}\right) \\
&+ \boldsymbol{T}_{2} \cdot \boldsymbol{T}_{3}\left(2 \pi^{2}+2 \ln v(2 \ln (1-v)-3 \ln v)\right)+\ln ^{2}(1-v)\left(\boldsymbol{T}_{1}^{2}+\boldsymbol{T}_{3}^{2}-\boldsymbol{T}_{4}^{2}\right) \\
&+\left.\boldsymbol{T}_{1} \cdot \boldsymbol{T}_{3}\left(2 \pi^{2}+2 \ln (1-v)(\ln (1-v)-2 \ln v)\right)+\ln ^{2} v\left(\boldsymbol{T}_{2}^{2}+\boldsymbol{T}_{3}^{2}\right)+K_{a_{4}}\right\}
\end{aligned}
$$

A.Torre 02 December 2013

All-order soft-gluon resummation

- We introduce $x_{\omega}=-\frac{t+u}{s}, \quad r=\frac{u}{t}, \quad p_{T}^{2}=\frac{t u}{s}$,
- The threshold region is $x_{\omega} \rightarrow 1$.
- The threshold variable x_{ω} is symmetric w.r.t. $t \leftrightarrow u$. Otherwise the truncation of the resummed series would produce unphysical asymmetries in the angular distribution.
- In terms of these variables

$$
\frac{d \hat{\sigma}_{a_{1} a_{2} a_{3}}}{d^{3} \boldsymbol{p}_{3} / p_{3}^{0}}=\frac{\left|\overline{\mathcal{M}_{a_{1} a_{2} a_{3} a_{4}}^{(0)}\left(r, p_{T}^{2}\right)}\right|^{2}}{(4 \pi s)^{2}} \Sigma_{a_{1} a_{2} \rightarrow a_{3}}\left(x_{\omega}, r ; p_{T}^{2}, \mu_{F}, \mu_{f}\right) .
$$

- We perform resummation in the Mellin space of N conjugated to x_{ω}, neglecting $\mathcal{O}(1 / N)$ contributions. The all-order expression of $\Sigma_{a_{1} a_{2} \rightarrow a_{3}, N}$ is obtained by using the BCMN resummation formalism.
- Resummed Multiparton Cross Section [Bonciani, Catani, Mangano, Nason '03]

$$
\sum_{a_{1} a_{2} a_{3}, N}^{\mathrm{res}}=
$$

A.Torre 02 December 2013

- Resummed Multiparton Cross Section [Bonciani, Catani, Mangano, Nason '03]

$$
\sum_{a_{1} a_{2} a_{3}, N}^{\mathrm{res}}=\prod_{i=1,2,3} \Delta_{a_{i}, N_{i}}\left(Q_{i}^{2}, \mu_{i}^{2}\right)
$$

$\Delta_{a_{i}, N_{i}}$: IS-like radiation (soft-collinear)

A.Torre 02 December 2013

- Resummed Multiparton Cross Section [Bonciani, Catani, Mangano, Nason '03]

$$
\Sigma_{a_{1} a_{2} a_{3}, N}^{\mathrm{res}}=\prod_{i=1,2,3} \Delta_{a_{i}, N_{i}}\left(Q_{i}^{2}, \mu_{i}^{2}\right) J_{a_{4}, N_{4}}\left(Q_{4}^{2}\right)
$$

$\Delta_{a_{i}, N_{i}}$: IS-like radiation (soft-collinear)
$J_{a_{4}, N_{4}}$: Jet function (collinear, soft and hard, radiation)

A.Torre 02 December 2013

- Resummed Multiparton Cross Section [Bonciani, Catani, Mangano, Nason '03]

$$
\Sigma_{a_{1} a_{2} a_{3}, N}^{\mathrm{res}}=\prod_{i=1,2,3} \Delta_{a_{i}, N_{i}}\left(Q_{i}^{2}, \mu_{i}^{2}\right) J_{a_{4}, N_{4}}\left(Q_{4}^{2}\right)-\Delta_{N}^{(\mathrm{int})}
$$

$\Delta_{a_{i}, N_{i}}$: IS-like radiation (soft-collinear) $J_{a_{4}, N_{4}}$: Jet function (collinear, soft and hard, radiation)
$\boldsymbol{\Delta}_{N}^{(\text {int })}$: Color-correlated large-angle soft emission
A.Torre

02 December 2013

- Resummed Multiparton Cross Section [Bonciani, Catani, Mangano, Nason '03]

$$
\Sigma_{a_{1} a_{2} a_{3}, N}^{\mathrm{res}}=\prod_{i=1,2,3} \Delta_{a_{i}, N_{i}}\left(Q_{i}^{2}, \mu_{i}^{2}\right) J_{a_{4}, N_{4}}\left(Q_{4}^{2}\right) \frac{\left\langle\mathcal{M}_{\mathrm{H}}\right| \Delta_{N}^{(\mathrm{int})}\left|\mathcal{M}_{\mathrm{H}}\right\rangle}{\left|\mathcal{M}^{(0)}\right|^{2}}
$$

$\Delta_{a_{i}, N_{i}}$: IS-like radiation (soft-collinear) $J_{a_{4}, N_{4}}$: Jet function (collinear, soft and hard, radiation)
$\Delta_{N}^{(\text {int })}$: Color-correlated large-angle soft emission
\mathcal{M}_{H} : Process-dependent constant terms \sim hard virtual corrections

- Resummed Multiparton Cross Section [Bonciani, Catani, Mangano, Nason '03]

$$
\Sigma_{a_{1} a_{2} a_{3}, N}^{\mathrm{res}}=\prod_{i=1,2,3} \Delta_{a_{i}, N_{i}}\left(Q_{i}^{2}, \mu_{i}^{2}\right) J_{a_{4}, N_{4}}\left(Q_{4}^{2}\right) \frac{\left\langle\mathcal{M}_{\mathrm{H}}\right| \Delta_{N}^{(\mathrm{int})}\left|\mathcal{M}_{\mathrm{H}}\right\rangle}{\left|\mathcal{M}^{(0)}\right|^{2}}
$$

$\Delta_{a_{i}, N_{i}}$: IS-like radiation (soft-collinear) $J_{a_{4}, N_{4}}$: Jet function (collinear, soft and hard, radiation)
$\Delta_{N}^{(\text {int })}$: Color-correlated large-angle soft emission
\mathcal{M}_{H} : Process-dependent constant terms \sim hard virtual corrections

$$
\begin{aligned}
& N_{1}=\frac{N r}{1+r}, N_{2}=\frac{N}{1+r}, \\
& N_{3}=N, N_{4}=\frac{N r}{(1+r)^{2}}, Q_{i}^{2}=p_{T}^{2}
\end{aligned}
$$

A.Torre 02 December 2013

Collinear radiation

- The collinear radiation is diagonal in colour-space:

$$
\begin{array}{r}
\ln \Delta_{a, N}\left(Q^{2} ; \mu^{2}\right)=\int_{0}^{1} \frac{z^{N-1}-1}{1-z} \int_{\mu^{2}}^{(1-z)^{2} Q^{2}} \frac{d q^{2}}{q^{2}} A_{a}\left(\alpha_{S}\left(q^{2}\right)\right) \\
\begin{array}{r}
\ln J_{a, N}\left(Q^{2}\right)=\int_{0}^{1} \frac{z^{N-1}-1}{1-z}\left[\int_{(1-z)^{2} Q^{2}}^{(1-z) Q^{2}} \frac{d q^{2}}{q^{2}} A_{a}\left(\alpha_{\mathrm{S}}\left(q^{2}\right)\right)\right. \\
\\
\left.\quad+\frac{1}{2} B_{a}\left(\alpha_{\mathrm{S}}\left((1-z) Q^{2}\right)\right)\right]
\end{array}
\end{array}
$$

- The coefficients A_{a} and B_{a} have perturbative expansions:

$$
\begin{aligned}
& A_{a}\left(\alpha_{\mathrm{S}}\right)=\sum_{k=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{\pi}\right)^{n} A_{a}^{(n)} \quad B_{a}\left(\alpha_{\mathrm{S}}\right)=\sum_{k=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{\pi}\right)^{n} B_{a}^{(n)} \\
& A_{a}^{(1)}=C_{a} \\
& B_{a}^{(1)}=-\gamma_{a}
\end{aligned}
$$

A.Torre 02 December 2013

Soft large-angle radiation

- The colour-space radiative factor embodies all the quantum-interference effects induced by soft-gluons radiated at large angles:

$$
\begin{aligned}
& \boldsymbol{\Delta}_{N}^{(\text {int })}=\boldsymbol{V}_{N}^{\dagger} \boldsymbol{V}_{N} \\
& \boldsymbol{V}_{N}=P_{z} \exp \left\{\sum_{i \neq j} \int_{0}^{1} \frac{z^{N-1}-1}{1-z} \boldsymbol{\Gamma}\left(\alpha_{\mathrm{S}}\left((1-z)^{2} p_{T}^{2}\right), r\right)\right\}
\end{aligned}
$$

P_{z} denotes z-ordering in the expansion of the exponential matrix

- The anomalous-dimension matrix $\boldsymbol{\Gamma}\left(\alpha_{\mathrm{S}}, r\right)$ has the perturbative expansion

$$
\begin{gathered}
\boldsymbol{\Gamma}\left(\alpha_{\mathrm{S}}, r\right)=\frac{\alpha_{\mathrm{S}}}{\pi} \boldsymbol{\Gamma}^{(1)}(r)+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right), \\
\boldsymbol{\Gamma}^{(1)}(r)=\boldsymbol{T}_{t}^{2} \ln (1+r)+\boldsymbol{T}_{u}^{2} \ln \frac{1+r}{r}+i \pi \boldsymbol{T}_{s}^{2}, \\
\boldsymbol{T}_{s}^{2}=\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}\right)^{2}, \quad \boldsymbol{T}_{t}^{2}=\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{3}\right)^{2}, \quad \boldsymbol{T}_{u}^{2}=\left(\boldsymbol{T}_{2}+\boldsymbol{T}_{3}\right)^{2} .
\end{gathered}
$$

A.Torre 02 December 2013

Hard components

- $\left|\mathcal{M}_{\mathrm{H}}\right\rangle$ embodies the residual terms of Σ_{N} that are constant and it is perturbatively computable as a power series in α_{S}.
- $\left|\mathcal{M}_{\mathrm{H}}^{(1)}\right\rangle$ can be obtained from the result of our NLO calculation:
- Expand \& truncate the resummed formula, compare with Mellin transformed fixed order result;
- All the logs must match \rightarrow the constant terms give \mathcal{M}_{H}.
- The colour-space factorization of our NLO is essential to obtain $\left|\mathcal{M}_{\mathrm{H}}^{(1)}\right\rangle$ as an amplitude!

Full Color Structure

@NLO: $\quad\left|\mathcal{M}_{\mathrm{H}}^{(1)}\right\rangle=\left|\mathcal{M}^{(1)}\right\rangle-\boldsymbol{I}_{\mathrm{H}}^{(1)}\left|\mathcal{M}^{(0)}\right\rangle$

$$
\begin{aligned}
\boldsymbol{I}_{\mathrm{H}}^{(1)} & =\boldsymbol{l}_{\mathrm{sing}}^{(1)}+\frac{\pi^{2}}{4}\left(\boldsymbol{T}_{1}^{2}+\boldsymbol{T}_{2}^{2}+\boldsymbol{T}_{3}^{2}+\frac{4}{3} \boldsymbol{T}_{4}^{2}\right)+\frac{1}{2} \sum_{i=1}^{3} \gamma_{a_{i}} \ln \frac{\mu_{F i}^{2}}{p_{T}^{2}} \\
& -\frac{1}{2} \ln (1+r) \ln \frac{1+r}{r}\left(\boldsymbol{T}_{1}^{2}+\boldsymbol{T}_{2}^{2}-3 \boldsymbol{T}_{3}^{2}+\boldsymbol{T}_{4}^{2}\right) \\
& -\boldsymbol{T}_{t}^{2}\left(\frac{\pi^{2}}{2}+\frac{1}{2} \ln ^{2}(1+r)+\ln (1+r) \ln \frac{1+r}{r}\right) \\
& -\boldsymbol{T}_{u}^{2}\left(\frac{\pi^{2}}{2}+\frac{1}{2} \ln ^{2} \frac{1+r}{r}+\ln (1+r) \ln \frac{1+r}{r}\right)-\frac{1}{2} K_{a 4} \\
K_{q}= & K_{\bar{q}}=\left(\frac{7}{2}-\frac{\pi^{2}}{6}\right) C_{F}, \quad K_{g}=\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right) C_{A}-\frac{10}{9} n_{F} T_{R}
\end{aligned}
$$

A.Torre 02 December 2013

NNLL

The extension to NNLL resummation still requires:

- $A_{a}^{(3)}$ in $\Delta_{a, N}$ and $J_{a, N}$ [Moch,Vermaseren, Vogt '04]
- $B_{a}^{(2)}$ in $J_{a, N}$
- $\left|\mathcal{M}_{\mathrm{H}}^{(2)}\right\rangle$ in $\left|\mathcal{M}_{\mathrm{H}}\right\rangle$
- $\boldsymbol{\Gamma}^{(2)} \sim\left(K / 2 \boldsymbol{\Gamma}^{(1)}\right)$ in $\boldsymbol{\Delta}_{N}^{(\mathrm{int})}$

NNLL

The extension to NNLL resummation still requires:

- $A_{a}^{(3)}$ in $\Delta_{a, N}$ and $J_{a, N}$ [Moch,Vermaseren, Vogt '04]
- $B_{a}^{(2)}$ in $J_{a, N}$
- $\left|\mathcal{M}_{\mathrm{H}}^{(2)}\right\rangle$ in $\left|\mathcal{M}_{\mathrm{H}}\right\rangle$
- $\boldsymbol{\Gamma}^{(2)} \sim\left(K / 2 \boldsymbol{\Gamma}^{(1)}\right)$ in $\boldsymbol{\Delta}_{N}^{(\mathrm{int})}$

Note that $\left\langle\mathcal{M}_{\mathrm{H}}\right| \boldsymbol{\Delta}_{N}^{(\mathrm{int})}\left|\mathcal{M}_{\mathrm{H}}\right\rangle$ leads to the second-order contribution

$$
\alpha_{s}^{2} \ln N\left(\left\langle\mathcal{M}^{(0)}\right|\left(\boldsymbol{\Gamma}^{(1)}+\boldsymbol{\Gamma}^{(1) \dagger}\right)\left|\mathcal{M}_{\mathrm{H}}^{(1)}\right\rangle+\text { c.c. }\right)
$$

The colour interferences between $\boldsymbol{\Delta}_{N}^{(\mathrm{int})}$ and $\left|\mathcal{M}_{\mathrm{H}}\right\rangle$ are relevant, starting from $\mathcal{O}\left(\alpha_{s}\left(\alpha_{s} \ln N\right)^{n}\right)$.

[^0]
Conclusions

- We have considered the one-particle-inclusive cross section at high transverse energies in hadron collisions.
- We have presented the general structure of the logarithmically enhanced terms at NLO.
\checkmark Agreement with previous specific results in the literature.
- We have presented the all-order resummation formula of the logarithmically enhanced terms at fixed rapidity and extracted the colour structure of the hard coefficient at $\mathcal{O}\left(\alpha_{\mathrm{S}}\right)$.
\rightarrow These resummation results are valid for both spin-unpolarized and spin-polarized hard scattering.
\rightarrow The same technique can be applied to other multiparton hard scattering processes, such as jet and heavy-quark production.

Thank you!

A.Torre 02 December 2013

Backup: Rapidity-integrated cross section

Scaling variable: $x_{T}=2 p_{T} / \sqrt{s}$ s.t. $x_{\omega}=x_{T} \cosh \eta$.

$$
\begin{gathered}
\frac{d \hat{\sigma}_{a_{1} a_{2} \rightarrow a_{3}}}{d^{2} \boldsymbol{p}_{T}}=\frac{1}{(4 \pi s)^{2}} \widetilde{\Sigma}_{a_{1} a_{2} \rightarrow a_{3}}\left(x_{T} ; p_{T}^{2}, \mu_{F}, \mu_{f}\right) \\
\widetilde{\Sigma}\left(x_{T}\right)=\int d \eta \overline{\left|\mathcal{M}_{a_{12 a_{2} a_{3} a_{4}}^{(0)}\left(r=e^{2 \eta}\right)}\right|^{2} \Theta\left(1-x_{T} \cosh \eta\right) \Sigma\left(x_{T} \cosh \eta, r=e^{2 \eta}\right)}
\end{gathered}
$$

The threshold limit $x_{T} \rightarrow 1$ kinematically forces $\eta \rightarrow 0, r \rightarrow 1$. Since $\Sigma\left(x_{\omega}, r\right)$ is smooth in this limit, we can use $\Sigma\left(x_{\omega}, r=1\right)$. The resulting convolution is diagonalized in Mellin space:

$$
\widetilde{\Sigma}_{a_{1} a_{2} \rightarrow a_{3}, N}\left(p_{T}^{2}, \mu_{f_{i}}\right)=\tilde{\Sigma}_{a_{1} a_{2} \rightarrow a_{3}, N}^{(0)}\left[\Sigma_{a_{1} a_{2} \rightarrow a_{3} a_{4}, N}^{\mathrm{res}}\left(r=1 ; p_{T}^{2}, \mu_{f_{i}}\right)+\mathcal{O}(1 / N)\right]
$$

Consistent with the NLL resummed result of [De Florian,Vogelsang '05]
NB: $\boldsymbol{\Gamma}^{(1)}(r=1)=\boldsymbol{T}_{s}^{2}(-\ln 2+i \pi)+\sum_{i=1}^{4} C_{a_{i}} \ln 2$.

[^0]: A.Torre 02 December 2013

