

LIGHT RPV STOPS HIDING IN LHC DATA

RICCARDO TORRE SISSA & PADOVA U. & INFN PADOVA

SUPPORTED BY THE ERC ADVANCED GRANT "DAMESYFLA" (ELECTROWEAK SYMMETRY BREAKING, FLAVOUR AND DARK MATTER: ONE SOLUTION FOR THREE MYSTERIES) (FORMER FELLOW OF LHCPHENONET)

05 DECEMBER 2013

based on R. Franceschini and RT, 1212.3622 [hep-ph]

OUTLINE

- Introduction & Natural SUSY
- R-parity and its breaking
- Pair production of stops: signal vs background
- Conclusions

Left out

Model building for R-parity violation

NATURALNESS IN THE SM

$$\Delta \lesssim 100 \implies \Lambda_{\rm UV} \lesssim 4 {
m TeV}$$

• This is the ONLY argument to expect new physics related to EWSB at the TeV scale!

NATURALNESS IN THE SM

THE HEALTH OF SUSY ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: LHCP 2013

searches Inclusive

3'^a gen. ĝ med. gen.

direct production

3^d gen. squarks

direct

Long-lived

PP

Other

s = 7 TeV

full data

1s = 8 TeV

partial data

1s = 8 TeV

full data

particles

s: LHCP 2013				_		Ldt = (4.4 - 20.7) fb	1 (s = 7, 8 TeV
Model	e, μ, τ, γ	Jets	ET	Lat [tb ⁻¹]	Mass limit		Reference
$ \begin{array}{l} \mbox{MSUGRA/CMSSM} \\ \mbox{MSUGRA/CMSSM} \\ \mbox{MSUGRA/CMSSM} \\ \mbox{QGRA/CMSSM} \\ QGRA/C$	0 1 e, μ 0 0 1 e, μ 2 e, μ (SS) 2 e, μ 1 · 2 τ 2 γ 1 e, μ + γ γ 2 e, μ (Z) 0	2-6 jets 4 jets 7-10 jets 2-6 jets 2-6 jets 2-6 jets 2-4 jets 3 jets 2-4 jets 0-2 jets 0 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 5.8 20.3 20.3 20.3 4.7 20.7 4.7 20.7 4.8 4.8 4.8 5.8 5.8 10.5	9, 9 1,8 Te 9, 9 1.24 TeV 9 1,1 TeV 9 740 GeV 9 900 GeV 9 1.1 TeV 9 1.24 TeV 9 1.07 TeV 9 900 GeV 9 900 GeV 9 900 GeV 9 619 GeV 9 690 GeV 619 GeV 645 GeV	$ \begin{split} & \mathbf{W} = m(\widehat{g}) = m(\widehat{g}) \\ & m(\widehat{g}) = m(\widehat{g}) \\ & any m(\widehat{g}) \\ & m(\widehat{g}^2) = 0 \text{ GeV} \\ & m(\widehat{g}^2) > 60 \text{ GeV} \\ & tan \beta < 15 \\ & tan \beta > 18 \\ & m(\widehat{g}^2) > 50 \text{ GeV} \\ & m(\widehat{g}^2) > 50 \text{ GeV} \\ & m(\widehat{g}^2) > 50 \text{ GeV} \\ & m(\widehat{g}^2) > 220 \text{ GeV} \\ & m(\widehat{g}^2) > 220 \text{ GeV} \\ & m(\widehat{g}^2) > 200 \text{ GeV} \\ & m(\widehat{g}^2) > 10^{-6} \text{ eV} \end{split} $	ATLAS-CONF-2013-047 ATLAS-CONF-2012-104 ATLAS-CONF-2013-054 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 1208.4688 ATLAS-CONF-2013-007 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
ğ→tb22 g→tt22 g→tt22	0 2 e, µ (SS) 0 0	3 b 0-3 b 7-10 jets 3 b	Yes No Yes Yes	12.8 20.7 20.3 12.8	g 1.24 TeV g 900 GeV g 1.14 TeV g 1.15 TeV	m(\$\overline{\chi}\$!) < 200 GeV m(\$\overline{\chi}\$!) < 500 GeV m(\$\overline{\chi}\$!) <200 GeV m(\$\overline{\chi}\$!) < 200 GeV	ATLAS-CONF-2012-145 ATLAS-CONF-2013-007 ATLAS-CONF-2013-054 ATLAS-CONF-2012-145
$\begin{array}{l} \underbrace{\widetilde{b}}, \underbrace{\widetilde{b}}_{1}, \underbrace{\widetilde{b}}_{1}, \rightarrow b\widetilde{\chi}_{1}^{0}, \\ b, b_{+}, b_{-} \rightarrow t\widetilde{\chi}_{1}^{+}, \\ \widetilde{t}, t_{1}^{+}, (light), t_{1}^{-} \rightarrow b\widetilde{\chi}_{1}^{+}, \\ \widetilde{t}, t_{1}^{+}, (light), t_{-} \rightarrow Wb\widetilde{\chi}_{1}^{0}, \\ \widetilde{t}, t_{1}^{+}, (medium), t_{-} \rightarrow b\widetilde{\chi}_{1}^{+}, \\ \widetilde{t}, t_{1}^{+}, (medium), t_{-} \rightarrow \widetilde{\chi}_{1}^{0}, \\ \widetilde{t}, t_{1}^{+}, (neavy), \widetilde{t}, - t\widetilde{\chi}_{1}^{0}, \\ \widetilde{t}, t_{1}^{+}, (neavy), \widetilde{t}, -t\widetilde{\chi}_{1}^{0}, \\ \widetilde{t}, t_{1}^{+}, (neavy), \widetilde{t}, -t\widetilde{\chi}_{1}^{0}, \\ \widetilde{t}, t_{2}^{+}, \widetilde{t}_{2} \rightarrow \widetilde{t}, +Z \end{array}$	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 2 e, µ 0 1 e, µ 0 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 0-2 jets 2 b 1 b 2 b 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	D1 100-630 GeV b1 430 GeV 167 GeV 430 GeV 11 220 GeV 11 150-440 GeV 11 150-580 GeV 11 200-610 GeV 11 320-660 GeV 12 500 GeV 12 520 GeV	$\begin{split} &m(\widetilde{\chi}_{1}^{2}) < 100 \; GeV \\ &m(\widetilde{\chi}_{1}^{2}) = 2 \; m(\widetilde{\chi}_{1}^{2}) \\ &m(\widetilde{\chi}_{1}^{2}) = 55 \; GeV \\ &m(\widetilde{\chi}_{1}^{2}) = m(\widetilde{\tau}_{1}) - m(W) - 50 \; GeV, \; m(\widetilde{\tau}_{1}) < c \; m(\widetilde{\chi}_{1}^{2}) \\ &m(\widetilde{\chi}_{1}^{2}) = 0 \; GeV, \; m(\widetilde{\tau}_{1}) - m(\widetilde{\chi}_{1}^{2}) = 10 \; GeV \\ &m(\widetilde{\chi}_{1}^{2}) = 0 \; GeV, \; m(\widetilde{\chi}_{1}^{2}) - m(\widetilde{\chi}_{1}^{2}) = 5 \; GeV \\ &m(\widetilde{\chi}_{1}^{2}) = 0 \; GeV \\ &m(\widetilde{\chi}_{1}^{2}) = 0 \; GeV \\ &m(\widetilde{\chi}_{1}^{2}) \geq 150 \; GeV \\ &m(\widetilde{\chi}_{1}^{2}) = m(\widetilde{\chi}_{1}^{2}) + 180 \; GeV \end{split}$	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-053 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
$ \begin{array}{l} \widetilde{I}_{L,R}\widetilde{I}_{L,R}, \widetilde{I}_{-\underline{v}}\widetilde{\chi}_{1}^{0} \\ \widetilde{\chi}_{1}^{*}\widetilde{\chi}_{1}, \widetilde{\chi}_{1}^{*} \rightarrow iv(\widetilde{v}) \\ \widetilde{\chi}_{1}^{*}\widetilde{\chi}_{1}, \widetilde{\chi}_{1}^{*} \rightarrow \widetilde{v}(\widetilde{v}) \\ \widetilde{\chi}_{1}^{*}\widetilde{\chi}_{2}^{0} \rightarrow \widetilde{I}_{L}v(\widetilde{I}(\widetilde{v}v), \widetilde{v}\widetilde{I}_{L})(\widetilde{v}v) \\ \widetilde{\chi}_{1}^{*}\widetilde{\chi}_{2}^{0} \rightarrow W^{T}\widetilde{\chi}_{1}^{0}Z^{(T)}\widetilde{\chi}_{1}^{0} \end{array} $	2 α, μ 2 α, μ 2 τ 3 α, μ 3 α, μ	0 0 0	Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	Î 85-315 GeV X ₁ ⁵ 125-450 GeV X ₁ ⁵ 180-330 GeV X ₁ ⁵ X ₂ ⁶ Statistica 600 GeV X ₁ ⁵ X ₂ ⁶ 315 GeV m(x̃ ₁)	$\begin{split} & m(\widetilde{\chi}_1^2) = 0 \text{ GeV} \\ & m(\widetilde{\chi}_1^2) = 0 \text{ GeV}, \ & m(\widetilde{\chi}_1^2) = 0.5(m(\widetilde{\chi}_1^2) + m(\widetilde{\chi}_1^2)) \\ & m(\widetilde{\chi}_1^2) = 0 \text{ GeV}, \ & m(\widetilde{\chi}_1^2) = 0.5(m(\widetilde{\chi}_1^2) + m(\widetilde{\chi}_1^2)) \\ & = m(\widetilde{\chi}_2^2), \ & m(\widetilde{\chi}_1^2) = 0, \ & m(\widetilde{\chi}_1^2) = 0.5(m(\widetilde{\chi}_1^2) + m(\widetilde{\chi}_1^2)) \\ & m(\widetilde{\chi}_1^2) = m(\widetilde{\chi}_2^2), \ & m(\widetilde{\chi}_1^2) = 0, \ & \text{sleptons decoupled} \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
$\begin{array}{l} \text{Direct } \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{1}^{\pm} \text{ prod., long-lived } \widetilde{\chi}_{1}^{\pm} \\ \text{Stable } \widetilde{g}, \text{ R-hadrons} \\ \text{GMSB, stable } \widetilde{\chi}, \text{ low } \beta \\ \text{GMSB, } \widetilde{\chi}_{1}^{0} \rightarrow_{Y} \widetilde{G}, \text{ long-lived } \widetilde{\chi}_{1}^{0} \\ \widetilde{\chi}_{1}^{0} \rightarrow qq\mu \ (\text{RPV}) \end{array}$	0 0-2 θ, μ 2 θ, μ 2 γ 1 θ, μ	1 jet 0 0 0	Yes Yes Yes Yes	4.7 4.7 4.7 4.7 4.4	X1 220 GeV 985 GeV g 985 GeV 985 GeV T 300 GeV 985 GeV g 230 GeV 700 GeV	$\label{eq:stars} \begin{split} &1 < \tau(\widetilde{\chi}) < 10 \text{ ns} \\ &5 < \tan\beta < 20 \\ &0.4 < \tau(\widetilde{\chi}_1^2) < 2 \text{ ns} \\ &1 \text{ nm} < \sigma_1 < 1 \text{ m}, \ \widetilde{g} \text{ decoupled} \end{split}$	1210.2852 1211.1597 1211.1597 1304.6310 1210.7451
$\begin{array}{l} LFV pp \rightarrow \!$	$\begin{array}{c} 2 \ e, \ \mu \\ 1 \ e, \ \mu + \tau \\ 1 \ e, \ \mu \\ 4 \ e, \ \mu \\ 3 \ e, \ \mu + \tau \\ 0 \\ 2 \ e, \ \mu \left(SS \right) \end{array}$	0 7 jets 0 0 6 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 4.6 20.7	V. 1.61 TeV V. 1.1 TeV G. G 1.2 TeV X [±] ₁ 760 GeV X [±] ₁ 350 GeV G 686 GeV G 880 GeV	$\begin{split} \lambda_{111}^{i} = 0.10, \ \lambda_{122} = 0.05 \\ \lambda_{111}^{i} = 0.10, \ \lambda_{12223} = 0.05 \\ m[\overline{0}] = m[\overline{0}], \ c_{1_{122}} < 1 \ mm \\ m[\overline{\chi}^{2}] > 300 \ GeV, \ \lambda_{123} > 0 \\ m[\overline{\chi}^{2}] > 80 \ GeV, \ \lambda_{123} > 0 \end{split}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Scalar gluon WIMP interaction (D5, Dirac χ)	0	4 jets mono-jet	Yes	4.6 10.5	sgluon 100-287 GeV M* scale 704 GeV	incl. limit from 1110.2893 $m(\chi) < 80 \ {\rm GeV}, \ {\rm limit} \ {\rm of} < 687 \ {\rm GeV} \ {\rm for} \ {\rm D8}$	1210.4826 ATLAS-CONF-2012-147

Mass scale [TeV]

1

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1a theoretical signal cross section uncertainty.

10⁻¹

Riccardo Torre

THE HEALTH OF SUSY

Riccardo Torre

STOP SEARCHES

The LHC7/8 has put very strong bounds on third generation squarks

Riccardo Torre

STOP SEARCHES

The LHC7/8 has put very strong bounds on third generation squarks

MSSM --> NATURAL SUSY

- We still want to insist on naturalness and on supersymmetry
- We are interested in an effective SUSY model describing only the physics relevant for the LHC
- These ingredients require only a part of the SUSY spectrum to be at the TeV scale and possible new physics to become relevant at some scale $\Lambda_{\rm UV}$ possibly not far above the TeV scale

MSSM --> NATURAL SUSY

- We still want to insist on naturalness and on supersymmetry
- We are interested in an effective SUSY model describing only the physics relevant for the LHC
- These ingredients require only a part of the SUSY spectrum to be at the TeV scale and possible new physics to become relevant at some scale $\Lambda_{\rm UV}$ possibly not far above the TeV scale

WHY RPV?... WHY NOT?

 In the SM *B* and *L* conservation is accidental while in the MSSM gauge invariant, local operators that violate *B* and *L* can be written at the renormalizable level

$$W_{\not\!B} = \frac{1}{2} \lambda_{ijk}^{\prime\prime} U_i^c D_j^c D_k^c$$
$$W_{\not\!L} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \frac{1}{2} \lambda_{ijk}^\prime L_i Q_j D_k^c$$

Dreiner hep-ph/9707435 Barbier et al. hep-ph/0406039

- There is a total of 9+27+9 new Yukawas $(\lambda, \lambda', \lambda'')$ and 3 new mass parameters (μ_i)
- The mixings μ_i can be diagonalized away with a suitable field redefinition and is unphysical if no soft terms are present
- When SUSY is broken however, the mixing will reappear in the dim=2 SUSY soft terms generating RPV mass terms
- To forbid these operators a symmetry called *R*-parity is required, where

$$R_P = (-1)^{2S+3(B-L)}$$

 SM particles have even *R*-parity while superpartners, i.e. squarks, sleptons, higgsinos and gauginos have odd *R*-parity

WHY RPV?... WHY NOT?

• Giving up with *R*-parity generates a lot of problems

- **1.** *B* and *L* violation
- **2.** Proton decay ($\lambda'' \cdot \lambda' < 10^{-24}$)
- **3.** Experimental constraints (charged current universality, masses of ν_e , $0\nu 2\beta$ decay, atomic parity violation, $\Gamma(\tau \to e\nu\bar{\nu}) / \Gamma(\tau \to \mu\nu\bar{\nu})$, $D^0 \bar{D}^0$ mixing, $n \bar{n}$ oscillation, di-nucleon decay, $\Gamma(\pi \to e\bar{\nu}) / \Gamma(\pi \to \mu\bar{\nu})$, BR $(D^+ \to \bar{K}^{0*}\mu^+\nu_{\mu}) / BR(D^+ \to \bar{K}^{0*}e^+\nu_e)$, BR $(\tau \to \pi\nu_{\tau})$, ν_{μ} DIS)
- However *R*-parity is not enough to forbid *B* and *L* violating HDO and in effective SUSY models one could expect the scale that suppresses these operators to be lower than the GUT scale

$$W_{\rm HDO} \supset \frac{k}{\Lambda_{p-\rm decay}} UUDE$$

- In this case proton decay becomes an issue even with *R*-parity for $\Lambda_{p-\text{decay}} < M_{\text{GUT}}$
- In the framework of Natural SUSY RPV is less constrained than RPC
- RPV provides very peculiar phenomenology (due to the absence of MET)
- However, some model building to predict the couplings and the flavor structure is necessary (e.g. MFV, gauged flavor symmetry, partial compositeness, etc.) *Berenzhiani* 1985, Grinstein, Redi, Villadoro 1009.2049, Krnjaic, Stolarski 1212.4860, Csaki, Grossman, Heidenreich 1111.1239, Karen-Zur, Lodone, Nardecchia, Pappadopulo, Rattazzi, Vecchi 1205.5803, Franceschini, Mohapatra 1301.3637, Csaki, Heidenreich 1302.0004

WHY RPV?... WHY NOT?

• Giving up with *R*-parity generates a lot of problems

- **1.** *B* and *L* violation
- **2.** Proton decay ($\lambda'' \cdot \lambda' < 10^{-24}$)
- **3.** Experimental constraints (charged current universality, masses of ν_e , $0\nu 2\beta$ decay, atomic parity violation, $\Gamma(\tau \to e\nu\bar{\nu})/\Gamma(\tau \to \mu\nu\bar{\nu})$, $D^0 \bar{D}^0$ mixing, $n \bar{n}$ oscillation, di-nucleon decay, $\Gamma(\pi \to e\bar{\nu})/\Gamma(\pi \to \mu\bar{\nu})$, BR $(D^+ \to \bar{K}^{0*}\mu^+\nu_{\mu})/BR(D^+ \to \bar{K}^{0*}e^+\nu_e)$, BR $(\tau \to \pi\nu_{\tau})$, ν_{μ} DIS)

Considering only *B* breaking but not *L* breaking the main bounds are the following

$ \lambda_{uds}^{\prime\prime} < O(10^{-5})$	$NN \to K^+K^+$	$ \lambda_{cdb}^{\prime\prime}\lambda_{csb}^{\prime\prime} < O$	(10^{-3})	$K - \bar{K}$ oscillation
$ \lambda_{udb}^{\prime\prime} < O(10^{-2})$	$n-\bar{n}$ oscillation	$ \lambda_{tdb}^{\prime\prime}\lambda_{tsb}^{\prime\prime} < O($	(10^{-3})	$K - \bar{K}$ oscillation
$ \lambda_{tds}^{\prime\prime} < O(10^{-1})$	$n-\bar{n}$ oscillation	$ \lambda_{ids}''\lambda_{idb}'' < O($	(10^{-1})	$B^+ \to K^0 \pi^+$
$ \lambda_{tdb}^{\prime\prime} < O(10^{-1})$	$n-\bar{n}$ oscillation	$ \lambda_{ids}^{\prime\prime}\lambda_{isb}^{\prime\prime} < O($	(10^{-3})	$B^- \to \phi \pi^-$
$\lambda'' < 3 \times 10^{-7}$ for	$m \sim 1 \mathrm{TeV}$	cosmological bound	Barbier et al. h	ep-ph/0406039
		cosmological bound	Di Luzio, Nara	lecchia, Romanino 1305.7034

- Unification has been usually considered an issue but recently a natural solution has been presented in the context of SO(10) with an adjoint vev along T_{3R} or B L (*Di Luzio, Nardecchia, Romanino* 1305.7034)
- The absence of a stable LSP also implies the lack of a WIMP DM candidate but solutions are possible (axions)

Riccardo Torre

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (*L* conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \overline{\tilde{b}}\tilde{b}, \overline{\tilde{t}}\tilde{t})$ main prod. mechanism

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (L conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \bar{\tilde{b}}\tilde{b}, \bar{\tilde{t}}\tilde{t})$ main prod. mechanism

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (L conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \overline{\tilde{b}}\tilde{b}, \overline{\tilde{t}}\tilde{t})$ main prod. mechanism

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (L conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \overline{\tilde{b}}\tilde{b}, \overline{\tilde{t}}\tilde{t})$ main prod. mechanism

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (L conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \overline{\tilde{b}}\tilde{b}, \overline{\tilde{t}}\tilde{t})$ main prod. mechanism

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (L conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \bar{\tilde{b}}\tilde{b}, \bar{\tilde{t}}\tilde{t})$ main prod. mechanism

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (L conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \overline{\tilde{b}}\tilde{b}, \overline{\tilde{t}}\tilde{t})$ main prod. mechanism

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (L conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \overline{\tilde{b}}\tilde{b}, \overline{\tilde{t}}\tilde{t})$ main prod. mechanism

Light RPV stops hiding in LHC data

- Collider signatures of RPV strongly depend on the spectrum (light states and LSP)
- Leptonic RPV more constrained due to many leptons in final states
- Hadronic RPV gives more "jetty" final states and therefore is less constrained
- We focus on hadronic RPV (L conservation can still protect proton decay)
- QCD pair production of colored superpartners $(\tilde{g}\tilde{g}, \tilde{b}\tilde{b}, \tilde{t}\tilde{t})$ main prod. mechanism

STOP PAIR PRODUCTION

- We have seen that RPV couplings are bounded to be very small
- Single production of superpartners is therefore strongly suppressed
- Pair production however depends only on QCD interactions and it's fixed by the color quantum numbers

STOP RPV DECAY

- The stop BRs into different flavor di-quark final states are model dependent
- The structure of the baryon number violating couplings λ'' is given, in explicit constructions with gauged flavor symmetry, by the expression

$$\lambda'' \sim V_{il}^{\text{CKM}} \left(\frac{m_{u_i} m_{d_j} m_{d_k}}{m_t^3} \right)^{\mu} \epsilon_{ljk}$$

• This expression depends only on CKM matrix elements, quark masses and a model dependent parameter μ (the overall factor is a free parameter)

$\mu = 1$	$BR\left(\tilde{t} \to bd + bs\right) \approx 99\%$	$SU(3)_{Q,L,d,u,e, u}$ $SU(3)_{Q,Q^c,L,L^c}$ Partial Compositeness	Csaki, Grossman, Heidenreich 1111.1239 Krnjaic, Stolarski 1212.4860 Karen-Zur, Lodone, Nardecchia, Pappadopulo, Rattazzi, Vecchi 1205.5803
$\mu = \frac{1}{2}$	$BR\left(\tilde{t} \to bd + bs\right) \approx 14\%$	$SU(3)_{V,q,l}$	Franceschini, Mohapatra 1301.3637

 For small BRs into heavy flavors searches are very difficult, but assuming large BRs into heavy flavors stop pair production can be observed at the LHC

CURRENT LIMITS: LEP + TEVATRON

 Searches at LEP have set a bound (OPAL Collaboration hep-ex/ 0310054)

$$m_{\tilde{t}}(\theta_{\tilde{t}} = 0.98) \ge 77 \text{ GeV}$$
$$m_{\tilde{t}}(\theta_{\tilde{t}} = 0) \ge 88 \text{ GeV}$$

 Tevatron (CDF) has an analysis setting a stronger bound (CDF Collaboration 1303.2699 hep-ex)

 $m_{\tilde{t}} \leq 50 \text{ GeV}$

 $m_{\tilde{t}} \ge 100 \text{ GeV}$

CURRENT LIMITS: LHC

Together, LEP and Tevatron have set a bound

 $m_{\tilde{t}} \geq 100~{\rm GeV}$

 ATLAS and CMS have presented searches for pair produced colored resonances decaying to 4j (colorons and sgluons) and recently have also focused on stops

- The LHC is not yet sensitive to the stop pair production CS in the present analyses
- The background is huge, and heavy flavor tagging is crucial in this case
- We will show that exploiting btagging LHC data can already exclude stops in the very light mass region (at the heart of naturalness)

SKETCH OF THE ANALYSES

Mass pairing:
$$\delta_m = \frac{|m_{ab} - m_{cd}|}{m_{ab} + m_{cd}}$$

Main cuts: at least 4j with
 $p_{Tj} > 110 \text{ GeV}$
 $|\eta_j| < 2.5$
 $\Delta R_{jj} = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \ge 0.7$
 $\delta_m < 0.075$
 $\Delta = \sum_{i=1,2} (p_T)_i - |m_{ab} - m_{bc}| > 25$

Ang. pairing:
$$\delta_{\Delta R} = |\Delta R_{ab} - 1| + |\Delta R_{cd} - 1|$$

Main cuts: at least 4j with
 $p_{T j} > 80 \text{ GeV}$
 $|\eta_j| < 1.4$
 $\Delta R_{jj} > 0.6$ $\Delta R_{pairs} < 1.6$
 $\delta_m < 0.15$
 $|\cos \theta^*| = \frac{|p_{z a}^{cm} + p_{z b}^{cm}|}{|\mathbf{p}_a^{cm} + \mathbf{p}_b^{cm}|} < 0.5$

SKETCH OF THE ANALYSES

B-TAGGING

○ Online *b*-tagging can help in reducing the pT threshold for the recorded jets!

	0 b-tag	1 <i>b</i> -tag	2 <i>b</i> -tag
$\sigma_{4j}^{(8{\rm TeV})}$	320 nb	12.8 nb	192 pb
$\sigma^{(8{\rm TeV})}_{2b2j}$	8.8 nb	5.8 nb	$3.8 \mathrm{~nb}$

MG5 with selections $p_T > 35$ GeV, $|\eta| < 3.5$, $\Delta R > 0.4$

	0 <i>b</i> -tag	1 <i>b</i> -tag	2 b-tag
$\sigma_{4j}^{(8{\rm TeV})}$	5 nb	200 pb	$3 \mathrm{~pb}$
$\sigma^{(8{\rm TeV})}_{2b2j}$	136 pb	$90 \mathrm{~pb}$	59 pb

B-TAGGING

○ Online *b*-tagging can help in reducing the pT threshold for the recorded jets!

• We can reduce main background from the 4j to the 2b2j, i.e. a factor of ~40 smaller

 Assuming the interesting events have been recorded with the ATLAS and CMS 2012 triggers, then using (offline) *b*-tagging the relevant backgrounds for our final state are

$$pp \to 2b2j$$
 $pp \to t\bar{t} \left(\sigma_{t\bar{t}}^{(8\text{TeV})} = 135 \text{ pb}\right)$

OUR ANALYSIS

- \bigcirc We aim to identify the stops signal as a bump in the m_{best} distribution
- After studying the effect of a cut based analysis using all the different kinematic variables defined by the CMS and ATLAS collaborations, we identify the following kinematic variables as the most relevant to optimize S/B

$$\delta_{\Delta R} = |\Delta R_{ab} - 1| + |\Delta R_{cd} - 1| \qquad \qquad \delta_m = \frac{|m_{ab} - m_{cd}|}{m_{ab} + m_{cd}}$$
$$m_{\text{best}} = \frac{m_{ab} + m_{cd}}{2} \qquad \qquad \Delta \eta_{\text{best}} = \frac{|\Delta \eta_{ab}| + |\Delta \eta_{cd}|}{2}$$
$$\cos \theta^* = \frac{p_{za}^{\text{cm}} + p_{zb}^{\text{cm}}}{|\mathbf{p}_a^{\text{cm}} + \mathbf{p}_b^{\text{cm}}|} = \frac{p_{zc}^{\text{cm}} + p_{zd}^{\text{cm}}}{|\mathbf{p}_c^{\text{cm}} + \mathbf{p}_d^{\text{cm}}|} \qquad \qquad \Delta R_{\text{best}} = \frac{\Delta R_{ab} + \Delta R_{cd}}{2}$$

OUR ANALYSIS

- \bigcirc We aim to identify the stops signal as a bump in the m_{best} distribution
- After studying the effect of a cut based analysis using all the different kinematic variables defined by the CMS and ATLAS collaborations, we identify the following kinematic variables as the most relevant to optimize S/B

$$\delta_{\Delta R} = |\Delta R_{ab} - 1| + |\Delta R_{cd} - 1| \qquad \qquad \delta_m = \frac{|m_{ab} - m_{cd}|}{m_{ab} + m_{cd}}$$
$$m_{\text{best}} = \frac{m_{ab} + m_{cd}}{2} \qquad \qquad \Delta \eta_{\text{best}} = \frac{|\Delta \eta_{ab}| + |\Delta \eta_{cd}|}{2}$$
$$\cos \theta^* = \frac{p_{za}^{\text{cm}} + p_{zb}^{\text{cm}}}{|\mathbf{p}_a^{\text{cm}} + \mathbf{p}_b^{\text{cm}}|} = \frac{p_{zc}^{\text{cm}} + p_{zd}^{\text{cm}}}{|\mathbf{p}_c^{\text{cm}} + \mathbf{p}_d^{\text{cm}}|} \qquad \qquad \Delta R_{\text{best}} = \frac{\Delta R_{ab} + \Delta R_{cd}}{2}$$

- The relevant kinematic quantities crucially depend, especially for signal, on smearing effects due to showering and detector
- To get a reasonable estimate of the signal and background distributions in these variables we made a full simulation chain
 - MadGraph5 @LO (CTEQ6L1)
 - Pythia 8 (parton shower)
 - Fastjet 2 (anti- k_T with R = 0.6)
 - Delphes 2.0 (detector simulation)

OUR ANALYSIS

- \bigcirc We aim to identify the stops signal as a bump in the m_{best} distribution
- After studying the effect of a cut based analysis using all the different kinematic variables defined by the CMS and ATLAS collaborations, we identify the following kinematic variables as the most relevant to optimize S/B

$$\delta_{\Delta R} = |\Delta R_{ab} - 1| + |\Delta R_{cd} - 1| \qquad \qquad \delta_m = \frac{|m_{ab} - m_{cd}|}{m_{ab} + m_{cd}}$$
$$m_{\text{best}} = \frac{m_{ab} + m_{cd}}{2} \qquad \qquad \Delta \eta_{\text{best}} = \frac{|\Delta \eta_{ab}| + |\Delta \eta_{cd}|}{2}$$
$$\cos \theta^* = \frac{p_{za}^{\text{cm}} + p_{zb}^{\text{cm}}}{|\mathbf{p}_a^{\text{cm}} + \mathbf{p}_b^{\text{cm}}|} = \frac{p_{zc}^{\text{cm}} + p_{zd}^{\text{cm}}}{|\mathbf{p}_c^{\text{cm}} + \mathbf{p}_d^{\text{cm}}|} \qquad \qquad \Delta R_{\text{best}} = \frac{\Delta R_{ab} + \Delta R_{cd}}{2}$$

- The relevant kinematic quantities crucially depend, especially for signal, on smearing effects due to showering and detector
- To get a reasonable estimate of the signal and background distributions in these variables we made a full simulation chain
 - MadGraph5 @LO (CTEQ6L1)
 - Pythia 8 (parton shower)
 - Fastjet 2 (anti- k_T with R = 0.6)
 - Delphes 2.0 (detector simulation)

Validated vs ATLAS analysis (4j) 1110.2693 with 30% level agreement after all selections!

Riccardo Torre

CUT OPTIMIZATION

For very boosted jets we have

$$m_{\tilde{t}}^2 \approx p_{T_{j_1}} p_{T_{j_2}} \Delta R_{j_1 j_2}^2$$

$$\delta_{\Delta R} = |\Delta R_{ab} - 1| + |\Delta R_{cd} - 1|$$

We identify these selections to optimize S/B

$$p_{T j} > \frac{m_{\tilde{t}}}{2}$$
 $|\eta| < 2.8$
 $\Delta R_{jj} > 0.7$
 $\delta m < 0.075$
 $|\cos \theta^*| < 0.4$
 $\Delta R_{\text{best}} < 1.5$
 $\Delta \eta_{\text{best}} < 0.8$

The combined effect of the ΔR_{best} and $\Delta \eta_{\text{best}}$ cuts is to move the peak of the background distribution toward smaller values of m_{best}

Therefore using these angular variables we can hope to see the stop signal as a bump on a smoothly falling background

RESULTS: 100 GEV STOPS

RESULTS: 100 GEV STOPS

RESULTS: 200 GEV STOPS

RESULTS: 200 GEV STOPS

HOW ROBUST IS OUR PREDICTION?

Events / 4.0 GeV

- One may argue that the signal can hardly be extracted from the BG for our S/B
- We can simply check the S/B which allows discovery/exclusion by comparing with an experimental analysis

HOW ROBUST IS OUR PREDICTION?

- One may argue that the signal can hardly be extracted from the BG for our S/B
 We can simply check the S/B
- We can simply check the S/B which allows discovery/exclusion by comparing with an experimental analysis

With S/B~0.5 they can exclude the sgluon CS by a factor of 4÷5

They are sensitive to S/B~0.1 with an analysis very similar to ours!

CONCLUSION

- If we take Naturalness as a driving principle, then a new "LHC paradox" adds up to the "LEP paradox" to require non-minimal models
- Insisting on Naturalness and Supersymmetry and in the attempt of building an effective SUSY model, *R*-parity is probably not enough to guarantee proton stability and looking for RPV physics can be motivated
- RPV SUSY is characterized by the absence of large MET and its phenomenology is strikingly different from the RPC one
- We studied the pair production of stops in the Natural region (where the stop mass is very close to the top-quark one) assuming large BR into heavy flavor final states (motivated by RPV model building)
- We pointed out the importance of using online b-tagging to keep low pT thresholds in the trigger for multi-jet final states in order to cover all the region down to the present bound on RPV stops
- Using b-tagging and suitable angular selections we concluded that light RPV stops can be discovered even with the data already collected in the first run of the LHC

THANK YOU