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I would like to invite you to present a REVIEW TALK about

  "Higgs mass and width, line-shape"
  (covering also signal/background/interference)

2



I would like to invite you to present a REVIEW TALK about

  "Higgs mass and width, line-shape"
  (covering also signal/background/interference)

2



•YR provides numbers for both (big TH effort)

•Convention to relate pseudo-Observables (TH) 

•Higgs Boson is an unstable particle and can not be observed 

Lifetime at 125 GeV 1.56⇥ 10�22s

•Still one talks about Higgs production cross section and Higgs 
partial decay widths

•Issue for a proper QFT treatment

to realistic observables (EXP)

�H(mH)

Br(H ! X)
�(pp ! X)

Basic Considerations
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�(pp ! X)� �background(pp ! X)

Br(H ! X)
⇠ �signal(pp ! X)

Br(H ! X)
⇠ �H(mH)

Example: Based on Zero Width Approximation (ZWA)

signal contribution �H(mH)⇥Br(H ! X)

�(pp ! X) ⇠ �
signal

(pp ! X) + �
background

(pp ! X)

 + neglecting interference

�signal(pp ! X) =

Relate EXP and TH results
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• QFT treatment of line-shape

Proper treatment requires

• Consideration of resonant and 
non-resonant contributions

Interferences
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Aij!H AH!X +A
continuum

Aij!X =

signal background

Propagator

Coming back to the framework that we are introducing, there is another important issue: when working
in the on-shell scheme one finds that the two-loop corrections to the on-shell Higgs width exceed the one-loop
corrections if the on-shell Higgs mass is larger than 900 GeV , as discussed in Ref. [18]. This fact simply
tells you that perturbation theory diverges badly, starting from approximately 1 TeV . In this work we
will also illustrate the corresponding impact on the Higgs boson lineshape (previous work can be found in
Refs. [19,20]).

Recently the problem of going beyond the zero-width approximation has received new boost from the
work of Refs. [21,22]: the program iHixs allow the study of the Higgs–boson-lineshape for a finite width
of the Higgs boson and computes the cross-section sampling over a Breit-Wigner distribution. There is,
however, a point that has been ignored in all calculations performed so far: the Higgs boson is an unstable
particle and should be removed from the in/out bases in the Hilbert space, without destroying the unitarity
of the theory. Therefore, concepts as the production of an unstable particle or its partial decay widths do not
have a precise meaning and should be replaced by a conventionalized definition which respects first principles
of Quantum Field Theory (QFT).

This paper is organized as follows. In Section 2 we introduce and discuss complex poles for unstable
particles. In Section 3 we analyze production and decay of a Higgs boson at LHC. A discussion on gauge
invariance is presented in Section 4. In Section 6 we present a short discussion on the QCD scale error.
In Section 5 we present numerical results while in Section 7 we discuss the residual theoretical uncertainty.
Finally, technical details are discussed in Appendices, in particular in Appendix B we discuss how to apply
the equivalence theorem for virtual vector-bosons and in Appendix C.1 we discuss analytic continuation in
a theory with unstable particles.

2 Propagation

To start our discussion we consider the process ij → H(→ F)+X where i, j ∈partons and F is a generic
final state (e.g. F = γγ, 4 f, etc.). For the sake of simplicity we neglect, for a moment, folding the partonic
process with parton distribution functions (PDFs). Since the Higgs boson is a scalar resonance we can split
the whole process into three parts, production, propagation and decay. In QFT all amplitudes are made out
of propagators and vertices and the (Dyson-resummed) propagator for the Higgs boson reads as follows:

∆H(s) =
[

s−M2
H + SHH

(

s,M2
t ,M

2
H,M

2
W,M2

Z

)]−1
, (1)

where Mi is a renormalized mass and SHH is the renormalized Higgs self-energy (to all orders but with
one-particle-irreducible diagrams). The first argument of the self-energy in Eq.(1) is the external momentum
squared, the remaining ones are (renormalized) masses in the loops. We define complex poles for unstable
particles as the (complex) solutions of the following system:

sH −M2
H + SHH

(

sH,M
2
t ,M

2
H,M

2
W,M2

Z

)

= 0,

sW −M2
W + SWW

(

sW ,M2
t ,M

2
H,M

2
W,M2

Z

)

= 0, (2)

etc. To lowest order accuracy the Higgs propagator can be rewritten as

∆−1
H = s− sH. (3)

The complex pole describing an unstable particle is conventionally parametrized as

si = µ2
i − i µi γi, (4)

where µi is an input parameter (similar to the on-shell mass) while γi can be computed (as the on-shell
total width), say within the Standard Model. There are other, equivalent, parametrizations [18], e.g.

√
sH =

µH − i/2 γH. Note that the the pole of ∆ fully embodies the propagation properties of a particle. We know

2
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 as on-shell width

Complex mass scheme

Goria, Passarino, Rosco
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Complex mass scheme can be translated into more familiar language 
(Bar-scheme)

fixed order expansion, but an infrared safe quantity fixed from the detectable final state, see Ref. [54]. The
argument is based on minimization of the universal logarithms (DGLAP) and not the process-dependent
ones3.

The off-shell Higgs-boson production is currently computed according to the replacement

σOS(µ
2
H) δ(ζ − µ2

H) =⇒ σOFS(ζ) BW(ζ), (33)

(e.g. see Ref. [55]) at least at lowest QCD order, where the so-called modified Breit–Wigner distribution is
defined by

BW(s) =
1

π

sΓOS
H /µH

(

s− µ2
H

)2
+
(

sΓOS
H /µH

)2 , (34)

where now µH = MOS
H and ζ = z s. This ad-hoc Breit–Wigner cannot be derived from QFT and also is

not normalizable in [0 , +∞]. Note that this Breit–Wigner for a running width comes from the substitution
of Γ → Γ(s) = Γ s/M2 in the Breit–Wigner for a fixed width Γ. This substitution is not justifiable. Its
practical purpose is to enforce a physical behavior for low virtualities of the Higgs boson but the usage cannot
be justified or recommended. For instance, if one considers VV scattering and uses this distribution in the
s -channel Higgs exchange, the behavior for large values of s spoils unitarity cancellation with the contact
diagram. It is worth noting that the alternative replacement

σOS(µ
2
H) δ(ζ − µ2

H) =⇒ σOFS(ζ) BW(ζ), BW(ζ) =
1

π

µH ΓOS
H

(

ζ − µ2
H

)2
+
(

µH ΓOS
H

)2 , (35)

has additional problems at the low energy tail of the resonance due to the gg -luminosity, creating an artificial
increase of the lineshape at low virtualities4.

Another important issue is that γH which appears in the imaginary part of the inverse Dyson-resummed
propagator is not the on-shell width since they differ by higher-order terms and their relations becomes
non-perturbative when the on-shell width becomes of the same order of the on-shell mass (typically, for
on-shell masses above 800GeV). For nonlinear parameterizations of the scalar sector of the standard model
ande Dyson summation of the Higgs self energy we refer to the work of Ref. [56].

The complex-mass scheme can be translated into a more familiar language by introducing the Bar-scheme.
Using Eq.(3) with the parametrization of Eq.(4) we perform the well-known transformation

M
2
H = µ2

H + γ2H µH ΓH = MH γH. (36)

A remarkable identity follows (defining the Bar-scheme):

1

s− sH
=
(

1 + i
ΓH

MH

)(

s−M
2
H + i

ΓH

MH
s
)−1

, (37)

showing that the Bar-scheme is equivalent to introducing a running width in the propagator with parameters
that are not the on-shell ones. Special attention goes to the numerator in Eq.(37) which is essential in
providing the right asymptotic behavior when s → ∞, as needed for cancellations with contact terms in
VV scattering. If we compare the result of Eq.(37) with Eq.(4) of Ref. [57] and interpret mH and ΓH of that

equation as the corresponding Bar - scheme quantities MH and ΓH of Eq.(36), we see that the so-called
Seymour - scheme of Refs. [21,22] is exactly giving the Higgs propagator with a complex pole. There is a
second variant for the Higgs propagator in Ref. [57], i.e. (in the notation of that paper)

∆H(s) =
m2

H

s

[

s−m2
H + i

ΓH

mH
s
]−1

(38)

3We gratefully acknowledge S. Forte and M. Spira for an important discussion on this point.
4We gratefully acknowledge S. Frixione for an important discussion on this point.
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equivalent to BW with running width (not on-shell parameters)

Numerator provides right asymptotic behavior

Table 2: Higgs boson complex pole; ΓOS
H is the on-shell width, γH is defined in Eq.(4) and the Bar-scheme in Eq.(36).

µH[GeV] ΓOS
H [GeV] (Ref. [1]) γH [GeV] MH[GeV] ΓH[GeV]

200 1.43 1.35 200 1.35
400 29.2 25.60 400.9 26.66
600 123 103.93 608.9 105.48
700 199 162.97 718.7 167.33
800 304 235.57 834.0 245.57
900 449 320.55 955.4 340.28
1000 647 416.12 1083.1 450.71

which has been used afterwards with the motivation that the prescription accounts for signal-background
interference effects. If we denote by AH the Higgs-resonant amplitude and by AB the box contribution in
gg → ZZ then the interference is

Aint = 2 Re
(

∆H I†
)

, I = AH A†
B, AH = (s− sH)AH . (39)

Note that for large values of the Higgs mass the term in Eq.(39) proportional to Im ∆H is not negligible.
The main issue in Ref. [57] is on unitarity cancellations at high energy. Of course, the behavior of both
amplitudes for s → ∞ is known and simple and any correct treatment of perturbation theory (no mixing of
different orders) will respect the unitarity cancellations; from this point of view, the numerator in Eq.(37) is
essential. Since the Higgs boson decays almost completely into longitudinal Zs, for s → ∞ we have [58] (for
a single quark q)

AH ∼
sm2

q

2M2
Z

∆H ln2 s

m2
q

AB ∼ −
m2

q

2M2
Z

ln2
s

m2
q

(40)

showing cancellation in the limit (s∆H → 1). However, the behavior for s → ∞ (unitarity) should not/cannot
be used to simulate the interference for s < M2

H. The only relevant message to be derived here is that unitarity
requires the interference to be destructive at large values of s, see also Ref. [59].

A sample of numerical results is shown in Table 2 where we compare the Higgs boson complex pole to
the corresponding quantities in the Bar-scheme.

In conclusion, the use of the complex pole is recommended even if the accuracy at which its imaginary
part can be computed is not of the same quality as the next-to-leading-order (NLO) accuracy of the on-
shell width. Nevertheless, the use of a solid prediction (from a theoretical point of view) should always be
preferred to the introduction of ill-defined quantities (lack of gauge invariance).

3.1 Schemes

We are now in a position to give a more detailed description of the strategy behind Eq.(20). Consider
the complete amplitude for a given process, e.g. the one in Figure 9; let (ζ = zs, . . .) the the full list of
Mandelstam invariants characterizing the process, then

A (ζ, . . .) = Vprod (ζ, . . .) ∆prop(ζ)Vdec(ζ) +N (ζ, . . .) . (41)

Here Vprod denotes the amplitude for production, e.g. gg → H(ζ) +X, ∆prop(ζ) is the propagation function,
Vdec(ζ) is the amplitude for decay, e.g. H(ζ) → 4 f. If no attempt is made to split A(s) no ambiguity arises
but, usually, the two components are known at different orders. Ho to define the signal? The following
schemes are available:

ONBW
S (ζ, . . .) = Vprod

(

µ2
H, . . .

)

∆prop(ζ)Vdec(µ
2
H) ∆prop(ζ) = Breit–Wigner. (42)

in general violates gauge invariance, neglects the Higgs off-shellness and introduces the ad hoc Breit–
Wigner of Eq.(34).
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Bar scheme provides good approx. for on-shell mass for light Higgs

fixed order expansion, but an infrared safe quantity fixed from the detectable final state, see Ref. [54]. The
argument is based on minimization of the universal logarithms (DGLAP) and not the process-dependent
ones3.

The off-shell Higgs-boson production is currently computed according to the replacement

σOS(µ
2
H) δ(ζ − µ2

H) =⇒ σOFS(ζ) BW(ζ), (33)

(e.g. see Ref. [55]) at least at lowest QCD order, where the so-called modified Breit–Wigner distribution is
defined by

BW(s) =
1

π

sΓOS
H /µH

(

s− µ2
H

)2
+
(

sΓOS
H /µH

)2 , (34)

where now µH = MOS
H and ζ = z s. This ad-hoc Breit–Wigner cannot be derived from QFT and also is

not normalizable in [0 , +∞]. Note that this Breit–Wigner for a running width comes from the substitution
of Γ → Γ(s) = Γ s/M2 in the Breit–Wigner for a fixed width Γ. This substitution is not justifiable. Its
practical purpose is to enforce a physical behavior for low virtualities of the Higgs boson but the usage cannot
be justified or recommended. For instance, if one considers VV scattering and uses this distribution in the
s -channel Higgs exchange, the behavior for large values of s spoils unitarity cancellation with the contact
diagram. It is worth noting that the alternative replacement

σOS(µ
2
H) δ(ζ − µ2

H) =⇒ σOFS(ζ) BW(ζ), BW(ζ) =
1

π

µH ΓOS
H

(

ζ − µ2
H

)2
+
(

µH ΓOS
H

)2 , (35)

has additional problems at the low energy tail of the resonance due to the gg -luminosity, creating an artificial
increase of the lineshape at low virtualities4.

Another important issue is that γH which appears in the imaginary part of the inverse Dyson-resummed
propagator is not the on-shell width since they differ by higher-order terms and their relations becomes
non-perturbative when the on-shell width becomes of the same order of the on-shell mass (typically, for
on-shell masses above 800GeV). For nonlinear parameterizations of the scalar sector of the standard model
ande Dyson summation of the Higgs self energy we refer to the work of Ref. [56].

The complex-mass scheme can be translated into a more familiar language by introducing the Bar-scheme.
Using Eq.(3) with the parametrization of Eq.(4) we perform the well-known transformation

M
2
H = µ2

H + γ2H µH ΓH = MH γH. (36)

A remarkable identity follows (defining the Bar-scheme):

1

s− sH
=
(

1 + i
ΓH

MH

)(

s−M
2
H + i

ΓH

MH
s
)−1

, (37)

showing that the Bar-scheme is equivalent to introducing a running width in the propagator with parameters
that are not the on-shell ones. Special attention goes to the numerator in Eq.(37) which is essential in
providing the right asymptotic behavior when s → ∞, as needed for cancellations with contact terms in
VV scattering. If we compare the result of Eq.(37) with Eq.(4) of Ref. [57] and interpret mH and ΓH of that

equation as the corresponding Bar - scheme quantities MH and ΓH of Eq.(36), we see that the so-called
Seymour - scheme of Refs. [21,22] is exactly giving the Higgs propagator with a complex pole. There is a
second variant for the Higgs propagator in Ref. [57], i.e. (in the notation of that paper)

∆H(s) =
m2

H

s

[

s−m2
H + i

ΓH

mH
s
]−1

(38)

3We gratefully acknowledge S. Forte and M. Spira for an important discussion on this point.
4We gratefully acknowledge S. Frixione for an important discussion on this point.
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Table 1: The Higgs boson complex pole at fixed values of the W, t complex poles compared with the complete solution
for sH, sW and st

µH [GeV] γW [GeV] fixed γt [GeV] fixed γH [GeV] derived
200 2.088 1.481 1.355
250 3.865
300 8.137
350 14.886
400 26.598

µH [GeV] γW [GeV] derived γt [GeV] derived γH [GeV] derived
200 2.130 1.085 1.356
250 2.119 0.962 3.823
300 2.193 0.836 8.139
350 2.607 0.711 14.653
400 3.922 0.566 25.498

This simple fact raises the following question: what is the physical meaning of an heavy Higgs boson
search? We have the usual and well-known considerations [5]: a Higgs boson above 600 GeV requires new
physics at 1 TeV , argument based on partial-wave unitarity [45,46] (which should not be taken quantitatively
or too literally); violation of unitarity bound possibly implies the presence of J = 0, 1 resonances but there is
no way to predict their masses, simply scaling the π−π system gives resonances in the 1 TeV range. Generally
speaking, it would be a good idea to address this search as search for J = 0, 1 heavy resonances decaying
into VV → 4 f. In a model independent approach both µH and γH should be kept free in order to perform a
2 dim scan of the Higgs-boson lineshape. For the high-mass region this remains our recommended strategy.
Once the fits are performed it will be left to theorists to struggle with a model-dependent interpretation of
the results.

To summarize, we have addressed the following question: what is the common sense definition of mass
and width of the Higgs boson? We have several options,

sH = µ2
H − i µH γH, sH =

(

µ′
H −

i

2
γ′H

)2

, sH =
M

2
H − iΓH MH

1 + Γ
2
H/M

2
H

. (16)

We may ask which one is correct, approximate or closer to the experimental peak. Here we have to distinguish:
for γH # µH MH is a good approximation to the on-shell mass and it is closer to the experimental peak;

for instance, for the Z boson MZ is equivalent to the mass measured at Lep. However, in the high-mass

scenario, where γH ∼ µH, the situation changes an OH %= OOS
H for any observable (or pseudo-observable).

Therefore, the message is: do not use the on-shell width to estimate MH in the high-mass region.
Missing a calculation of the three-loop Higgs self-energy we can analyze the low-mass region by using an

approximation to the exact Higgs complex-pole which is based on the expansion of γH around the best-known
on-shell calculation, Γp from Prophecy4f [47]. Therefore, below µH = 200 GeV we will use

γH
Γp

≈ 1 +
1

2
XW

(

d1 − µ2
H d2

) Γp

µH
−X2

W d21, (17)

XW = 4
√
2
GF M2

W

π2
, dn =

∂n

∂µn
H

SHH. (18)

In the expansion all masses but the Higgs mass are kept real and the higher-order effects are simulated by
the expansion parameter, Γp/µH.
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Different schemes in the literature (prop., on-shell/off-shell)

ONBW

OFFBW

Aprod
ij!H(µH) �BW

H (Q) Adecay
H!X(µH)

Aprod
ij!H(µH) �prop

H (Q) Adecay
H!X(µH)

Aprod
ij!H(Q) �prop

H (Q) Adecay
H!X(Q)

Aprod
ij!H(Q) �BW

H (Q) Adecay
H!X(Q)

fixed order expansion, but an infrared safe quantity fixed from the detectable final state, see Ref. [54]. The
argument is based on minimization of the universal logarithms (DGLAP) and not the process-dependent
ones3.

The off-shell Higgs-boson production is currently computed according to the replacement

σOS(µ
2
H) δ(ζ − µ2

H) =⇒ σOFS(ζ) BW(ζ), (33)

(e.g. see Ref. [55]) at least at lowest QCD order, where the so-called modified Breit–Wigner distribution is
defined by

BW(s) =
1

π

sΓOS
H /µH

(

s− µ2
H

)2
+
(

sΓOS
H /µH

)2 , (34)

where now µH = MOS
H and ζ = z s. This ad-hoc Breit–Wigner cannot be derived from QFT and also is

not normalizable in [0 , +∞]. Note that this Breit–Wigner for a running width comes from the substitution
of Γ → Γ(s) = Γ s/M2 in the Breit–Wigner for a fixed width Γ. This substitution is not justifiable. Its
practical purpose is to enforce a physical behavior for low virtualities of the Higgs boson but the usage cannot
be justified or recommended. For instance, if one considers VV scattering and uses this distribution in the
s -channel Higgs exchange, the behavior for large values of s spoils unitarity cancellation with the contact
diagram. It is worth noting that the alternative replacement

σOS(µ
2
H) δ(ζ − µ2

H) =⇒ σOFS(ζ) BW(ζ), BW(ζ) =
1

π

µH ΓOS
H

(

ζ − µ2
H

)2
+
(

µH ΓOS
H

)2 , (35)

has additional problems at the low energy tail of the resonance due to the gg -luminosity, creating an artificial
increase of the lineshape at low virtualities4.

Another important issue is that γH which appears in the imaginary part of the inverse Dyson-resummed
propagator is not the on-shell width since they differ by higher-order terms and their relations becomes
non-perturbative when the on-shell width becomes of the same order of the on-shell mass (typically, for
on-shell masses above 800GeV). For nonlinear parameterizations of the scalar sector of the standard model
ande Dyson summation of the Higgs self energy we refer to the work of Ref. [56].

The complex-mass scheme can be translated into a more familiar language by introducing the Bar-scheme.
Using Eq.(3) with the parametrization of Eq.(4) we perform the well-known transformation

M
2
H = µ2

H + γ2H µH ΓH = MH γH. (36)

A remarkable identity follows (defining the Bar-scheme):

1

s− sH
=
(

1 + i
ΓH

MH

)(

s−M
2
H + i

ΓH

MH
s
)−1

, (37)

showing that the Bar-scheme is equivalent to introducing a running width in the propagator with parameters
that are not the on-shell ones. Special attention goes to the numerator in Eq.(37) which is essential in
providing the right asymptotic behavior when s → ∞, as needed for cancellations with contact terms in
VV scattering. If we compare the result of Eq.(37) with Eq.(4) of Ref. [57] and interpret mH and ΓH of that

equation as the corresponding Bar - scheme quantities MH and ΓH of Eq.(36), we see that the so-called
Seymour - scheme of Refs. [21,22] is exactly giving the Higgs propagator with a complex pole. There is a
second variant for the Higgs propagator in Ref. [57], i.e. (in the notation of that paper)

∆H(s) =
m2

H

s

[

s−m2
H + i

ΓH

mH
s
]−1

(38)

3We gratefully acknowledge S. Forte and M. Spira for an important discussion on this point.
4We gratefully acknowledge S. Frixione for an important discussion on this point.
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ad-hoc BW,  neglect off-shell effects, violates gauge invariance

ad-hoc BW,  violates gauge invariance

ONP

OFFP

neglect off-shell effects, violates gauge invariance

violates gauge invariance

CPP
respects all requirements (calculation on second Riemann sheet)

Aprod
ij!H(sH) �BW

H (Q) Adecay
H!X(sH)
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Table 4: Comparison of the on-shell production cross-section as given in Ref. [1] with the off-shell cross-section in
the OFFBW-scheme (Eq.(43)) and in the OFFP-scheme (Eq.(45)).

µH[GeV] ΓOS
H [GeV] γH[GeV] σOS[pb] σBW[pb] σprop[pb]

500 68.0 60.2 0.8497 0.8239 0.9367
550 93.1 82.8 0.5259 0.5161 0.5912
600 123 109 0.3275 0.3287 0.3784
650 158 139 0.2064 0.2154 0.2482
700 199 174 0.1320 0.1456 0.1677
750 248 205 0.0859 0.1013 0.1171
800 304 245 0.0567 0.0733 0.0850
850 371 277 0.0379 0.0545 0.0643
900 449 331 0.0256 0.0417 0.0509

Table 5: The production cross-section in pb at µH = 300 GeV . Result from HTO is computed with running QCD
scales.

Tab. 2 of Ref. [1] Tab. 3 of Ref. [1] Tab. 5 of Ref. [21] HTO RS-option

2.42+0.14
−0.15 2.45+0.16

−0.22 2.57+0.15
−0.22 2.81+0.25

−0.23

Table 6: Comparison of the production cross-section in the OFFBW-scheme between iHixs (Table 5 of Ref. [21]) and
our calculation. ∆ is the percentage error due to QCD scales and δ is the percentage ratio HTO/iHixs.

µH[GeV] σiHixs[pb] ∆iHixs[%] σHTO[pb] ∆HTO[%] δ[%]
200 5.57 +7.19 −9.06 5.63 +9.12 −9.30 1.08
220 4.54 +6.92 −8.99 4.63 +8.93 −8.85 1.98
240 3.80 +6.68 −8.91 3.91 +8.76 −8.51 2.89
260 3.25 +6.44 −8.84 3.37 +8.61 −8.22 3.69
280 2.85 +6.18 −8.74 2.97 +8.49 −7.98 4.21
300 2.57 +5.89 −8.58 2.69 +8.36 −7.75 4.67
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For light Higgs different implementations provide similar results
(within QCD uncertainties)

OFFBW

For heavy Higgs sizable differences in cross section and shape
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Zero width approximation?
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Higgs-continuum interference effects are again included. Conclusions are given in Section

4.

2 Inclusive analysis

In the SM, the common belief is that for a light Higgs boson the product of on-shell pro-

duction cross-section (say in gluon-gluon fusion, gg → H) and branching ratios reproduces

the correct result to great accuracy. The expectation is based on the well-known result

DH(q2) =
1

(

q2 −M2
H

)2
+ Γ2

H M2
H

=
π

MH ΓH
δ
(

q2 −M2
H

)

+ PV
[ 1
(

q2 −M2
H

)2

]

+
N
∑

n=0

cn(α) δn
(

q2 −M2
H

)

(2.1)

where q2 is the virtuality of the Higgs boson, MH and ΓH are the on-shell Higgs mass and

width and PV denotes the principal value (understood as a distribution). Furthermore,

δn(x) is connected to the nth derivative of the delta-function by δn(x) = (−1)n/n ! δ(n)(x)

and the expansion is in terms of the coupling constant, up to a given order N .

In general, the ZWA can be applied to predict the probability for resonant scattering

processes when the total decay width Γ of the resonant particle is much smaller than its

mass M . Note that both concepts, on-shell mass and width, are ill-defined for an unstable

particle and should be replaced with the complex pole, which is a property of the S -matrix,

gauge-parameter independent to all orders of perturbation theory. Nevertheless, let us

continue with our qualitative argument: in the limit Γ → 0, the mod-squared propagator

D(q2) =
[

(

q2 −M2
)2

+ (MΓ)2
]−1

(2.2)

with 4-momentum q approaches the delta-function limit of Eq. (2.1), i.e.

D(q2) ∼ K δ(q2 −M2), K =
π

MΓ
=

∫ +∞

−∞
dq2D(q2). (2.3)

The scattering cross-section σ thus approximately decouples into on-shell production (σp)

and decay as shown in Eqs. (2.4)–(2.6), where s is the total 4-momentum squared, argument

based on the scalar nature of the resonance. Based on the scales occurring in D(q2), the

conventional error estimate is O(Γ/M). This will not be accurate when the q2 dependence

of |Mp|2 or |Md|2 is strong enough to compete with the q2 dependence of D. An interesting

example is gg → H → V V , where
∑

|Md(q2)|2 ∼ (q2)2 above 2MV . We note that similar

effects have been observed for processes in SM extensions [56–59].

σ =
1

2s

[

∫ q2max

q2
min

dq2

2π

(
∫

dφp|Mp(q
2)|2D(q2)

∫

dφd|Md(q
2)|2

)

]

(2.4)

σZWA =
1

2s

(
∫

dφp|Mp(M
2)|2

)(
∫ ∞

−∞

dq2

2π
D(q2)

)(
∫

dφd|Md(M
2)|2

)

(2.5)

σZWA =
1

2s

(
∫

dφp|Mp|2
)

1

2MΓ

(
∫

dφd|Md|2
)
∣

∣

∣

∣

q2=M2

(2.6)
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production decay

�

M
⌧ 1

An important observation is that the Breit-Wigner distribution does not drop off nearly as

fast as, for instance, a Gaussian. The relative contribution of the tail more than n widths

from the peak can be estimated as 1/(nπ), because [73]

∫ (M+nΓ)2

(M−nΓ)2

dq2

2π

1

(q2 −M2)2 + (MΓ)2
≈

1

2MΓ

(

1−
1

nπ

)

. (2.7)

Since the width of a light Higgs is so small, n = 1000 corresponds to only a few GeV,

beyond which one would expect less than 0.04% of the signal cross section.

A potential worry, addressed in this paper, is: to which level of accuracy does the

ZWA approximate the full off-shell result, given that at MH = 125GeV the on-shell width

(very close to the imaginary part of the complex pole) is 4.03MeV. When searching for

the Higgs boson around 125GeV one should not care about the region MZZ > 2MZ but,

due to limited statistics, theory predictions for the normalisation in q̄q−gg → ZZ are used

over the entire spectrum in the ZZ invariant mass.

Therefore, the question is not to dispute that off-shell effects are depressed by a factor

ΓH/MH , as shown in Eq. (2.1), but to move away from the peak in the invariant mass

distribution and look at the behavior of the distribution, no matter how small it is compared

to the peak; is it really decreasing withMZZ? Is there a plateau? For how long is the plateau

lasting? How does that affect the total cross-section if no cut is made?

In this section, we consider the signal (S) in the complex-pole scheme (CPS) of Refs.

[54, 74, 75]

σgg→ZZ(S) = σgg→H→ZZ(MZZ) =
1

π
σgg→H (MZZ)

M4
ZZ

∣

∣

∣
M2

ZZ − sH
∣

∣

∣

2

ΓH→ZZ (MZZ)

MZZ
, (2.8)

where sH is the Higgs complex pole, parametrized by sH = µ2
H − i µH γH . Note that γH

is not the on-shell width, although the numerical difference is tiny for low values of µH , as

shown in Ref. [54].

The production cross-section, σgg→H , is computed with NNLO QCD corrections (see

Ref. [51]) and NLO EW ones [38]. The partial decay width of the off-shell Higgs boson of

virtuality MZZ (ΓH→ZZ), is computed at NLO with leading NNLO effects in the limit of

large Higgs boson mass, see Ref. [76]. Numerical results in this section are obtained with

the program HTO (G. Passarino, unpublished) that allows for the study of the Higgs boson

lineshape, in gluon-gluon fusion, using complex poles. Our results refer to
√
s = 8TeV and

are based on the MSTW2008 PDF sets [77]. They are implemented according to the OFFP

scheme, see Eq. (45) of Ref. [54]. Furthermore, we set the renormalization and factorization

scale to the Higgs virtuality.

Away (but not too far away) from the narrow peak the propagator and the off-shell H

width behave like

DH

(

M2
ZZ

)

≈
1

(

M2
ZZ − µ2

H

)2 ,
ΓH→ZZ (MZ)

MZZ
∼ GF M2

ZZ (2.9)

above threshold with a sharp increase just below it (it increases from 1.62 · 10−2 GeV at

175GeV to 1.25 · 10−1 GeV at 185GeV). Our result for the V V (V = W,Z) invariant

– 4 –

for Higgs n=1000 means only 4 GeV ~ 0.03% effect

contribution from tail

but precise calculation shows ~0.5% difference with ZWA⇠ 100
�

M
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Decay amplitude can produce a significant deformation of the Higgs 
lineshape

rections [55–57] enhanced by soft-gluon resummation at next-to-next-to-leading logarithmic
level [58,59] and beyond [60]. In addition to higher-order QCD corrections, electroweak cor-
rections have been computed and found to be at the 1–5% level [61–63]. Further references
on all aspects of Higgs physics at the LHC can be found in Refs. [64, 65].

A comparison of the ZWA and finite-width Higgs propagator schemes in inclusive Higgs
production and decay in gluon fusion was carried out in Refs. [66, 67] for Higgs masses
between 120 and 800 GeV.12 Overall, good agreement with the expected uncertainty of
O(ΓH/MH) was found. In particular, for light Higgs masses (MH < 300 GeV) a relatively
small error of O(1%) was found [66], leading to the conclusion that the ZWA should be an
adequate treatment for a light Higgs boson where the Higgs width is very small compared
to its mass [67]. Curiously, a closer inspection of the results for MH = 120 GeV reveal that
the deviation between ZWA and fixed-width Breit-Wigner scheme (0.5%) is two orders of
magnitude larger than ΓH/MH (4 ·10−5). Based on the discussion in Sec. 2, it is suggestive
to interpret this as evidence for a significant deformation of the Breit-Wigner lineshape
for a light Higgs boson. Such deformations were first predicted and thoroughly studied in
Ref. [31]. They can be traced back to the dependence of the Higgs decay amplitude Md

on the Higgs virtuality q2 for different decay modes (cf. Eqs. (5) and (7)). One has, for
instance,13

|Md(H → f f̄)|2 ∼ M2
f q

2 for
√

q2 ! 2Mf , (9)

|Md(H → V V )|2 ∼ (q2)2 for
√

q2 ! 2MV , (10)

for Higgs boson decays to fermions f or weak bosons V . For the H → WW and H → ZZ
decay modes of a light Higgs boson with resonance below the V V threshold, a remarkable
effect occurs above the V V threshold (far away from the resonance peak): the leading
(q2)−2 dependence of the off-shell squared Higgs propagator |D|2 and the leading (q2)2 de-
pendence of |Md|2 largely compensate. The Higgs lineshape is therefore strongly enhanced
for (q2)1/2 > 2MV compared to the Breit-Wigner expectation, which is given by

(

dσ

dMV V

)

ZWA

= σH,ZWA
MHΓH

π

2MV V

(M2
V V −M2

H)
2 + (MHΓH)2

. (11)

The Breit-Wigner expectation (HZWA) and the enhanced off-shell distribution (Hoffshell) are
illustrated in Figs. 2 and 3 using the gg → H → W−W+ → #ν̄!#̄ν! and gg → H → ZZ →
##̄ν!ν̄! processes, respectively. The differential cross section in the plateau-like finite-width
tail is approximately two to three orders of magnitude smaller than in the resonance region.
However, the plateau extends from the V V threshold to beyond 600 GeV. The integrated

12We note that the pinch-technique approach yields a theoretically well-behaved Dyson-resummed Higgs
boson propagator [68,69], which does not suffer from unphysical absorptive effects, as seen in the compar-
ison in Fig. 5 of Ref. [68].

13Here, ! implies above, but not too far above threshold.
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Threshold effects
Higgs-continuum interference effects are again included. Conclusions are given in Section

4.

2 Inclusive analysis
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where q2 is the virtuality of the Higgs boson, MH and ΓH are the on-shell Higgs mass and

width and PV denotes the principal value (understood as a distribution). Furthermore,

δn(x) is connected to the nth derivative of the delta-function by δn(x) = (−1)n/n ! δ(n)(x)

and the expansion is in terms of the coupling constant, up to a given order N .
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mass M . Note that both concepts, on-shell mass and width, are ill-defined for an unstable
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based on the scalar nature of the resonance. Based on the scales occurring in D(q2), the

conventional error estimate is O(Γ/M). This will not be accurate when the q2 dependence

of |Mp|2 or |Md|2 is strong enough to compete with the q2 dependence of D. An interesting

example is gg → H → V V , where
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can compensate the        in             1

q4

resulting in a lineshape strongly enhanced at large virtualities

0.98 0.99 1 1.01 1.02
0

p

q2/M

Figure 1: Breit-Wigner lineshape deformation caused by threshold factors when a de-
cay daughter mass m approaches the parent mass M . More specifically, the Breit-
Wigner integrand D(q2,M,Γ) (dashed) and the integrand including threshold factors
D(q2,M,Γ) f(q2, m2)/f(M2, m2) (solid) are shown in unspecified normalization for a de-
cay via a scalar-fermion-antifermion interaction as functions of the invariant mass

√

q2.
f(x, y) = (x − y)2/x, Γ/M = 1% and m = M − 2Γ. Further details can be found in
Ref. [43].

threshold factors, as illustrated in Fig. 1. The q2-dependence of the residual matrix element
can cause strongly enhanced ZWA uncertainties even in the absence of degenerate mass
configurations. An example is given in Sec. 3.

3 Zero-Width Approximation Inadequacy for a Light

Higgs Boson Signal

A key objective of current particle physics research is the experimental confirmation of
a theoretically consistent description of elementary particle masses. In the SM, this is
achieved through the Higgs mechanism [45–49], which predicts the existence of one physi-
cal Higgs boson. A thorough examination of the recently discovered candidate SM Higgs
boson [29, 30] with MH ≈ 125 GeV is in progress, and its properties are in agreement
with theoretical expectations. No compelling deviations have been observed so far. In this
situation, it is prudent to examine the accuracy of theoretical predictions for light Higgs
production and decay that are used in experimental analyses. For light Higgs masses, the
loop-induced gluon-fusion production (gg → H) dominates [50]. Next-to-leading order
QCD corrections have been calculated in the heavy-top limit [51] and with finite t and
b mass effects [52–54], and were found to be as large as 80–100% at the Large Hadron
Collider (LHC). This motivated the calculation of next-to-next-to-leading order QCD cor-
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Inadequacy of zero-width approximation for a light
Higgs boson signal
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Abstract

The zero-width approximation (ZWA) restricts the intermediate unstable par-
ticle state to the mass shell and, when combined with the decorrelation approx-
imation, fully factorizes the production and decay of unstable particles. The
ZWA uncertainty is expected to be of O(Γ/M), where M and Γ are the mass
and width of the unstable particle. We review the ZWA and demonstrate that
errors can be much larger than expected if a significant modification of the
Breit-Wigner lineshape occurs. A thorough examination of the recently discov-
ered candidate Standard Model Higgs boson is in progress. ForMH ≈ 125 GeV,
one has ΓH/MH < 10−4, which suggests an excellent accuracy of the ZWA. We
show that this is not always the case. The inclusion of off-shell contributions is
essential to obtain an accurate Higgs signal normalization at the 1% precision
level. For gg → H → V V , V = W,Z, O(5 – 10%) corrections occur due to
an enhanced Higgs signal in the region MV V > 2MV , where also sizable Higgs-
continuum interference occurs. We discuss how experimental selection cuts can
be used to suppress this region in search channels where the Higgs mass cannot
be reconstructed. We note that H → V V decay modes in non-gluon-fusion
channels are similarly affected.
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Figure 2. The NNLO ZZ (black) and WW (red) invariant mass distributions in gg → V V for
µH = 125GeV.

mass distribution is shown in Fig. 2. It confirms that, above the peak, the distribution is

decreasing until the effects of the V V threshold become effective with a visible increase

followed by a plateau, by another jump at the tt̄-threshold, beyond which the signal distri-

bution decreases almost linearly (on a logarithmic scale). For gg → H → γγ the effect is

drastically reduced and confined to the region Mγγ between 157GeV and 168GeV, where

the distribution is already five orders of magnitude below the peak.

What is the net effect on the total cross-section? We show it for ZZ in Table 1 where

the contribution above the ZZ -threshold amounts to 7.6%. We have checked that the effect

does not depend on the propagator function, complex-pole propagator or Breit-Wigner

distribution. The size of the effect is related to the shape of the distribution function. The

complex-mass scheme can be translated into a more familiar language by introducing the

Bar-scheme [54]. Performing the well-known transformation

M
2
H = µ2

H + γ2H , µH ΓH = MH γH . (2.10)

– 5 –

threshold increase

plateau

recover ~BW/CPS
behavior

~10-3

Integration over large kinematical range enhances off-shell effects

Kauer, Passarino
125 GeV

Tot[ pb] MZZ > 2MZ [ pb] R[%]

gg → H → all 19.146 0.1525 0.8

gg → H → ZZ 0.5462 0.0416 7.6

Table 1. Total cross-section for the processes gg → H → ZZ and gg → H → all; the part of the
cross-section coming from the region MZZ > 2MZ is explicitly shown, as well as the ratio.

100–125 125–150 150–175 175–200 200–225 225–250 250–275

0.252 0.252 0.195 · 10−3 0.177 · 10−2 0.278 · 10−2 0.258 · 10−2 0.240 · 10−2
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with the deviation of 0.5% between ZWA and fixed-width Breit-Wigner scheme (FWBW)
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deviations of O(1%) depending on the particular implementation of the calculation.

Of course, the signal per se is not a physical observable and one should always include
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then the conclusion is: interference effects are relevant also for the low Higgs mass region,
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Figure 2: MWW distributions for gg (→ H) → W−W+ → !ν̄!!̄ν! in pp collisions at√
s = 8TeV for MH = 125GeV and ΓH = 0.004434GeV calculated at LO with gg2VV [68].

The ZWA distribution (black, dashed) as defined in Eq. (11) in the main text, the off-shell
Higgs distribution (black, solid), the dσ(|MH + Mcont|2)/dMWW distribution (blue) and
the dσ(|MH|2+ |Mcont|2)/dMWW distribution (red) are shown. Standard cuts are applied:
pT ! > 20GeV, |η!| < 2.5, p/T > 30GeV, M!! > 12GeV. Differential cross sections for a
single lepton flavor combination are displayed. No flavor summation is carried out for
charged leptons or neutrinos. Further details can be found in Ref. [31].

errors of O(10%) can therefore occur in H → V V decay modes, despite ΓH/MH < 10−4.13

We emphasize that H → V V modes in Higgs production channels other than gluon fusion
also exhibit an enhanced off-shell tail, since the effect is caused by the decay amplitude.

Evidently, the ZWA caveat also applies to Monte Carlo generators that approximate
off-shell effects with an ad hoc Breit-Wigner reweighting of the on-shell propagator (cf. Eq.
(11)). Furthermore, the ZWA limitations are relevant for the extraction of Higgs couplings,
which is initially being performed using the ZWA. The findings of Ref. [31] make clear that
off-shell effects have to be included in future Higgs couplings analyses.

Above the V V threshold, the gg → V V continuum background is large and sizable
signal-background interference (see Fig. 4, left and right) occurs. Resonance-continuum
interference in gg (→ H) → V V has been studied in Refs. [31, 69–78] and for related pro-
cesses in Refs. [79–85].14 Due to the enhanced Higgs cross section above the V V threshold,

13For gg → H → γγ the effect is drastically reduced and confined to the region Mγγ between 157 GeV
and 168 GeV, where the distribution is already five orders of magnitude smaller than in the resonance
region.

14For studies of the qq̄ and gg continuum background (see Fig. 4, center and right), we refer the reader
to Refs. [86–93] and references therein.
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Inadequacy of zero-width approximation for a light
Higgs boson signal

Nikolas Kauer

Department of Physics, Royal Holloway, University of London, Egham Hill, Egham
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Abstract

The zero-width approximation (ZWA) restricts the intermediate unstable par-
ticle state to the mass shell and, when combined with the decorrelation approx-
imation, fully factorizes the production and decay of unstable particles. The
ZWA uncertainty is expected to be of O(Γ/M), where M and Γ are the mass
and width of the unstable particle. We review the ZWA and demonstrate that
errors can be much larger than expected if a significant modification of the
Breit-Wigner lineshape occurs. A thorough examination of the recently discov-
ered candidate Standard Model Higgs boson is in progress. ForMH ≈ 125 GeV,
one has ΓH/MH < 10−4, which suggests an excellent accuracy of the ZWA. We
show that this is not always the case. The inclusion of off-shell contributions is
essential to obtain an accurate Higgs signal normalization at the 1% precision
level. For gg → H → V V , V = W,Z, O(5 – 10%) corrections occur due to
an enhanced Higgs signal in the region MV V > 2MV , where also sizable Higgs-
continuum interference occurs. We discuss how experimental selection cuts can
be used to suppress this region in search channels where the Higgs mass cannot
be reconstructed. We note that H → V V decay modes in non-gluon-fusion
channels are similarly affected.

Keywords: Approximations; Higgs physics; hadron-hadron scattering.
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Table 1: Cross sections for gg (→ H) → W−W+ → !ν̄!!̄ν! and MH = 125GeV with
standard cuts, Higgs search cuts and additional cut on the transverse mass MT defined in
Eq. (12) in the main text. Standard cuts: as in Fig. 2. Higgs search cuts: standard cuts
and M!! < 50GeV, ∆φ!! < 1.8. The zero-width approximation (ZWA) and off-shell Higgs
cross sections, the gg continuum cross section and the sum of off-shell Higgs and continuum
cross sections including interference are given. The accuracy of the ZWA and the impact
of off-shell effects are assessed with R = σH,ZWA/σH,offshell. The integration error is given
in brackets. Other details as in Fig. 2.

gg (→ H) → W−W+ → !ν̄!!̄ν!, σ [fb], pp,
√
s = 8 TeV, MH = 125 GeV

selection cuts HZWA Hoffshell cont |Hofs+cont|2 R

standard cuts 2.707(3) 3.225(3) 10.493(5) 12.241(8) 0.839(2)

Higgs search cuts 1.950(1) 1.980(1) 2.705(2) 4.497(3) 0.9850(7)

0.75MH < MT < MH 1.7726(9) 1.779(1) 0.644(1) 2.383(2) 0.9966(8)

4 Summary

The evolution of methods for perturbative calculations that involve unstable particles has
been reviewed. A general formalism that has a rigorous field-theoretical foundation and
provides a practicable and efficient implementation which returns reliable results of the de-
sired precision for all phenomenologically relevant observables is not yet known. This fact
was used to motivate a review of on-mass-shell approximations. The zero-width approx-
imation, a.k.a. narrow-width approximation, restricts the intermediate unstable particle
state to the mass shell and, when combined with the decorrelation approximation, fully
factorizes the production and decay subprocesses. Both approximations are implicitly ap-

Table 2: Cross sections for gg (→ H) → ZZ → !!̄ν!ν̄! and MH = 125GeV without and
with transverse mass cut. Applied cuts: pT ! > 20 GeV, |η!| < 2.5, 76 GeV < M!! < 106
GeV, p/T > 10 GeV. MT is defined in Eq. (12) in the main text. Other details as in Table
1.

gg (→ H) → ZZ → !!̄ν!ν̄!, σ [fb], pp,
√
s = 8 TeV, MH = 125 GeV

MT cut HZWA Hoffshell cont |Hofs+cont|2 R

none 0.1593(2) 0.2571(2) 1.5631(7) 1.6376(9) 0.6196(7)

MT < MH 0.1593(2) 0.1625(2) 0.4197(5) 0.5663(6) 0.980(2)
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Figure 3: MZZ distributions for gg (→ H) → ZZ → !!̄ν!ν̄! for MH = 125GeV. Applied
cuts: pT ! > 20GeV, |η!| < 2.5, 76GeV < M!! < 106GeV, p/T > 10GeV. Other details as
in Fig. 2.
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Figure 4: Representative Feynman graphs for the Higgs signal process (left) and the qq̄-
(center) and gg-initiated (right) continuum background processes.

cesses in Refs. [81–87].15 Due to the enhanced Higgs cross section above the V V threshold,
integrated cross sections can be affected by O(10%) signal-background interference effects,
which are hence also displayed in Figs. 2 and 3.

In the vicinity of the Higgs resonance, finite-width and Higgs-continuum interference
effects are negligible for gg (→ H) → V V if MH # 2MV , as shown in Fig. 5 for gg (→
H) → W−W+ → !ν̄!!̄ν!. For weak boson decays that permit the reconstruction of the
Higgs invariant mass, the experimental procedure focuses on the Higgs resonance region
and for MH # 2MV the enhanced off-shell region is thus typically excluded.

For H → V V channels that do not allow to reconstruct the Higgs invariant mass, the
tail contribution can nevertheless be reduced significantly by means of optimized selection
cuts. In Table 1, we demonstrate this for gg (→ H) → W−W+ → !ν̄!!̄ν!. Here, the

15For studies of the qq̄ and gg continuum background (see Fig. 4, center and right), we refer the reader
to Refs. [88–95] and references therein.
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Table 1: Cross sections for gg (→ H) → W−W+ → !ν̄!!̄ν! and MH = 125GeV with
standard cuts, Higgs search cuts and additional cut on the transverse mass MT defined in
Eq. (12) in the main text. Standard cuts: as in Fig. 2. Higgs search cuts: standard cuts
and M!! < 50GeV, ∆φ!! < 1.8. The zero-width approximation (ZWA) and off-shell Higgs
cross sections, the gg continuum cross section and the sum of off-shell Higgs and continuum
cross sections including interference are given. The accuracy of the ZWA and the impact
of off-shell effects are assessed with R = σH,ZWA/σH,offshell. The integration error is given
in brackets. Other details as in Fig. 2.

gg (→ H) → W−W+ → !ν̄!!̄ν!, σ [fb], pp,
√
s = 8 TeV, MH = 125 GeV

selection cuts HZWA Hoffshell cont |Hofs+cont|2 R

standard cuts 2.707(3) 3.225(3) 10.493(5) 12.241(8) 0.839(2)

Higgs search cuts 1.950(1) 1.980(1) 2.705(2) 4.497(3) 0.9850(7)

0.75MH < MT < MH 1.7726(9) 1.779(1) 0.644(1) 2.383(2) 0.9966(8)
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Figure 2: MWW distributions for gg (→ H) → W−W+ → !ν̄!!̄ν! in pp collisions at√
s = 8TeV for MH = 125GeV and ΓH = 0.004434GeV calculated at LO with gg2VV [70].

The ZWA distribution (black, dashed) as defined in Eq. (11) in the main text, the off-shell
Higgs distribution (black, solid), the dσ(|MH + Mcont|2)/dMWW distribution (blue) and
the dσ(|MH|2+ |Mcont|2)/dMWW distribution (red) are shown. Standard cuts are applied:
pT ! > 20GeV, |η!| < 2.5, p/T > 30GeV, M!! > 12GeV. Differential cross sections for a
single lepton flavor combination are displayed. No flavor summation is carried out for
charged leptons or neutrinos. Further details can be found in Ref. [31].

cross section in this region far from resonance thus contributes O(10%) to the total finite-
width cross section, more specifically, 16% and 37% in Figs. 2 and 3, respectively. ZWA
errors of O(10%) can therefore occur in H → V V decay modes, despite ΓH/MH < 10−4.14

We emphasize that H → V V modes in Higgs production channels other than gluon fusion
also exhibit an enhanced off-shell tail, since the effect is caused by the decay amplitude.

Evidently, the ZWA caveat also applies to Monte Carlo generators that approximate
off-shell effects with an ad hoc Breit-Wigner reweighting of the on-shell propagator (cf. Eq.
(11)). Furthermore, the ZWA limitations are relevant for the extraction of Higgs couplings,
which is initially being performed using the ZWA. The findings of Ref. [31] make clear that
off-shell effects have to be included in future Higgs couplings analyses.

Above the V V threshold, the gg → V V continuum background is large and sizable
signal-background interference (see Fig. 4, left and right) occurs. Resonance-continuum
interference in gg (→ H) → V V has been studied in Refs. [31, 71–80] and for related pro-

14For gg → H → γγ the effect is drastically reduced and confined to the region Mγγ between 157 GeV
and 168 GeV, where the distribution is already five orders of magnitude smaller than in the resonance
region.
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errors of O(10%) can therefore occur in H → V V decay modes, despite ΓH/MH < 10−4.14
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Above the V V threshold, the gg → V V continuum background is large and sizable
signal-background interference (see Fig. 4, left and right) occurs. Resonance-continuum
interference in gg (→ H) → V V has been studied in Refs. [31, 71–80] and for related pro-
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region.
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plied when extracting branching ratios from collider data. The ZWA strongly reduces the
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extensions and/or higher-order corrections. The uncertainty of the ZWA is typically of
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A thorough examination of the recently discovered candidate SM Higgs boson is in
progress, and its properties are in good agreement with theoretical expectations. It is
thus prudent to examine the accuracy of theoretical predictions for light Higgs production
and decay that are used in experimental analyses. For the SM Higgs boson with MH ≈
125 GeV, one has ΓH/MH < 10−4, which suggests an excellent accuracy of the ZWA.
We have demonstrated that the ZWA is in general not adequate and the error estimate
O(ΓH/MH) is not reliable for a light Higgs boson. The inclusion of off-shell contributions is
essential to obtain an accurate Higgs signal normalization at the 1% precision level as well as
correct kinematic distributions. ZWA deviations are particularly large for gg → H → V V
processes (V = W,Z). To be more specific, without optimized selection cuts they are of
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search selection has additional cuts, in particular an upper bound on the invariant mass of
the observed dilepton system, which significantly reduce the contribution from the region
with MWW # 2MW . The result is a substantial mitigation of the off-shell (see Table 1)
and interference effects (see Ref. [31]). As first noted in Ref. [76], a very effective means to
suppress the tail contribution is provided by cuts on transverse mass observables [96], which
are designed to have the physical mass of the decaying parent particle (the invariant mass
in the off-shell case) as upper bound. For the process considered here, the best-performing
transverse mass is defined by

MT =
√

(MT,!! + p/T )
2 − (pT,!! + p/T )

2 with MT,!! =
√

p2T,!! +M2
!! . (12)

MT distributions are shown in Fig. 6, which demonstrates that a MT < MH cut strongly
suppresses off-shell as well as interference effects. Table 1 shows that the application of
this MT cut reduces the ZWA error to the sub-percent level. Note, however, that the cut
on MT cannot completely eliminate the unwanted MV V > 2MV contribution: MT ≤ MV V

for all phase space configurations, and a small contamination remains. The efficiency of a
transverse mass cut for gg (→ H) → ZZ → !!̄ν!ν̄! is illustrated in Table 2.
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the observed dilepton system, which significantly reduce the contribution from the region
with MWW # 2MW . The result is a substantial mitigation of the off-shell (see Table 1)
and interference effects (see Ref. [31]). As first noted in Ref. [76], a very effective means to
suppress the tail contribution is provided by cuts on transverse mass observables [96], which
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MT distributions are shown in Fig. 6, which demonstrates that a MT < MH cut strongly
suppresses off-shell as well as interference effects. Table 1 shows that the application of
this MT cut reduces the ZWA error to the sub-percent level. Note, however, that the cut
on MT cannot completely eliminate the unwanted MV V > 2MV contribution: MT ≤ MV V

for all phase space configurations, and a small contamination remains. The efficiency of a
transverse mass cut for gg (→ H) → ZZ → !!̄ν!ν̄! is illustrated in Table 2.
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Figure 4: Representative Feynman graphs for the Higgs signal process (left) and the qq̄-
(center) and gg-initiated (right) continuum background processes.

cesses in Refs. [81–87].15 Due to the enhanced Higgs cross section above the V V threshold,
integrated cross sections can be affected by O(10%) signal-background interference effects,
which are hence also displayed in Figs. 2 and 3.

In the vicinity of the Higgs resonance, finite-width and Higgs-continuum interference
effects are negligible for gg (→ H) → V V if MH # 2MV , as shown in Fig. 5 for gg (→
H) → W−W+ → !ν̄!!̄ν!. For weak boson decays that permit the reconstruction of the
Higgs invariant mass, the experimental procedure focuses on the Higgs resonance region
and for MH # 2MV the enhanced off-shell region is thus typically excluded.

For H → V V channels that do not allow to reconstruct the Higgs invariant mass, the
tail contribution can nevertheless be reduced significantly by means of optimized selection
cuts. In Table 1, we demonstrate this for gg (→ H) → W−W+ → !ν̄!!̄ν!. Here, the

15For studies of the qq̄ and gg continuum background (see Fig. 4, center and right), we refer the reader
to Refs. [88–95] and references therein.
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Table 1: Cross sections for gg (→ H) → W−W+ → !ν̄!!̄ν! and MH = 125GeV with
standard cuts, Higgs search cuts and additional cut on the transverse mass MT defined in
Eq. (12) in the main text. Standard cuts: as in Fig. 2. Higgs search cuts: standard cuts
and M!! < 50GeV, ∆φ!! < 1.8. The zero-width approximation (ZWA) and off-shell Higgs
cross sections, the gg continuum cross section and the sum of off-shell Higgs and continuum
cross sections including interference are given. The accuracy of the ZWA and the impact
of off-shell effects are assessed with R = σH,ZWA/σH,offshell. The integration error is given
in brackets. Other details as in Fig. 2.

gg (→ H) → W−W+ → !ν̄!!̄ν!, σ [fb], pp,
√
s = 8 TeV, MH = 125 GeV

selection cuts HZWA Hoffshell cont |Hofs+cont|2 R

standard cuts 2.707(3) 3.225(3) 10.493(5) 12.241(8) 0.839(2)

Higgs search cuts 1.950(1) 1.980(1) 2.705(2) 4.497(3) 0.9850(7)

0.75MH < MT < MH 1.7726(9) 1.779(1) 0.644(1) 2.383(2) 0.9966(8)

4 Summary

The evolution of methods for perturbative calculations that involve unstable particles has
been reviewed. A general formalism that has a rigorous field-theoretical foundation and
provides a practicable and efficient implementation which returns reliable results of the de-
sired precision for all phenomenologically relevant observables is not yet known. This fact
was used to motivate a review of on-mass-shell approximations. The zero-width approx-
imation, a.k.a. narrow-width approximation, restricts the intermediate unstable particle
state to the mass shell and, when combined with the decorrelation approximation, fully
factorizes the production and decay subprocesses. Both approximations are implicitly ap-

Table 2: Cross sections for gg (→ H) → ZZ → !!̄ν!ν̄! and MH = 125GeV without and
with transverse mass cut. Applied cuts: pT ! > 20 GeV, |η!| < 2.5, 76 GeV < M!! < 106
GeV, p/T > 10 GeV. MT is defined in Eq. (12) in the main text. Other details as in Table
1.

gg (→ H) → ZZ → !!̄ν!ν̄!, σ [fb], pp,
√
s = 8 TeV, MH = 125 GeV

MT cut HZWA Hoffshell cont |Hofs+cont|2 R

none 0.1593(2) 0.2571(2) 1.5631(7) 1.6376(9) 0.6196(7)

MT < MH 0.1593(2) 0.1625(2) 0.4197(5) 0.5663(6) 0.980(2)
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in Fig. 2.
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cesses in Refs. [81–87].15 Due to the enhanced Higgs cross section above the V V threshold,
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which are hence also displayed in Figs. 2 and 3.
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effects are negligible for gg (→ H) → V V if MH # 2MV , as shown in Fig. 5 for gg (→
H) → W−W+ → !ν̄!!̄ν!. For weak boson decays that permit the reconstruction of the
Higgs invariant mass, the experimental procedure focuses on the Higgs resonance region
and for MH # 2MV the enhanced off-shell region is thus typically excluded.

For H → V V channels that do not allow to reconstruct the Higgs invariant mass, the
tail contribution can nevertheless be reduced significantly by means of optimized selection
cuts. In Table 1, we demonstrate this for gg (→ H) → W−W+ → !ν̄!!̄ν!. Here, the

15For studies of the qq̄ and gg continuum background (see Fig. 4, center and right), we refer the reader
to Refs. [88–95] and references therein.
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Inadequacy of zero-width approximation for a light
Higgs boson signal

Nikolas Kauer
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Abstract

The zero-width approximation (ZWA) restricts the intermediate unstable par-
ticle state to the mass shell and, when combined with the decorrelation approx-
imation, fully factorizes the production and decay of unstable particles. The
ZWA uncertainty is expected to be of O(Γ/M), where M and Γ are the mass
and width of the unstable particle. We review the ZWA and demonstrate that
errors can be much larger than expected if a significant modification of the
Breit-Wigner lineshape occurs. A thorough examination of the recently discov-
ered candidate Standard Model Higgs boson is in progress. ForMH ≈ 125 GeV,
one has ΓH/MH < 10−4, which suggests an excellent accuracy of the ZWA. We
show that this is not always the case. The inclusion of off-shell contributions is
essential to obtain an accurate Higgs signal normalization at the 1% precision
level. For gg → H → V V , V = W,Z, O(5 – 10%) corrections occur due to
an enhanced Higgs signal in the region MV V > 2MV , where also sizable Higgs-
continuum interference occurs. We discuss how experimental selection cuts can
be used to suppress this region in search channels where the Higgs mass cannot
be reconstructed. We note that H → V V decay modes in non-gluon-fusion
channels are similarly affected.
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Higgs in ZWA as well as off-shell including interference with continuum V V production

(where γ∗ contributions are also included).6All results are given for a single lepton flavour

combination. No flavour summation is carried out for charged leptons or neutrinos. As

input parameters, we use the specification of the LHC Higgs Cross Section Working Group

in App. A of Ref. [45] with NLO ΓV and Gµ scheme. Finite top and bottom quark mass

effects are included. Lepton masses are neglected. We consider the Higgs masses 125GeV

and 200GeV with ΓH = 0.004434 GeV and 1.428GeV, respectively. The Higgs widths have

been calculated with HDECAY [88]. The fixed-width prescription is used for Higgs and

weak boson propagators. The renormalisation and factorisation scales are set to MH/2.

The PDF set MSTW2008NNLO [77] with 3-loop running for αs(µ2) and αs(M2
Z) = 0.11707

is used. The CKM matrix is set to the unit matrix, which causes a negligible error [65].

The accuracy of the ZWA Higgs cross section and the impact of off-shell effects is

assessed with the ratio

R0 =
σH,ZWA

σH,offshell
. (3.1)

To facilitate comparison with off-shell MV V distributions, we define the ZWA MV V distri-

bution as suggested by Eq. (2.5):

(

dσ

dMV V

)

ZWA

= σH,ZWA
MHΓH

π

2MV V
(

M2
V V −M2

H

)2
+ (MHΓH)2

. (3.2)

Each signal process gg → H → V V → leptons (with amplitude MH) and corresponding

continuum background process gg → V V → leptons (with amplitude Mcont) have identical

initial and final states. Hence interference occurs, and the distinction between signal and

background cross sections becomes blurred:

|MVV|2 = |MH +Mcont|2 = |MH |2 + |Mcont|2 + 2Re(MHM∗
cont) . (3.3)

We assess interference effects using a (S +B)-inspired interference measure,

R1 =
σ(|MVV|2)

σ(|MH |2 + |Mcont|2)
, (3.4)

and a (S/
√
B)-inspired measure,

R2 =
σ(|MH |2 + 2Re(MHM∗

cont))

σ(|MH |2)
. (3.5)

In the following, charged leptons are denoted by %.

3.1 gg → H → ZZ → !!̄!!̄ and !!̄!′!̄′ at MH = 125GeV

The same- and different-flavour 4-charged-lepton channels have been analysed by ATLAS

[89] and CMS [90] for Higgs masses in the range 110–600 GeV. In these search channels,

the invariant mass of the intermediate Higgs (MH∗ ≡ MZZ) can be reconstructed. The

6All cross sections are evaluated with a pT (V ) > 1GeV cut. This technical cut prevents numerical

instabilities when evaluating the continuum amplitude.

– 8 –

gg (→ H) → ZZ → 4! and 2! 2!′

σ [fb], pp,
√
s = 8TeV, MH = 125GeV ZWA interference

mode HZWA Hoffshell cont |Hofs+cont|2 R0 R1 R2

!!̄ !!̄ 0.0748(2) 0.0747(2) 0.000437(3) 0.0747(6) 1.002(3) 0.994(8) 0.994(8)

!!̄ !′!̄′ 0.1395(2) 0.1393(2) 0.000583(2) 0.1400(3) 1.002(2) 1.001(2) 1.001(2)

Table 3. Cross sections for gg (→ H) → ZZ → !!̄!!̄ and !!̄!′!̄′ in pp collisions at
√
s = 8TeV

for MH = 125GeV and ΓH = 0.004434GeV calculated at LO with gg2VV. The zero-width ap-
proximation (ZWA) and off-shell Higgs cross sections, the continuum cross section and the sum
of off-shell Higgs and continuum cross sections including interference are given. The accuracy
of the ZWA and the impact of off-shell effects are assessed with R0 = σH,ZWA/σH,offshell. In-
terference effects are illustrated through R1 = σ(|MH + Mcont|2)/σ(|MH |2 + |Mcont|2) and
R2 = σ(|MH |2 + 2Re(MHM∗

cont))/σ(|MH |2). γ∗ contributions are included in Mcont. Applied
cuts: |MZZ − MH | < 1GeV, pT ! > 5GeV, |η!| < 2.5, ∆R!! > 0.1, 76GeV< M!!̄,12 < 106GeV
and 15GeV< M!!̄,34 < 115GeV (see main text), M!!̄ > 4GeV. Cross sections are given for a single
lepton flavour combination. No flavour summation is carried out for charged leptons or neutrinos.
The integration error is given in brackets.

MZZ spectrum is hence used as the discriminant variable in the final stage of the analysis,

and the test statistic is evaluated with a binned maximum-likelihood fit of signal and back-

ground models to the observed MZZ distribution. For light Higgs masses, the observed

MZZ distribution is dominated by experimental resolution effects and for example fitted as

Gaussian with a standard deviation of 2–2.5GeV (or similar bin sizes are used). Since the

width of a light SM Higgs boson is 2–3 orders of magnitude smaller, one would expect that

the ZWA is highly accurate. According to Eq. (2.7), the constraints on MZZ mentioned

above introduce an error of order 0.1%. Invariant masses above 2MZ , where large devi-

ations from the Breit-Wigner shape occur, are excluded by the experimental procedure.

Higgs-continuum interference effects are negligible. For illustration, we compute the Higgs

cross section in ZWA and off-shell including continuum interference in the vicinity of MH ,

more precisely |MZZ −MH | < 1GeV. To take into account the detector acceptance, we re-

quire pT ! > 5GeV and |η!| < 2.5. Leptons are separated using ∆R!! > 0.1. Following Ref.

[89], we apply the cuts 76GeV< M!!̄,12 < 106GeV and 15GeV< M!!̄,34 < 115GeV. The

invariant mass of the same-flavour, opposite-sign lepton pair closest to MZ is denoted by

M!!̄,12. M!!̄,34 denotes the invariant mass of the remaining lepton pair. The γ∗ singularity

for vanishing virtuality is excluded by requiring M!!̄ > 4GeV.7 The results are displayed

in Table 3.

3.2 gg → H → W−W+
→ !ν̄!!̄ν! at MH = 125GeV

TheWW → 2! 2ν search channel has been analysed by ATLAS [91] and CMS [92] for Higgs

masses in the range 110–600 GeV. We apply the standard cuts pT ! > 20GeV, |η!| < 2.5,

p/T > 30GeV and M!! > 12GeV. As Higgs search selection cuts, we apply the standard

cuts and in addition M!! < 50GeV and ∆φ!! < 1.8. Since MH∗ cannot be reconstructed,

7This cut is induced by the phase space generation.
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Higgs in ZWA as well as off-shell including interference with continuum V V production
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cuts and in addition M!! < 50GeV and ∆φ!! < 1.8. Since MH∗ cannot be reconstructed,
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We point out that existing measurements of pp → ZZ cross-section at the LHC in a broad range of
ZZ invariant masses allow one to derive a model-independent upper bound on the Higgs boson width,
thanks to strongly enhanced off-shell Higgs contribution. Using CMS data and considering events
in the interval of ZZ invariant masses from 100 to 800 GeV, we find ΓH ≤ 38.8 ΓSM

H ≈ 163 MeV, at
the 95% confidence level. Restricting ZZ invariant masses to MZZ ≥ 300 GeV range, we estimate
that this bound can be improved to ΓH ≤ 21 ΓSM

H ≈ 88 MeV. Under the assumption that all
couplings of the Higgs boson to Standard Model particles scale in a universal way, our result can be
translated into an upper limit on the branching fraction of the Higgs boson decay to invisible final
states. We obtain Br(H → inv) < 0.84 (0.78), depending on the range of ZZ invariant masses that
are used to constrain the width. We believe that an analysis along these lines should be performed
by experimental collaborations in the near future and also in run II of the LHC. We estimate that
such analyses can, eventually, be sensitive to a Higgs boson width as small as ΓH ∼ 10 ΓSM

H .

Since the discovery of the Higgs-like particle by ATLAS
and CMS collaborations about a year ago [1, 2], much
has been learned about its properties. We know that the
mass of the new particle is around 126 GeV [3, 4], that
its spin-parity is most likely 0+ [5–7] and that its produc-
tion cross-sections as observed in particular production
and decay channels are consistent with Standard Model
expectations [4, 8]. It is customary to translate the latter
result into a statement about Higgs boson couplings to
Standard Model particles but, as it is well-known, such
a translation is only possible under the assumption that
the Higgs boson width is the same as in the Standard
Model (SM). Indeed, since after imposing selection cuts
the Higgs boson production at the LHC can be described
in a narrow width approximation [9–13], we can write a
production cross-section for the process i → H → f as

σi→H→f ∼
g2i g

2
f

ΓH
, (1)

where gi,f are the Higgs boson couplings to initial and fi-
nal states and ΓH is the Higgs boson width. Therefore, all
measured cross-sections can be kept fixed if one simulta-
neously rescales couplings of the Higgs boson to Standard
Model particles and the Higgs boson width by appropri-
ate factors. Indeed, if g = ξgSM and ΓH = ξ4ΓH,SM,
the measured Higgs production cross-sections in all chan-
nels will coincide with expected Standard Model values,
σi→H→f = σSM

i→H→f . We conclude that current LHC
data allow for infinitely many solutions for the Higgs cou-
plings to SM particles, the Higgs width and the branch-
ing fraction of the Higgs boson to invisible (or so far
unobserved) states. To break this degeneracy, indepen-
dent measurements of the Higgs boson width or the Higgs
couplings are required.
Direct measurement of the Higgs boson width is not

possible at a hadron collider unless ΓH ∼> O(1) GeV,
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or more than 250 times larger than its Standard Model
value. The only facility where a direct measurement
of the width can be performed is a future muon col-
lider where by scanning the production cross-section for
µ+µ− → H → X around mH , the Higgs width can be
directly measured to high precision [14, 15]. At any other
facility, the Higgs boson width should be obtained indi-
rectly, using information on the Higgs couplings to Stan-
dard Model particles or information about the Higgs bo-
son branching ratio to invisible final states, provided that
such information is available from independent sources.
A number of ways were suggested to constrain the

Higgs couplings and the Higgs branching fraction into
invisible final states. For example, under certain theo-
retical assumptions about electroweak symmetry break-
ing, one can argue [16] that the SM value of the Higgs
boson coupling to W -bosons provides an upper bound
for all possible HWW couplings. From this, the upper
limit on the Higgs width ΓH < 1.43 ΓSM

H is obtained
[17]. Imposing even stronger constraints on the Higgs
couplings to Standard Model particles, one can obtain
tighter bounds on the Higgs boson width [18, 19]. Under
the assumption of the Standard Model production rate
for pp → ZH , the ATLAS collaboration derives an up-
per bound on the Higgs branching ratio to invisible final
state Br(H → inv) < 0.65 at the 95% confidence level
[20]. A related CMS study with a similar conclusion has
also appeared recently [21].
On the other hand, it is more difficult to obtain model-

independent constraints on the Higgs boson couplings.
It was suggested in Ref. [22] to use differences in the
measured values of the Higgs boson masses in γγ and ZZ
channels, caused by the interference of gg → H → γγ and
gg → γγ amplitudes, as a tool to constrain the product of
Hgg and Hγγ couplings, independent of the Higgs boson
width. Once the couplings are measured, one can derive
the value of the Higgs boson width from the narrow width
cross-section, see Eq.(1).
The purpose of this paper is to point out that a con-

straint on the product of Hgg and HZZ couplings and
the resulting model-independent constraint on the Higgs
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has been learned about its properties. We know that the
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its spin-parity is most likely 0+ [5–7] and that its produc-
tion cross-sections as observed in particular production
and decay channels are consistent with Standard Model
expectations [4, 8]. It is customary to translate the latter
result into a statement about Higgs boson couplings to
Standard Model particles but, as it is well-known, such
a translation is only possible under the assumption that
the Higgs boson width is the same as in the Standard
Model (SM). Indeed, since after imposing selection cuts
the Higgs boson production at the LHC can be described
in a narrow width approximation [9–13], we can write a
production cross-section for the process i → H → f as
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, (1)

where gi,f are the Higgs boson couplings to initial and fi-
nal states and ΓH is the Higgs boson width. Therefore, all
measured cross-sections can be kept fixed if one simulta-
neously rescales couplings of the Higgs boson to Standard
Model particles and the Higgs boson width by appropri-
ate factors. Indeed, if g = ξgSM and ΓH = ξ4ΓH,SM,
the measured Higgs production cross-sections in all chan-
nels will coincide with expected Standard Model values,
σi→H→f = σSM

i→H→f . We conclude that current LHC
data allow for infinitely many solutions for the Higgs cou-
plings to SM particles, the Higgs width and the branch-
ing fraction of the Higgs boson to invisible (or so far
unobserved) states. To break this degeneracy, indepen-
dent measurements of the Higgs boson width or the Higgs
couplings are required.
Direct measurement of the Higgs boson width is not

possible at a hadron collider unless ΓH ∼> O(1) GeV,
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or more than 250 times larger than its Standard Model
value. The only facility where a direct measurement
of the width can be performed is a future muon col-
lider where by scanning the production cross-section for
µ+µ− → H → X around mH , the Higgs width can be
directly measured to high precision [14, 15]. At any other
facility, the Higgs boson width should be obtained indi-
rectly, using information on the Higgs couplings to Stan-
dard Model particles or information about the Higgs bo-
son branching ratio to invisible final states, provided that
such information is available from independent sources.
A number of ways were suggested to constrain the

Higgs couplings and the Higgs branching fraction into
invisible final states. For example, under certain theo-
retical assumptions about electroweak symmetry break-
ing, one can argue [16] that the SM value of the Higgs
boson coupling to W -bosons provides an upper bound
for all possible HWW couplings. From this, the upper
limit on the Higgs width ΓH < 1.43 ΓSM

H is obtained
[17]. Imposing even stronger constraints on the Higgs
couplings to Standard Model particles, one can obtain
tighter bounds on the Higgs boson width [18, 19]. Under
the assumption of the Standard Model production rate
for pp → ZH , the ATLAS collaboration derives an up-
per bound on the Higgs branching ratio to invisible final
state Br(H → inv) < 0.65 at the 95% confidence level
[20]. A related CMS study with a similar conclusion has
also appeared recently [21].
On the other hand, it is more difficult to obtain model-

independent constraints on the Higgs boson couplings.
It was suggested in Ref. [22] to use differences in the
measured values of the Higgs boson masses in γγ and ZZ
channels, caused by the interference of gg → H → γγ and
gg → γγ amplitudes, as a tool to constrain the product of
Hgg and Hγγ couplings, independent of the Higgs boson
width. Once the couplings are measured, one can derive
the value of the Higgs boson width from the narrow width
cross-section, see Eq.(1).
The purpose of this paper is to point out that a con-

straint on the product of Hgg and HZZ couplings and
the resulting model-independent constraint on the Higgs
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its spin-parity is most likely 0+ [5–7] and that its produc-
tion cross-sections as observed in particular production
and decay channels are consistent with Standard Model
expectations [4, 8]. It is customary to translate the latter
result into a statement about Higgs boson couplings to
Standard Model particles but, as it is well-known, such
a translation is only possible under the assumption that
the Higgs boson width is the same as in the Standard
Model (SM). Indeed, since after imposing selection cuts
the Higgs boson production at the LHC can be described
in a narrow width approximation [9–13], we can write a
production cross-section for the process i → H → f as

σi→H→f ∼
g2i g
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, (1)

where gi,f are the Higgs boson couplings to initial and fi-
nal states and ΓH is the Higgs boson width. Therefore, all
measured cross-sections can be kept fixed if one simulta-
neously rescales couplings of the Higgs boson to Standard
Model particles and the Higgs boson width by appropri-
ate factors. Indeed, if g = ξgSM and ΓH = ξ4ΓH,SM,
the measured Higgs production cross-sections in all chan-
nels will coincide with expected Standard Model values,
σi→H→f = σSM

i→H→f . We conclude that current LHC
data allow for infinitely many solutions for the Higgs cou-
plings to SM particles, the Higgs width and the branch-
ing fraction of the Higgs boson to invisible (or so far
unobserved) states. To break this degeneracy, indepen-
dent measurements of the Higgs boson width or the Higgs
couplings are required.
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or more than 250 times larger than its Standard Model
value. The only facility where a direct measurement
of the width can be performed is a future muon col-
lider where by scanning the production cross-section for
µ+µ− → H → X around mH , the Higgs width can be
directly measured to high precision [14, 15]. At any other
facility, the Higgs boson width should be obtained indi-
rectly, using information on the Higgs couplings to Stan-
dard Model particles or information about the Higgs bo-
son branching ratio to invisible final states, provided that
such information is available from independent sources.
A number of ways were suggested to constrain the

Higgs couplings and the Higgs branching fraction into
invisible final states. For example, under certain theo-
retical assumptions about electroweak symmetry break-
ing, one can argue [16] that the SM value of the Higgs
boson coupling to W -bosons provides an upper bound
for all possible HWW couplings. From this, the upper
limit on the Higgs width ΓH < 1.43 ΓSM

H is obtained
[17]. Imposing even stronger constraints on the Higgs
couplings to Standard Model particles, one can obtain
tighter bounds on the Higgs boson width [18, 19]. Under
the assumption of the Standard Model production rate
for pp → ZH , the ATLAS collaboration derives an up-
per bound on the Higgs branching ratio to invisible final
state Br(H → inv) < 0.65 at the 95% confidence level
[20]. A related CMS study with a similar conclusion has
also appeared recently [21].
On the other hand, it is more difficult to obtain model-

independent constraints on the Higgs boson couplings.
It was suggested in Ref. [22] to use differences in the
measured values of the Higgs boson masses in γγ and ZZ
channels, caused by the interference of gg → H → γγ and
gg → γγ amplitudes, as a tool to constrain the product of
Hgg and Hγγ couplings, independent of the Higgs boson
width. Once the couplings are measured, one can derive
the value of the Higgs boson width from the narrow width
cross-section, see Eq.(1).
The purpose of this paper is to point out that a con-

straint on the product of Hgg and HZZ couplings and
the resulting model-independent constraint on the Higgs

in ZWA invariant under

3

that the appropriate scale choice for the strong cou-
pling constant in gg → H∗ → ZZ is the invariant
mass of the Z boson pair divided by two, rather than
mH/2, as appropriate for the on-shell cross-section [25].
We take 300 GeV as a typical value of the invariant
mass for Higgs-related events produced off the peak.
The corresponding suppression factor is then given by
η = (αs(150 GeV)/αs(mH/2))2 ≈ 0.75. We find

NH,off
2e2µ = 9.8× η

L7σH
off(7) + L8σH

off(8)

L7σH
peak(7) + L8σH

peak(8)
≈ 1.73, (3)

where we use the integrated luminosities L7 = 5.1 fb−1

at 7 TeV and L8 = 19.6 fb−1 at 8 TeV.

We combine this estimate with results for other lep-
ton channels by similarly rescaling CMS data on 4e and
4µ, and conclude that 3.72 four-lepton events produced
by decays of an off-shell Higgs boson can be expected
in the current data. Repeating this calculation with the
interference contribution, we find that −9.91 events are
expected. Since cross-sections that we use are computed
in the leading order QCD approximation and do not in-
clude any detector effects, one may wonder if the number
of events estimated using them is reliable. While a de-
tailed answer to this question requires careful studies, we
believe that, by taking ratios of cross-sections, account-
ing for the dominant effects of the running of the strong
coupling constant when relating on- and off-peak events
and by normalizing our computation to the CMS num-
ber of the expected Higgs events in the peak, we obtain
estimates for the off-peak number of events that are suf-
ficiently reliable for the purposes of this paper.2

We note that the estimated number of events in Table I
looks quite striking for two reasons. The first one is that
the off-shell contributions related to gg → H → ZZ are
large; the off-peak cross-section is close to twenty percent
of the peak cross-section. This large off-peak contribu-
tion in ZZ final state was first emphasized in Ref. [12].
It was explained as the consequence of a relatively large
probability to produce the Higgs boson with the off-
shellness larger than 2mZ where decays to longitudinally-
polarized Z-bosons rapidly become important and com-
pensate for the decrease in the cross-section caused by
the off-shell Higgs propagator. This leads to a contri-
bution to the invariant mass distribution Eq.(2) which,
although small, extends over a large invariant mass range
2mZ ∼< M4l ∼< 800 GeV and gives rise to a sizable con-
tribution to the total cross-section. The second reason
is due to a large destructive interference. Note, however,
that the interference is an off-peak phenomenon; it does

2 We note that by rescaling both off-peak and interference contri-
butions in the same way, we implicitly assume that QCD cor-
rections to the signal and the interference are comparable. This
is supported by the analysis of higher-order corrections to the
interference in pp → H → W+W− process reported in [26].

not contribute to the peak cross-section to a very good
approximation [12, 13].
The expected number of Higgs-related events shown in

Table I refers to the Standard Model. Relaxing this as-
sumption by allowing for correlated changes in the Higgs
couplings and the Higgs boson width, so that the number
of events in the peak remains intact, we write the number
of off-peak events as

Noff
4l = 3.72×

ΓH

ΓSM
H

− 9.91×

√

ΓH

ΓSM
H

. (4)

For ΓH & ΓSM
H , we can interpret Eq.(4) as an addi-

tional source of ZZ events in the current data; these ZZ
events are broadly distributed over a large invariant mass
range, roughly from the ZZ threshold up to the highest
ZZ invariant masses of order 800 GeV. Therefore, as the
first step, we can look at the total number of ZZ-events in
the current data and ask how many additional events can
be tolerated given the number of observed events and the
current uncertainty on the number of expected events.
CMS currently observes 451 events in the pp → ZZ → 4l
channel, while 432± 31 events are expected [6]. The ex-
pected number of events does not include the off-shell
Higgs production and the off-shell interference. There-
fore, we estimate the total number of events that are
expected if the Higgs couplings and width differ from the
Standard Model using the following equation

Nexp = 432 + 3.72×
ΓH

ΓSM
H

− 9.91×

√

ΓH

ΓSM
H

± 31, (5)

where we assume that the sign of the interference is the
same as in the Standard Model. Note that we obtain
the above error estimate by adding errors for the 4e, 4µ
and 2e2µ channels reported in Ref. [6] in quadratures,
assuming that they are uncorrelated. While not exact,
this is also not an unreasonable assumption,3 but a de-
tailed analysis of error correlations is beyond the scope
of this paper.
Requiring that the expected and observed numbers

of events are within two standard deviations from each
other, we derive an upper limit on ΓH at the 95% confi-
dence level. We find

ΓH ≤ 38.8 ΓSM
H ≈ 163 MeV, (6)

where we used ΓSM
H ≈ 4.2 MeV [27].4

The upper limit on the Higgs boson width can be
turned into an upper limit on the branching fraction for

3 Note that errors for the expected number of background events
for all channels in Table I of Ref. [6] are of the same order as the
square root of the expected number of events reported there.

4 We note that, if we add the errors for the number of expected
events in the 4e, 4µ and 2e2µ channels linearly, the 95% confi-
dence level limit for the width will degrade to ΓH ≤ 52 ΓSM

H .
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of events in the peak remains intact, we write the number
of off-peak events as

Noff
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For ΓH & ΓSM
H , we can interpret Eq.(4) as an addi-

tional source of ZZ events in the current data; these ZZ
events are broadly distributed over a large invariant mass
range, roughly from the ZZ threshold up to the highest
ZZ invariant masses of order 800 GeV. Therefore, as the
first step, we can look at the total number of ZZ-events in
the current data and ask how many additional events can
be tolerated given the number of observed events and the
current uncertainty on the number of expected events.
CMS currently observes 451 events in the pp → ZZ → 4l
channel, while 432± 31 events are expected [6]. The ex-
pected number of events does not include the off-shell
Higgs production and the off-shell interference. There-
fore, we estimate the total number of events that are
expected if the Higgs couplings and width differ from the
Standard Model using the following equation

Nexp = 432 + 3.72×
ΓH

ΓSM
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− 9.91×

√

ΓH

ΓSM
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± 31, (5)

where we assume that the sign of the interference is the
same as in the Standard Model. Note that we obtain
the above error estimate by adding errors for the 4e, 4µ
and 2e2µ channels reported in Ref. [6] in quadratures,
assuming that they are uncorrelated. While not exact,
this is also not an unreasonable assumption,3 but a de-
tailed analysis of error correlations is beyond the scope
of this paper.
Requiring that the expected and observed numbers

of events are within two standard deviations from each
other, we derive an upper limit on ΓH at the 95% confi-
dence level. We find

ΓH ≤ 38.8 ΓSM
H ≈ 163 MeV, (6)

where we used ΓSM
H ≈ 4.2 MeV [27].4

The upper limit on the Higgs boson width can be
turned into an upper limit on the branching fraction for

3 Note that errors for the expected number of background events
for all channels in Table I of Ref. [6] are of the same order as the
square root of the expected number of events reported there.

4 We note that, if we add the errors for the number of expected
events in the 4e, 4µ and 2e2µ channels linearly, the 95% confi-
dence level limit for the width will degrade to ΓH ≤ 52 ΓSM
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that the appropriate scale choice for the strong cou-
pling constant in gg → H∗ → ZZ is the invariant
mass of the Z boson pair divided by two, rather than
mH/2, as appropriate for the on-shell cross-section [25].
We take 300 GeV as a typical value of the invariant
mass for Higgs-related events produced off the peak.
The corresponding suppression factor is then given by
η = (αs(150 GeV)/αs(mH/2))2 ≈ 0.75. We find

NH,off
2e2µ = 9.8× η

L7σH
off(7) + L8σH

off(8)

L7σH
peak(7) + L8σH

peak(8)
≈ 1.73, (3)

where we use the integrated luminosities L7 = 5.1 fb−1

at 7 TeV and L8 = 19.6 fb−1 at 8 TeV.

We combine this estimate with results for other lep-
ton channels by similarly rescaling CMS data on 4e and
4µ, and conclude that 3.72 four-lepton events produced
by decays of an off-shell Higgs boson can be expected
in the current data. Repeating this calculation with the
interference contribution, we find that −9.91 events are
expected. Since cross-sections that we use are computed
in the leading order QCD approximation and do not in-
clude any detector effects, one may wonder if the number
of events estimated using them is reliable. While a de-
tailed answer to this question requires careful studies, we
believe that, by taking ratios of cross-sections, account-
ing for the dominant effects of the running of the strong
coupling constant when relating on- and off-peak events
and by normalizing our computation to the CMS num-
ber of the expected Higgs events in the peak, we obtain
estimates for the off-peak number of events that are suf-
ficiently reliable for the purposes of this paper.2

We note that the estimated number of events in Table I
looks quite striking for two reasons. The first one is that
the off-shell contributions related to gg → H → ZZ are
large; the off-peak cross-section is close to twenty percent
of the peak cross-section. This large off-peak contribu-
tion in ZZ final state was first emphasized in Ref. [12].
It was explained as the consequence of a relatively large
probability to produce the Higgs boson with the off-
shellness larger than 2mZ where decays to longitudinally-
polarized Z-bosons rapidly become important and com-
pensate for the decrease in the cross-section caused by
the off-shell Higgs propagator. This leads to a contri-
bution to the invariant mass distribution Eq.(2) which,
although small, extends over a large invariant mass range
2mZ ∼< M4l ∼< 800 GeV and gives rise to a sizable con-
tribution to the total cross-section. The second reason
is due to a large destructive interference. Note, however,
that the interference is an off-peak phenomenon; it does

2 We note that by rescaling both off-peak and interference contri-
butions in the same way, we implicitly assume that QCD cor-
rections to the signal and the interference are comparable. This
is supported by the analysis of higher-order corrections to the
interference in pp → H → W+W− process reported in [26].
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FIG. 1: Sample signal (left) and background gg → ZZ (right)
diagrams for the process pp → ZZ → 4l. The two amplitudes
can interfere.

boson width can be obtained from the observed number
of ZZ events at the LHC above the Higgs boson mass
peak in the pp → ZZ process. Interestingly, this can al-
ready be done with the current data. The main reason
for that is an enhanced contribution to the Higgs signal
from invariant masses above the ZZ threshold, as was
first pointed out in Ref. [12]. Interestingly, useful lim-
its on the Higgs width can already be derived with the
current data. To show how this works, we recall how
Eq.(1) is obtained. We focus on the H → ZZ → eeµµ
final state and write the production cross-section as a
function of the invariant mass of four leptons M4l

dσpp→H→ZZ

dM2
4l

∼
g2Hggg

2
HZZ

(M2
4l −m2

H)2 +m2
HΓ2

H

. (2)

The total cross-section receives the dominant contri-
bution from the resonant region M2

4l − m2
H ∼ mHΓH ,

where integral of Eq.(2) gives Eq.(1). However, the to-
tal cross-section also receives off-peak contributions from
larger or smaller invariant masses, where Eq.(2) is still
proportional to squares of Hgg and HZZ couplings but
it is independent of ΓH .
Suppose now that in Eq.(2), the product of coupling

constants cgZ = g2Hggg
2
HZZ and the width ΓH are scaled

by a common factor ξ and that this factor is still suf-
ficiently small to make the narrow width approxima-
tion applicable. Under this circumstance, the reso-
nance contribution remains unchanged and is given by
Eq.(1), while the off-shell contribution from the region
M2

4l $ m2
H increases linearly with ξ and can, therefore,

be bounded from above by the total number of events ob-
served in pp → ZZ process above the Higgs boson peak
in the ZZ invariant mass spectrum. This is the main
idea behind this paper.
There are two sources of Higgs-related ZZ events off

the peak. One is the off-shell production of the Higgs
boson followed by its decay to ZZ final states. The sec-
ond source of events is the interference between gg →
H → ZZ and gg → ZZ amplitudes, see Fig. 1. The
interference exists, but is numerically irrelevant in the
peak [12, 13] while, as we show below, it significantly
changes the number of expected Higgs-related events off
the peak. We account for both of these effects in the
following discussion. To estimate the number of Higgs
events in gg → H → ZZ, including the interference, we
use the program gg2VV described in Refs. [12, 23].
To calculate the number of Higgs-related events that

are expected off peak, we compute 7 and 8 TeV produc-

Energy σH
peak σH

off σint
off

7 TeV 0.203 0.044 -0.108

8 TeV 0.255 0.061 -0.166

NSM
2e2µ 9.8 1.73 -4.6

NSM
tot 21.1 3.72 -9.91

TABLE I: Fiducial cross-sections for pp → H → ZZ → 2e2µ
in fb, and the corresponding number of events expected for
integrated luminosities L7 = 5.1 fb−1 at 7 TeV and L8 =
19.6 fb−1 at 8 TeV. All cross-sections are computed with
leading order MSTW 2008 parton distribution functions [24].
The renormalization and factorization scales are set to µ =
mH/2. The peak cross-section is defined with the cut M4l <
130 GeV, while off-peak and interference cross-sections are
defined with the cut M4l > 130 GeV. The total number of
events in the last row includes contributions from 4e and 4µ
channels. The number of events is obtained using procedures
outlined in the text.

tion cross-sections for pp → H → ZZ → e+e−µ+µ− at
leading order in perturbative QCD requiring that the in-
variant mass of four leptons is either smaller or larger
than 130 GeV. We refer to the former case as the “on
peak” cross-section and to the latter case as the “off
peak” one .
We employ the CMS selection cuts [6] requiring p⊥,µ >

5 GeV, p⊥,e > 7 GeV, |ηµ| < 2.4, |ηe| < 2.5, Ml
−
l+ >

4 GeV, M4l > 100 GeV. In addition, the transverse mo-
mentum of the hardest (next-to-hardest) lepton should
be larger than 20 (10) GeV, the invariant mass of a pair
of same-flavor leptons closest to the Z-mass should be in
the interval 40 < mll < 120 GeV and the invariant mass
of the other pair should be in the interval 12− 120 GeV.
We also take the Higgs boson mass to be 126 GeV, and
set renormalization and factorization scales to mH/2.
The corresponding cross-sections for the Higgs signal

on and off the peak as well as the interference contribu-
tions to cross-sections are shown in Table I. The num-
ber of 2e2µ events in that Table is computed starting
from the number of on-peak events reported in Table I
of Ref. [6]. According to Table I in [6], the CMS col-
laboration expects 9.8 Higgs-related events in the eeµµ
channel on the peak.1 We estimate the number of Higgs-
related events for M4l > 130 GeV by taking ratios of
cross-sections weighted with luminosity factors. We also
include additional suppression factor due to the fact

1 This number of events is a combination of gg → H (88%), weak
boson fusion (7%) and V H production (5%). Although a detailed
study of the channels besides gg → H is beyond the scope of this
paper, we believe that they will contribute to the number of high-
mass ZZ events in a way that is similar to gg → H → ZZ; for
this reason we decided to keep the number of events in the peak
unchanged when performing numerical estimates.
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Interference in diphoton
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In SM, Agg→H and AH→γγ are mainly real, due to t,W

dominance in loop, for mH < 2mW .

At 1-loop, A∗
cont is also mainly real, because Dicus, Willenbrock

Atree(g±g± → qq̄) = Atree(qq̄ → γ±γ±) = 0 for mq = 0.

Dominant phase is from A2−loop
gg→γγ, in particular Im F L
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In search of a phase
Total gg → γγ amplitude

Agg→γγ =
−Agg→HAH→γγ

ŝ − m2
H + imHΓH

+ Acont

Interference term has 2 pieces

δσ̂gg→H→γγ = −2(ŝ − m2
H)

Re (Agg→HAH→γγA∗
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(ŝ − m2
H)2 + m2

HΓ2
H

− 2mHΓH
Im (Agg→HAH→γγA∗

cont)

(ŝ − m2
H)2 + m2

HΓ2
H

“Re” term vanishes upon integration over ŝ, provided that
Agg→H , AH→γγ, Acont do not vary too quickly. Dicus, Willenbrock

“Im” term needs relative phase, resonance vs. continuum.
Resonance-Continuum Interferencein the LHC H → γγ Signal – p.9/20

In search of a phase
Total gg → γγ amplitude

Agg→γγ =
−Agg→HAH→γγ
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cont is also mainly real, because Dicus, Willenbrock

Atree(g±g± → qq̄) = Atree(qq̄ → γ±γ±) = 0 for mq = 0.

Dominant phase is from A2−loop
gg→γγ, in particular Im F L

−−++.
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Need 2-loop gg → γγ helicity amplitudes
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Also important for NLO calculation of gg → γγX
— significant contribution to γγ continuum background.

Bern, LD, Schmidt

Resonance-Continuum Interferencein the LHC H → γγ Signal – p.11/20

Source of the phase?

Interference in diagrams:

g

g

t, b
H

γ

γ

W, t
b, c, τ · · ·

b, c, . . . u, c, d, s, b · · ·

∗

In SM, Agg→H and AH→γγ are mainly real, due to t,W

dominance in loop, for mH < 2mW .

At 1-loop, A∗
cont is also mainly real, because Dicus, Willenbrock

Atree(g±g± → qq̄) = Atree(qq̄ → γ±γ±) = 0 for mq = 0.

Dominant phase is from A2−loop
gg→γγ, in particular Im F L

−−++.

Resonance-Continuum Interferencein the LHC H → γγ Signal – p.10/20

O(↵3
s)

Dominant contribution
formally

NLO to signal

NNNLO to backgroundClose-up of Higgs resonance

Resonance-Continuum Interferencein the LHC H → γγ Signal – p.15/20Re integrates to ~0 (but..)
Im negative contribution

Dixon and Siu (2003)
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Percentage correction to SM Higgs signal

Effect is −(2 − 6)% over region where γγ is visible.

Gets very large near WW threshold.
(We checked that phase from H → WW ∗ → γγ is not
significant here.)

Resonance-Continuum Interferencein the LHC H → γγ Signal – p.17/20

about -4% at 125 GeV, non trivial angular dependence

Dixon and Siu (2003)
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In search of a phase

Total gg → γγ amplitude
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−Agg→HAH→γγ

ŝ − m2
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+ Acont

Interference term has 2 pieces

δσ̂gg→H→γγ = −2(ŝ − m2
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HΓ2
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− 2mHΓH
Im (Agg→HAH→γγA∗

cont)

(ŝ − m2
H)2 + m2

HΓ2
H

“Re” term vanishes upon integration over ŝ, provided that
Agg→H , AH→γγ, Acont do not vary too quickly. Dicus, Willenbrock

“Im” term needs relative phase, resonance vs. continuum.
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FIG. 1: The distribution of diphoton invariant masses from the real interference term in eq. (12), as a
function of Mγγ =

√
ŝ, from eq. (10), before including experimental resolution effects. The right panel is a

close-up of the left panel, showing the maximum and minimum near Mγγ = MH ± ΓH/2.

is the gluon-gluon luminosity function, and

D(ŝ) = (ŝ −M2
H)2 +M2

HΓ2
H . (16)

The numerical results below use MH = 125 GeV and ΓH = 4.2 MeV for purposes of presentation,

even though the current experimental indications are for a slightly heavier H. The running MS

fermion masses at Q = MH are taken to be mt = 168.2 GeV, mb = 2.78 GeV, mc = 0.72 GeV,

mτ = 1.744 GeV, and α = 1/127.5. The gluon distribution function g(x) and strong coupling

αS(Q) are taken from the MSTW2008 NLO set [39], with Q2 = ŝ. Because the focus here is on

the shift in the diphoton mass peak, the very small imaginary interference term in eq. (13) and

its 2-loop counterpart discussed in [28] will be neglected here, since they are small and affect the

overall size but not the shape of the invariant mass distribution. Numerical results will be shown

for the 2012 run energy
√
s = 8 TeV, but the results on the shape (as opposed to the size) of the

Mγγ distribution turn out to be nearly independent of the LHC beam energy at leading order.

This is because the
√
s dependence enters only through G(ŝ), which appears in front of both NH

and Nint,Re in eq. (10).

The factor of ŝ−M2
H in Nint,Re is odd about the Higgs peak, making its contribution to the total

cross-section negligible when ŝ is integrated over [27, 28]. However, the same factor implies a slight

excess for Mγγ =
√
ŝ below MH and a slight deficit above, therefore pushing the peak to lower Mγγ

than it would be if interference were absent. This is shown first in the case without any experimental

resolution effects for the photons, in Figure 1. The distribution shown is obtained from the real

interference term in eq. (12), plugged in to eq. (10), after integrating over −1 < z < 1 and dividing

by 2 for identical photons. The distribution shows a sharp peak and dip near Mγγ = MH − ΓH/2

and MH + ΓH/2 respectively, but there are also long tails due to the Breit-Wigner shape. [Using

x
*

•small asymmetry in the interference
•at this level shift is O(MeV) as expected

De Florian

Asymmetry enhanced by detector resolution can reach 100 MeV effect 
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function of Mγγ =
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close-up of the left panel, showing the maximum and minimum near Mγγ = MH ± ΓH/2.
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even though the current experimental indications are for a slightly heavier H. The running MS
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its 2-loop counterpart discussed in [28] will be neglected here, since they are small and affect the

overall size but not the shape of the invariant mass distribution. Numerical results will be shown

for the 2012 run energy
√
s = 8 TeV, but the results on the shape (as opposed to the size) of the

Mγγ distribution turn out to be nearly independent of the LHC beam energy at leading order.
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excess for Mγγ =
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ŝ below MH and a slight deficit above, therefore pushing the peak to lower Mγγ

than it would be if interference were absent. This is shown first in the case without any experimental

resolution effects for the photons, in Figure 1. The distribution shown is obtained from the real

interference term in eq. (12), plugged in to eq. (10), after integrating over −1 < z < 1 and dividing

by 2 for identical photons. The distribution shows a sharp peak and dip near Mγγ = MH − ΓH/2

and MH + ΓH/2 respectively, but there are also long tails due to the Breit-Wigner shape. [Using
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its 2-loop counterpart discussed in [28] will be neglected here, since they are small and affect the
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s = 8 TeV, but the results on the shape (as opposed to the size) of the

Mγγ distribution turn out to be nearly independent of the LHC beam energy at leading order.
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FIG. 2: The distribution of diphoton in-
variant masses from the real interference,
as in Figure 1, but now smeared by vari-
ous Gaussian mass resolutions with widths
σMR.

a different prescription for the width in the Breit-Wigner lineshape, such as the running-width

prescription with D(ŝ) = (ŝ−M2
H)2 + ŝ[ΓH(ŝ)]2, does not significantly affect the results, because

for a light Higgs boson the width term is only important very close to the resonance peak where

the width term is nearly constant.]

At the LHC, the photon energies are smeared by detector effects, in ways that differ between

the two experiments. A detailed treatment of these effects is beyond the scope of this paper, but as

an approximation, Figure 2 shows the same interference as in Figure 1, but now convoluted with

some representative Gaussian† functions with mass resolution widths σMR = 1.3, 1.5, 1.7, 2.0 and

2.4 GeV. This has the effect of reducing the peak and dip in the interference, and moving their

points of maximal deviations from 0 much farther from MH .

To obtain the size of the shift in the Higgs peak diphoton distribution, one can now combine the

interference contribution with the non-interference contribution from eqs. (10) and (11). The results

are shown in Figure 3 for the case of a Gaussian mass resolution σMR = 1.7 GeV. The distribution

obtained including the interference effect is shifted slightly to the left of the distribution obtained

neglecting the interference. In order to quantify the magnitude of the shift, it will be necessary

to specify the precise method used to fit the signal; this is again beyond the scope of the present

paper. The background levels are subject to significant higher order corrections [40–43], and in

practice are obtained by the experimental collaborations using a sideband analysis of fitting to the

falling background shape away from the Higgs peak. This fitting of the lineshape to background

plus signal will be affected by the slight surplus (deficit) of events below (above) MH , depending

on exactly how the fit is done.

One simplistic way to estimate the shift is to take a mass window |Mγγ − Mpeak| < δ, where

† In the real experiments, the invariant mass responses are not Gaussian, depend on photon conversions, and are

different in different parts of the detectors. Therefore, the results shown below should be qualitatively valid but

not quantitatively precise.
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FIG. 3: Diphoton invariant mass distributions with a Gaussian mass resolution of width σMR = 1.7 GeV.
In each panel, the right (red) curve includes only the Higgs contribution without interference, and the left
(blue) curve also includes the interference contribution from Figure 2. The right panel is a close-up of the
left panel.

Mpeak is the invariant mass at the maximum of the distribution, and δ is supposed to be large

enough to include most of the excess events over background in the peak, and then compute

Nδ =

∫ Mpeak+δ

Mpeak−δ
dMγγ

dσ

dMγγ
, (17)

〈Mγγ〉δ =
1

Nδ

∫ Mpeak+δ

Mpeak−δ
dMγγ Mγγ

dσ

dMγγ
. (18)

Now

∆Mγγ ≡ 〈Mγγ〉δ, total − 〈Mγγ〉δ, no interference (19)

is a theoretical measure of the shift due to including the interference. For small δ (∼< 1 GeV), ∆Mγγ

is essentially just the shift in the maximum point of the distribution after subtracting background,

which does not correspond to an experimentally well-measured quantity. However, one can see

from Figure 3 that including a wider window, which should be more similar to the methods used to

determine MH by the experimental collaborations, will give a larger shift. In fact, the magnitude

of the shift ∆Mγγ actually grows approximately linearly with δ for all δ ∼> 2σMR, due to the long

positive (negative) tail at lower (higher) Mγγ . This is shown in Figure 4, where ∆Mγγ is given

as a function of δ, for various values of the Gaussian mass resolution σMR. Because a Gaussian

mass resolution is assumed here for simplicity, one finds 〈Mγγ〉δ, no interference = MH to very

high precision, but 〈Mγγ〉δ, total is increasingly smaller as δ is increased. If one takes a value like

δ = 4 GeV as indicative, since this is large enough to include most of the signal events, then from

Figure 4 the shift is about −185 MeV, with not much sensitivity to the assumed mass resolution.
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FIG. 4: The shift in the diphoton invariant
mass distribution due to interference with the
continuum background, using the measure of
eqs. (17)-(19), for various assumed values of the
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FIG. 5: Angular distributions for the diphoton Higgs signal-background interference. In the left panel, the
shape of the interference contribution (1/σint)dσint/d(| cos θCM|), where θCM is the diphoton center-of-mass
scattering angle. In the right panel, the ratio of the acceptances R = (σint

cut/σ
int
total)/(σ

H
cut/σ

H
total), where “int”

refers to the Higgs-continuum interference part from eq. (12) and “H” to the Higgs contribution without
interference from eq. (11), and “cut” means |η| < ηmax for both photons, while “total” means no cut on η.

However, even a moderately larger value of δ = 5 GeV would increase the typical shift to about

−240 MeV.

The results so far are based on total cross-sections, but experimental cuts and efficiencies favor

scattering into the central regions of the detectors. In the CM frame, the non-interference part of

the signal is isotropic, but the interference is peaked at large |z| = | cos θCM|, as can be seen from

eqs. (8), (9), (12), (14) and graphed in the left panel of Figure 5. The way this angular distribution

would translate into the effects of a cut on η = − ln[tan(θlab/2)] is shown in the right panel of

Figure 5. Here I show the ratio of acceptances R = (σint
cut/σ

int
total)/(σ

H
cut/σ

H
total) as a function of ηmax,

where “int” refers to the Higgs-continuum interference part from eq. (12) and “H” to the Higgs

contribution without interference from eq. (11), and “cut” means |η| < ηmax for both photons, while
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is a theoretical measure of the shift due to including the interference. For small δ (∼< 1 GeV), ∆Mγγ

is essentially just the shift in the maximum point of the distribution after subtracting background,

which does not correspond to an experimentally well-measured quantity. However, one can see

from Figure 3 that including a wider window, which should be more similar to the methods used to

determine MH by the experimental collaborations, will give a larger shift. In fact, the magnitude

of the shift ∆Mγγ actually grows approximately linearly with δ for all δ ∼> 2σMR, due to the long

positive (negative) tail at lower (higher) Mγγ . This is shown in Figure 4, where ∆Mγγ is given

as a function of δ, for various values of the Gaussian mass resolution σMR. Because a Gaussian

mass resolution is assumed here for simplicity, one finds 〈Mγγ〉δ, no interference = MH to very

high precision, but 〈Mγγ〉δ, total is increasingly smaller as δ is increased. If one takes a value like

δ = 4 GeV as indicative, since this is large enough to include most of the signal events, then from

Figure 4 the shift is about −185 MeV, with not much sensitivity to the assumed mass resolution.
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around mH , its effect on the total γ γ rate is subdominant.
For the gluon–gluon partonic subprocess, Dicus and Willen-
brock [37] found that the imaginary part of the correspond-
ing one-loop amplitude has a quark mass suppression for
the relevant helicity combinations. Dixon and Siu [36] com-
puted the main contribution of the interference to the cross
section, which originates on the two-loop imaginary part of
the continuum amplitude gg → γ γ . Recently, Martin [1]
showed that even though the real part hardly contributes at
the cross-section level, it has a quantifiable effect on the
position of the diphoton invariant mass peak, producing a
shift of O(100 MeV) towards a lower mass region, once the
smearing effect of the detector is taken into account.

The gg interference channel considered in [1] is not the
only O(α2

S) contribution that has to be taken into account
for a full understanding of the interference term, since other
partonic subprocesses initiated by qg and qq̄ can contribute
at the same order. While these channels are suppressed with
respect to the gg subprocess for the Higgs signal, they dom-
inate the γ γ QCD background, and therefore their contri-
bution to the interference cannot be a priori neglected. At
variance with the gg subprocess that necessarily requests at
least a one-loop amplitude for the background, the contribu-
tion from the remaining channels arises from tree-level am-
plitudes, and can therefore only contribute to the real part of
the interference in Eq. (1).3

In this note we present the results obtained for the re-
maining qg and qq̄ channels, finalizing a full (lowest order)
O(α2

S) calculation of the interference between Higgs dipho-
ton decay amplitude and the corresponding continuum back-
ground. We concentrate on the effect of the new interference
channels on the position of the diphoton invariant mass peak.

The amplitudes of the qg and qq̄ initiated contributions
to the interference were calculated using the Mathematica
package FeynArts [38], and the analytical manipulation to
obtain the final squared matrix element of the complete in-
terference was done with the help of the package FeynCalc
[39]. A sample of the Feynman diagrams for the qg inter-
ference channel are shown in Fig. 1. The diagrams and am-
plitudes of the remaining channels can be obtained by per-
forming the corresponding crossings.

It is worth noticing that, compared to the gg subprocess,
there is an additional parton in the final state in the new
channels. This parton has to be integrated out to evaluate
the impact on the cross section, and its appearance might
provide the wrong impression that the contribution is next-
to-leading order-like. However, since signal and background

3Apart from a small imaginary part originated on the heavy-quark loop
in the Higgs production amplitude that is discarded in this note since
we rely on the effective ggH vertex. There is also an imaginary con-
tribution in the decay process H → γ γ which was included since the
full expression for the vertex was used, but was found to be negligible.

Fig. 1 Sample of Feynman diagrams contributing to the interference

amplitudes develop infrared singularities in different kine-
matical configurations, the interference is finite after phase
space integration and behaves as a true tree-level contribu-
tion, with exactly the same power of the coupling constant as
the one arising from the gluon–gluon interference channel.

For a phenomenological analysis of the results we need
to perform a convolution of the partonic cross section with
the parton density functions. We use the MSTW2008 LO
set [40] (five massless flavors are considered), and the one-
loop expression of the strong coupling constant, setting the
default factorization and renormalization scales equal to the
diphoton invariant mass (µF = µR = Mγ γ ). For the sake of
simplicity, the production amplitudes are computed within
the effective Lagrangian approach for the ggH coupling (re-
lying on the infinite top mass limit), approximation known
to work at the few percent level for the process of inter-
est. The decay into two photons is treated exactly (using
mt = 172.5 GeV, mb = 4.75 GeV, mc = 1.40 GeV [24, 25],
mτ = 1.776 GeV, mW = 80.395 GeV [41]) and we set
α = 1/137. For the continuum background gg → γ γ we
consider five massless flavors. For the Higgs boson we use
mH = 125 GeV and ΓH = 4.2 MeV. For all the histograms
we present in this section, an asymmetric cut is applied
to the transverse momentum of the photons: p

hard(soft)
T ,γ ≥

40(30) GeV. Their pseudorapidity is constrained to |ηγ | ≤
2.5. We also implement the standard isolation prescription
for the photons, requesting that the transverse hadronic en-
ergy deposited within a cone of size R =

√
&φ2 + &η2 <

0.4 around the photon should satisfy pT,had ≤ 3 GeV. Fur-
thermore, we reject all the events with Rγ γ < 0.4. The effect
of the precise definition of the isolation prescription is neg-
ligible since no final state photon–quark singularities appear
at the level of the interference. Therefore, almost the same
results are obtained if the smooth isolation prescription [42]
is implemented.

In Fig. 2 we show the three contributions to the full
signal–background interference as a function of the dipho-
ton invariant mass Mγ γ after having implemented all the
cuts mentioned above. The gg term (solid line) represents
the dominant channel, while the qg contribution (dashed) is
about three times smaller in absolute magnitude, but as we
can observe, has the same shape but opposite sign to the gg

channel. The qq̄ contribution (dotted) is two orders of mag-
nitude smaller than the gg one, and with the same sign of

•D.deF., N.Fidanza,  R.Hernandez-Pinto, 
J.Mazzitelli, Y.Rotstein, G.Sborlini

Fig. 20: Diphoton invariant mass distribution including the smearing effects of the detector (Gaussian function
of width 1.7GeV). The solid line corresponds to the signal-only contribution. The dotted line corresponds to the
distribution after adding the gg interference term, and the dashed line represents the complete Higgs signal plus all
three interference contributions (gg, qg and qq̄).

(dotted), as found in Ref. [79]. If we also add the qg and qq̄ contributions (dashed), the peak is shifted
around 30MeV back towards a higher mass region because of the opposite sign of the amplitudes.

Given the fact that qq̄ and qg channels involve one extra particle in the final state, one might
expect their contribution to be even more relevant for the corresponding interference in the process
pp → H(→ γγ) + jet, since the usually dominant gg channel [90] starts to contribute at the next order
in the strong coupling constant for this observable.

It is worth noticing that the results presented here are plain LO in QCD. Given the fact that very
large K-factors are observed in both the signal and the background, one might expect a considerable
increase in the interference as well. While reaching NNLO accuracy for the interference looks impossible
at the present time, a prescription to estimate the uncertainty on the evaluation of the interference and a
way to combine it with more precise higher order computations for signal and background for gg → ZZ
was recently presented in [91]. The procedure can be easily extended to the case presented here by
including all possible initial state channels.

Finally, we would like to emphasize that a more realistic simulation of the detector effects should
be performed in order to obtain reliable predictions and allow for a direct comparison with the experi-
mental data.

3.5.5 Interference effects in γγ + jet
13

The Higgs diphoton signal at the LHC is in principle affected by interference between the Higgs
resonant amplitudes and the continuum background amplitudes with the same initial and final states.
Because the continuum amplitude gg → γγ is of one-loop order while the resonant amplitude gg →
H → γγ is effectively of two-loop order, the interference need not be negligible. It was shown in [87,88]
that the effect on the cross-section is very small at leading order, but the imaginary part of the two-loop
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Effects from other channels go in opposite direction

90 MeV          60 MeV

Fig. 19: Diphoton invariant mass distribution for the interference terms. The solid line is the gg channel contribu-
tion, the dotted one the qg channel, and dashed the qq̄.

For a phenomenological analysis of the results, we need to perform a convolution of the par-
tonic cross-section with the parton density functions. We use the MSTW2008 LO set [89] (five mass-
less flavours are considered), and the one-loop expression of the strong coupling constant, setting the
factorization and renormalization scales to the diphoton invariant mass µF = µR = Mγγ . For the
sake of simplicity, the production amplitudes are computed within the effective Lagrangian approach
for the ggH coupling (relying in the infinite top mass limit), approximation known to work at the
few percent level for the process of interest. The decay into two photons is treated exactly and we
set α = 1/137. For the Higgs boson we usemH = 125GeV and ΓH = 4.2MeV. For all the histograms
we present in this section, an asymmetric cut is applied to the transverse momentum of the photons:
phard(soft)

T,γ ≥ 40(30)GeV. Their pseudorapidity is constrained to |ηγ | ≤ 2.5. We also implement the
standard isolation prescription for the photons, requesting that the transverse hadronic energy deposited
within a cone of size R =

√
∆φ2 + ∆η2 < 0.4 around the photon should satisfy pT,had ≤ 3GeV.

Furthermore, we reject all the events with Rγγ < 0.4.
In Figure 19 we show the three contributions to the full signal-background interference as a func-

tion of the diphoton invariant massMγγ after having implemented all the cuts mentioned above. The gg
term (solid line) represents the dominant gg channel, while the qg contribution (dashed) is about 3 times
smaller in absolute magnitude, but as we can observe, has the same shape but opposite sign to the gg
channel. The qq̄ contribution (dotted) is a couple of orders of magnitude smaller than the gg one. The
position of the maximum and minimum of the distribution are located nearMγγ = MH ± ΓH/2, with a
shift at this level that remains at O(1MeV).

To simulate the smearing effects introduced by the detector, we convolute the cross-section with a
Gaussian function of mass resolution width σMR = 1.7GeV following the procedure Ref. [79].

In order to quantify the physical effect of the interferences in the diphoton invariant mass spec-
trum, we present in Figure 20 the corresponding results after adding the Higgs signal. The solid curve
corresponds to the signal cross-section, without the interference terms, but including the detector smear-
ing effects. As expected, the (signal) Higgs peak remains at Mγγ = 125GeV. When adding the gg
interference term, we observe a shift on the position of the peak of about 90MeV towards a lower mass
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Interference at NLO

2

at small x.) Here we present the dominant NLO correc-
tions to the interference between the Higgs signal and
background in QCD.

Figure 1 shows, first, the leading-order contribution
to the interference [denoted by LO (gg)] of the reso-
nant amplitude gg → H → γγ with the one-loop con-
tinuum gg → γγ amplitude mediated by the five light
quark flavors. We also include the tree-level process
qg → γγq, whose interference with qg → Hq → γγq
[denoted by LO (qg)] is at the same order in αs as the
leading gg → H → γγ interference, although suppressed
by the smaller quark PDF. It was already considered in
refs. [6, 7]. The contribution from qq̄ → Hg → γγg is
numerically tiny [6, 7] and we will neglect it.

Finally, fig. 1 depicts the three types of continuum am-
plitudes mediated by light quark loops that we include in
the dominant NLO corrections [denoted by NLO (gg)]:
the real radiation processes, gg → γγg and qg → γγq
at one loop, and the virtual two-loop gg → γγ process.
All these amplitudes are adapted from refs. [17–19]. The
soft and collinear divergences in the real radiation pro-
cess are handled by dipole subtraction [20, 21]. Although
the contribution from qg → γγq via a light quark loop is
not the complete contribution to this amplitude, it forms
a gauge-invariant subset and it is enhanced by a sum over
quark flavors, so that it gives a significant contribution
to the interference at finite Higgs transverse momentum.

NLO (gg): +

+ +

LO (gg): H LO (qg):

FIG. 1. Representative diagrams for interference between the
Higgs resonance and the continuum in the diphoton channel.
The dashed vertical lines separate the resonant amplitudes
from the continuum ones.

In order to parametrize possible deviations from the
SM in the coupling of the Higgs boson to the massless
vector boson pairs gg and γγ, we adopt the notation of
ref. [22] for the effective Lagrangian,

Leff = −
[αs

8π
cgbgGa,µνG

µν
a +

α

8π
cγbγFµνF

µν
] h

v
, (1)

where bg,γ are defined to absorb all SM contributions, and
cg,γ differ from 1 in the case of new physics. The line-
shape for the Higgs boson can be divided into a pure sig-
nal term and an interference correction, which we write
schematically in the narrow-width approximation (NWA)

as,

dσsig

dMγγ
=

S

(M2
γγ −m2

H)2 +m2
HΓ2

H

, (2)

dσint

dMγγ
=

(M2
γγ −m2

H)R +mHΓHI

(M2
γγ −m2

H)2 +m2
HΓ2

H

. (3)

The signal factor S is proportional to c2gc
2
γ , while the real

and imaginary parts of the interference terms, R and I,
are proportional to cgcγ . We take the resonance mass to
be mH = 125 GeV and the SM value of the width to be
ΓSM
H = 4 MeV [23]. In the NWA, the integral of the cross

section over the resonance is given by πS/(2m2
HΓH) and

πI/(2mH) for signal and interference respectively. An
important feature is that the integrated interference con-
tribution has a different dependence on the Higgs width
and couplings than does the signal, i.e. cgcγ vs. c2gc

2
γ/ΓH .

Hence it could potentially be used to constrain ΓH inde-
pendently of the Higgs couplings.
The theoretical lineshapes (2) and (3) are very narrow,

and strongly broadened by the experimental resolution.
The main effect of the real termR after this broadening is
to shift the apparent mass slightly [5]. Following ref. [5],
we model the experimental resolution by a Gaussian dis-
tribution. Although a definitive study of the apparent
mass shift has to be performed by the experimental col-
laborations, using a complete description of the resolu-
tion and the background model, we estimate it as follows:
For the distribution in a given variable, for example the
invariant mass M , the likelihood of obtaining N events
with M = M1,M2, . . . ,MN is given by,

L =
LN

N !
e−Ñ

N
∏

i=1

dσ̃

dM

∣

∣

∣

∣

M=Mi

, (4)

where L is the integrated luminosity. Variables with
tildes denote the prediction of the “experimental model”,
a pure Gaussian with a variable mass parameter m̃H .
For the true distribution, obtained by convoluting the
sum of eqs. (2) and (3) with a Gaussian of the same
width, σ = 1.7 GeV, we use variables without tildes.
To fit for the shifted mass, we minimize the test statistic
t = −2 lnL with respect to m̃H . We derived the following
equation determining the mass shift ∆mH ≡ m̃H −mH :

0 = δ〈t〉 ∝
∫

dM
dσ̃
dM

− dσ
dM

dσ̃
dM

δ
dσ̃

dM
≈
∫

dM
dσ̃
dM

− dσ
dM

dσ
dM

δ
dσ̃

dM

= δ

[

∫

dM

(

dσ̃
dM

− dσ
dM

)2

2 dσ
dM

]

(5)

where δ ≡ δ/δm̃H . Because dσ
dM

in the denominator
should include the large continuum background, which is
roughly constant throughout the range of consideration,
eq. (5) reduces to a simple least-squares fit. The mass
shift obtained from this fit is stable once we include in-
variant masses ranging out to three times the Gaussian

L.Dixon, Y.Li (2013)

3

width. (In practice we performed a fit varying the height
and width of the Gaussian as well as the mass; however,
the former two quantities are hardly affected by the real
part of the interference.)
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FIG. 2. Diphoton invariant mass Mγγ distribution for pure
signal (top panel) and interference term (bottom panel) after
Gaussian smearing.

The top panel of fig. 2 shows the Gaussian-smeared
diphoton invariant mass distribution for the pure signal
at both LO and NLO in QCD. We use the MSTW2008
NLO PDF set and αs [24] throughout, and set α = 1/137.
Standard acceptance cuts are applied to the photon

transverse momenta, phard/softT,γ > 40/30 GeV, and rapidi-
ties, |ηγ | < 2.5. In addition, events are discarded when a
jet with pT,j > 3 GeV is within ∆Rγj < 0.4 of a photon.
A jet veto is simulated by throwing away events with
pT,j > 20 GeV and ηj < 3. The scale uncertainty bands
are obtained by varying mH/2 < µF , µR < 2mH inde-
pendently. Note that the NLO (gg) channel includes the
contribution from the qg channel where the quark splits
to a gluon; this reduces dependence on the factorization
scale µF . As a result, the scale uncertainty bands mostly
come from varying the renormalization scale µR.

The bottom panel of fig. 2 shows the corresponding
Gaussian-smeared interference contributions. The con-

tribution involving the SM tree amplitude for qg → γγq
is denoted by LO (qg). The destructive interference from
the imaginary part I in eq. (3) shows up at two-loop or-
der in the gluon channel in the zero mass limit of light
quarks [4]. It produces the offset of the NLO (gg) curve
from zero at Mγγ = 125 GeV.
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THE MASS SHIFT

In fig. 3 we plot the dependence of the apparent Higgs
boson mass shift, as a function of the jet veto pT cut.
The mass shift for inclusive production (large pT,veto) is
found to be around 70 MeV at NLO. This is significantly
smaller than the prediction of 120 MeV at LO, mainly
due to the large NLO QCD Higgs production K factor.
The K factor for the SM continuum background is also
sizable due to the same gluon incoming states. But the

3

width. (In practice we performed a fit varying the height
and width of the Gaussian as well as the mass; however,
the former two quantities are hardly affected by the real
part of the interference.)
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FIG. 2. Diphoton invariant mass Mγγ distribution for pure
signal (top panel) and interference term (bottom panel) after
Gaussian smearing.

The top panel of fig. 2 shows the Gaussian-smeared
diphoton invariant mass distribution for the pure signal
at both LO and NLO in QCD. We use the MSTW2008
NLO PDF set and αs [24] throughout, and set α = 1/137.
Standard acceptance cuts are applied to the photon

transverse momenta, phard/softT,γ > 40/30 GeV, and rapidi-
ties, |ηγ | < 2.5. In addition, events are discarded when a
jet with pT,j > 3 GeV is within ∆Rγj < 0.4 of a photon.
A jet veto is simulated by throwing away events with
pT,j > 20 GeV and ηj < 3. The scale uncertainty bands
are obtained by varying mH/2 < µF , µR < 2mH inde-
pendently. Note that the NLO (gg) channel includes the
contribution from the qg channel where the quark splits
to a gluon; this reduces dependence on the factorization
scale µF . As a result, the scale uncertainty bands mostly
come from varying the renormalization scale µR.

The bottom panel of fig. 2 shows the corresponding
Gaussian-smeared interference contributions. The con-

tribution involving the SM tree amplitude for qg → γγq
is denoted by LO (qg). The destructive interference from
the imaginary part I in eq. (3) shows up at two-loop or-
der in the gluon channel in the zero mass limit of light
quarks [4]. It produces the offset of the NLO (gg) curve
from zero at Mγγ = 125 GeV.
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THE MASS SHIFT

In fig. 3 we plot the dependence of the apparent Higgs
boson mass shift, as a function of the jet veto pT cut.
The mass shift for inclusive production (large pT,veto) is
found to be around 70 MeV at NLO. This is significantly
smaller than the prediction of 120 MeV at LO, mainly
due to the large NLO QCD Higgs production K factor.
The K factor for the SM continuum background is also
sizable due to the same gluon incoming states. But the
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3

shift obtained from this fit is stable once we include in-
variant masses ranging out to three times the Gaussian
width.
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The top panel of fig. 2 shows the Gaussian-smeared
diphoton invariant mass distribution for the pure signal
at both LO and NLO in QCD. We use the MSTW2008
NLO PDF set and αs [25] throughout, and set α = 1/137.
Standard acceptance cuts are applied to the photon

transverse momenta, phard/softT,γ > 40/30 GeV, and rapidi-
ties, |ηγ | < 2.5. In addition, events are discarded when a
jet with pT,j > 3 GeV is within ∆Rγj < 0.4 of a photon.
A jet veto is simulated by throwing away events with
pT,j > 20 GeV and ηj < 3. The scale uncertainty bands
are obtained by varying mH/2 < µF , µR < 2mH inde-
pendently. Note that the NLO (gg) channel includes the
contribution from the qg channel where the quark splits
to a gluon; this reduces dependence on the factorization
scale µF . As a result, the scale uncertainty bands mostly
come from varying the renormalization scale µR.

The bottom panel of fig. 2 shows the corresponding
Gaussian-smeared interference contributions. The con-
tribution involving the SM tree amplitude for qg → γγq

is denoted by LO (qg). The destructive interference from
the imaginary part I in eq. (3) shows up at two-loop or-
der in the gluon channel in the zero mass limit of light
quarks [4]. It produces the offset of the NLO (gg) curve
from zero at Mγγ = 125 GeV.
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MASS SHIFT AND WIDTH DEPENDENCE

In fig. 3 we plot the apparent Higgs boson mass shift
versus the jet veto pT cut. The mass shift for inclu-
sive production (large pT,veto) is around 70 MeV at NLO,
significantly smaller than the LO prediction of 120 MeV.
The reduction is mainly due to the large NLO QCD Higgs
production K factor. The K factor for the SM contin-
uum background is also sizable due to the same gluon
incoming states. But the Higgs signal is enhanced addi-
tionally by the virtual correction to the top quark loop,

3

shift obtained from this fit is stable once we include in-
variant masses ranging out to three times the Gaussian
width.
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The top panel of fig. 2 shows the Gaussian-smeared
diphoton invariant mass distribution for the pure signal
at both LO and NLO in QCD. We use the MSTW2008
NLO PDF set and αs [25] throughout, and set α = 1/137.
Standard acceptance cuts are applied to the photon

transverse momenta, phard/softT,γ > 40/30 GeV, and rapidi-
ties, |ηγ | < 2.5. In addition, events are discarded when a
jet with pT,j > 3 GeV is within ∆Rγj < 0.4 of a photon.
A jet veto is simulated by throwing away events with
pT,j > 20 GeV and ηj < 3. The scale uncertainty bands
are obtained by varying mH/2 < µF , µR < 2mH inde-
pendently. Note that the NLO (gg) channel includes the
contribution from the qg channel where the quark splits
to a gluon; this reduces dependence on the factorization
scale µF . As a result, the scale uncertainty bands mostly
come from varying the renormalization scale µR.

The bottom panel of fig. 2 shows the corresponding
Gaussian-smeared interference contributions. The con-
tribution involving the SM tree amplitude for qg → γγq

is denoted by LO (qg). The destructive interference from
the imaginary part I in eq. (3) shows up at two-loop or-
der in the gluon channel in the zero mass limit of light
quarks [4]. It produces the offset of the NLO (gg) curve
from zero at Mγγ = 125 GeV.
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MASS SHIFT AND WIDTH DEPENDENCE

In fig. 3 we plot the apparent Higgs boson mass shift
versus the jet veto pT cut. The mass shift for inclu-
sive production (large pT,veto) is around 70 MeV at NLO,
significantly smaller than the LO prediction of 120 MeV.
The reduction is mainly due to the large NLO QCD Higgs
production K factor. The K factor for the SM contin-
uum background is also sizable due to the same gluon
incoming states. But the Higgs signal is enhanced addi-
tionally by the virtual correction to the top quark loop,

4

which is missing in the continuum background [17]. The
K factor of the interference is between that of the signal
and that of the background. This is reasonable but not
inevitable, given that only a restricted set of helicity con-
figurations enters the interference. For moderate jet veto
cuts, the mass shift depends very weakly on pT due to
the smallness of the real radiation contribution. The ex-
tra interference with quark-gluon scattering at tree level
reduces the mass shift a bit more, as shown in the curve
labeled NLO (gg) + LO (qg) in fig. 3. At small veto pT ,
the results become unreliable: large logarithms spoil the
convergence of perturbation theory, and resummation is
required, which is beyond the scope of this letter.
In fig. 4 we remove the jet veto cut, and study how

the mass shift depends on a lower cut on the Higgs
transverse momentum, pT > pT,H . This strong depen-
dence could potentially be observed experimentally, com-
pletely within the γγ channel, without having to compare
against a mass measurement using the only other high-
precision channel, ZZ∗. (The mass shift for ZZ∗ is much
smaller than for γγ, as can be inferred from fig. 17 of
ref. [26], because H → ZZ∗ is a tree-level decay, while
the continuum background gg → ZZ∗ arises at one loop,
the same order as gg → γγ.) Using only γγ events might
lead to reduced experimental systematics associated with
the absolute photon energy scale. The pT,H dependence
of the mass shift was first studied in ref. [7]. The dotted
red band includes, in addition, the continuum process
qg → γγq at one loop via a light quark loop, a part of
the full O(α3

s) correction. This new contribution par-
tially cancels against the tree-level qg channel, leading to
a larger negative Higgs mass shift. The scale variation
of the mass shift at finite pT,H is very small, because it
is essentially a LO analysis; the scale variation largely
cancels in the ratio between interference and signal that
enters the mass shift.
Due to large logarithms, the small pT,H portion of fig. 4

is less reliable than the large pT,H portion. In using the
pT,H dependence of the mass shift to constrain the Higgs
width, the theoretical accuracy will benefit from using
a wide first bin in pT . One could take the difference
between apparent Higgs masses for γγ events in two bins,
those having pT above and below, say, 40 GeV.
Finally, we allow the Higgs width to differ from the

SM prediction. The Higgs couplings to gluons, photons,
and other observed final states should then change ac-
cordingly, in order to maintain roughly SM signal yields,
as is in reasonable agreement with current LHC measure-
ments. In particular, for the product cgcγ = cgγ entering
the dominant gluon fusion contribution to the γγ yield,
we solve the following equation,

c2gγS

mHΓH
+ cgγI =

(

S

mHΓSM
H

+ I

)

µγγ , (6)

where µγγ denotes the ratio of the experimental sig-
nal strength in gg → H → γγ to the SM prediction
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FIG. 5. Higgs mass shift as a function of the Higgs width.
The coupling cgγ has been adjusted to maintain a constant
signal strength, in this case µγγ = 1.

(σ/σSM). For Higgs widths much less than 1.7 GeV,
the mass shift is directly proportional to cgγ/µγγ. On
the right-hand side of eq. (6), the two-loop imaginary
interference term I is negligible; the fractional destruc-
tive interference in the SM is mHΓSM

H I/S ≈ −1.6%. For
ΓH ≤ 100ΓSM

H = 400 MeV, it is a good approximation
to also neglect I on the left-hand side. Then the solu-

tion for cgγ is simply cgγ =
√

µγγΓH/ΓSM
H . Fig. 5 plots

the mass shift, assuming µγγ = 1. It is indeed propor-
tional to

√
ΓH for the widths shown in the figure, up to

small corrections. If new physics somehow reverses the
sign of the Higgs diphoton amplitude, the interference is
constructive and the mass shift is positive.
In principle, one could apply the existing measure-

ments of the Higgs mass in the ZZ∗ and γγ channels
in order to get a first limit on the Higgs width from this
method. However, there are a few reasons why we do
not do this here. First of all, the current ATLAS [27]
and CMS [28] measurements are not very compatible,

mγγ
H −mZZ

H = +2.3+0.6
−0.7 ± 0.6 GeV (ATLAS)

= −0.4± 0.7± 0.6 GeV (CMS), (7)

where the first error is statistical and the second is sys-
tematic. Second, the experimental resolution differs from
bin to bin and has non-Gaussian tails. Third, the precise
background model can influence the apparent mass shift.
What we can say is that taking ΓH = 200ΓSM

H = 800 MeV
and neglecting the latter factors would result in a mass
shift of order 1 GeV, in the same range as eq. (7). This is
a considerably smaller width than the first direct bound
from CMS, ΓH < 6.9 GeV at 95% confidence level [29].
A measurement of ∆mH using two pT,H bins in the

γγ channel is currently limited by statistics. At the high
luminosity LHC, with 3 ab−1 of integrated luminosity at
14 TeV, the statistical error on ∆mH will drop to 50 MeV
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Problem: signal/background computed to higher order 
than interference

signal to NNLO
background NLO
Interference LO

even “order counting” not trivial

Caution, Born for interference means         which is formally NNLO for background 
and LO for signal             
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 How to include interference 
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K - factor?
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Additive

12.1.2 Interference signal - background
In the current experimental analysis there are additional sources of uncertainty, e.g. background and
Higgs interference effects [489–493]. As a matter of fact, this interference is partly available and should
not be included as a theoretical uncertainty; for a discussion and results we refer to Refs. [494–496].

Here we will examine the channel gg → ZZ and discuss the associated THU. The background
(continuum gg → ZZ) and the interference are only known at leading order (LO, one-loop) [497]. Here
we face two problems, a missing NLO calculation of the background (two-loop) and the NLO or NNLO
signal at the amplitude level, without which there is no way to improve upon the present LO calculation.

A potential worry, already addressed in Ref. [494], is: should we simply use the full LO calcu-
lation or should we try to effectively include the large (factor two) K -factor to have effective NNLO
observables? There are different opinions since interference effects may be as large or larger than NNLO
corrections to the signal. Therefore, it is important to quantify both effects. Let us consider any distribu-
tion D, i.e.

D =
dσ

dx
x = MZZ or x = pZ

⊥ etc. (209)

where MZZ is the invariant mass of the ZZ -pair and pZ
⊥ is the transverse momentum. We introduce the

following options, see Ref. [91] (S,B and I are shorthands for signal, background and interference):

– additive where one computes

dσNNLO
eff

dx
=

dσNNLO

dx
(S) +

dσLO

dx
(I) +

dσLO

dx
(B) (210)

– multiplicative where one computes

dσNNLO
eff

dx
= KD

[dσLO

dx
(S) +

dσLO

dx
(I)
]
+

dσLO

dx
(B), KD =

dσNNLO

dx (S)
dσLO

dx (S)
, (211)

where KD is the differential K -factor for the distribution. Note that KD accounts for both QCD
and EW higher order effects in the production and in the decay.

– intermediate It is convenient to define

KD = Kgg
D + Krest

D , Kgg
D =

dσNNLO

dx

(
gg → H(g)→ ZZ(g)

)

dσLO

dx

(
gg → H→ ZZ

) (212)

dσNNLO
eff

dx
= KD

dσLO

dx
(S) +

(
Kgg

D

)1/2 dσLO

dx
(I) +

dσLO

dx
(B) (213)

Our recipe for estimating the theoretical uncertainty in the effective NNLO distribution is as follows: the
intermediate option gives the central value, while the band between the multiplicative and the additive
options gives the uncertainty. Note that the difference between the intermediate option and the median
of the band is always small if not far away from the peak where, in any case, any option becomes
questionable.

For an inclusive quantity the effect of the interference, with or without the NNLO K -factor for
the signal, is almost negligible. For distributions this is radically different; referring to the ZZ invariant
mass distribution we can say that, close toMZZ = µH, the uncertainty is small but becomes large in the
rest of the search window [µH − γH , µH + γH]. The effect of the LO interference, w.r.t. LO S + B,
reaches a maximum of +16% before the peak (e.g. at µH = 700 GeV) while our estimate of the scaled
interference (always w.r.t. LO S + B) is 86+7−3% in the same region, showing that NNLO signal
effects are not negligible49.

49Complete set of results, including results for the THU discussed in Sect. 12.1.1, and a code for computing the SM Higgs
complex pole can be found at [498].
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Figure 2: The ZZ invariant mass distribution in the OFFP-scheme of Ref. [5] with running QCD scales
for µH = 600 GeV . B = 4.36 · 10−3 represents the BR for both Z bosons to decay into e or µ. The black
line is the full LO gg → ZZ result, the brown line gives the multiplicative option of Eq.(8), the red line
is the additive option of Eq.(7) while the blue line is the intermediate option of Eq.(13). The cyan line
gives signal plus background (LO) neglecting interference.
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Signal-background interference effects for gg → H → W+W− beyond leading order
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We study the effect of QCD corrections to the gg → H → W+W− signal-background interference
at the LHC for a heavy Higgs boson. We construct a soft-collinear approximation to the NLO and
NNLO corrections for the background process, which is exactly known only at LO. We estimate its
accuracy by constructing and comparing the same approximation to the exact result for the signal
process, which is known up to NNLO, and we conclude that we can describe the signal-background
interference to better than O(10%) accuracy. We show that our result implies that, in practice, a
fairly good approximation to higher-order QCD corrections to the interference may also be obtained
by rescaling the known LO result by a K-factor computed using the signal process.

I. INTRODUCTION

Search for the Higgs boson at the LHC has been a
remarkable success so far. Indeed, both the ATLAS
and CMS collaborations have announced the discovery
of a new boson, whose properties are compatible with
that of the Standard Model Higgs particle, with mass
mh ≈ 125 GeV. Both collaborations also excluded ad-
ditional Higgs-like bosons in a large mass range mh !
600 GeV [1, 2]. The interpretation of the excesses ob-
served in various production and decay channels, as orig-
inating from a single spin-zero particle, was made possi-
ble by detailed theoretical predictions for the Higgs boson
production and decay rates, see Ref. [3] for an overview.

However, these experimental results do not imply that
there are no additional Higgs-like bosons with masses
600 GeV ! mh ! 1 TeV. In fact, the search for such
particles is well underway [4]. In the Standard Model, as
the Higgs boson becomes heavier, its total decay width
grows rapidly Γh ∼ m3

h thanks to contributions of the
longitudinal electroweak bosons: for mh ∼ 600 GeV, the
width is close to 120 GeV. Since the finite-width effects
change the distribution of the invariant masses of the de-
cay products of the Higgs boson, their understanding is
important for developing experimental search strategies.

There are two finite width effects that influence the
Higgs boson lineshape. First, the Higgs propagator must
assume the Breit-Wigner form in the resonant regime
1/(s−m2

h) → 1/(s−m2
h+ imhΓh). While this modifica-

tion is literally correct for a light (and therefore narrow)
Higgs boson, for a heavy Higgs, it must be modified; the
proper way to do this was subject to a significant discus-
sion in recent literature, see Refs. [5, 6] and references
therein. The second effect is the interference with the
background. Note that, in principle, the two effects are
not completely independent of each other since modifica-
tions of the Breit-Wigner form for the propagator change
the very definition of the “background” in the resonance

region, but discussion of these subtleties is beyond the
scope of this paper.
Our goal is to consider the interference of the signal

process gg → H → W+W− and the background process
gg → W+W− for a heavy Higgs boson1. This interfer-
ence was first computed at leading order in Refs. [7, 8].
Although the gg → W+W− amplitude appears at one
loop, it is enhanced at the LHC by the large gluon flux,
making the interference effects non-negligible. An obvi-
ous shortcoming of Refs. [7, 8] is that their analysis of the
interference is performed at leading order in perturbative
QCD as far as the Higgs boson signal is concerned. This
is unfortunate since, for the Higgs boson signal, higher
order QCD corrections are extremely important, as they
enhance the total rate by more than a factor two [9–11].
It is therefore interesting to explore their impact on the
signal-background interference.
Such an endeavor, however, is highly non-trivial. In-

deed, a full NLO and NNLO QCD calculation of back-
ground amplitudes requires evaluation of two- and three-
loop 2 → 2 Feynman diagrams which is beyond the reach
of the current computational technology. On the other
hand, it is well-known [12] that for the Higgs boson sig-
nal a large fraction of radiative corrections is captured
by the soft-collinear approximation. Since this approxi-
mation should be particularly suitable for the description
of a heavy Higgs boson, we construct a soft-collinear ap-
proximation for the entire gg → W+W− amplitude that
includes both the signal and the background and study
the impact of these corrections on the interference.
This paper is organized as follows. In Section II we

sketch the construction of the soft-collinear approxima-
tion. In Section III we present numerical results. We
conclude in Section IV.

1 For the light mh = 125 GeV Higgs boson the interference is
negligible if proper signal-selection criteria are applied [7].

•Use soft-virtual approximation at NNLO (assuming two-loop 
Higgs coefficient for background) 

in the soft limit: up to NLO
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II. SETUP

We begin by describing the setup of our computation.
We are interested in higher order QCD corrections to
the interference between the signal process gg → H →
W+W− and the pure QCD background gg → W+W−.
We compute these corrections in the soft gluon approx-
imation, which is known to describe the full NLO and
NNLO Higgs cross section to very good accuracy. We
will numerically assess the accuracy of our approxima-
tion in Sec. III by comparing it with known NLO and
NNLO results for the signal process.
The cross section for the production of a W+W− pair

with invariant mass Q2, fully differential in the kinemat-
ics variables of the two W ’s, is given by

dσ
(

τ, y, {θi}, Q2
)

=

∫

dx1dx2dz fg(x1, µF)fg(x2, µF)

× δ(τ − x1x2z) dσ̂

(

z, ŷ, {θ̂i},αs,
Q2

µ2
R

,
Q2

µ2
F

)

(1)

where fg is the gluon distribution, and dσ̂ is the differ-
ential partonic cross section for the process

g(p1) + g(p2) → W+(pW+) +W−(pW−) +X, (2)

with (pW+ + pW−)2 = Q2; µF and µR are the factoriza-
tion and the renormalization scales, αs = αs(µR) is the
strong coupling constant at the scale µR, τ ≡ Q2/s. We
denote by y the rapidity of the W pair, and by {θi} a
generic set of variables describing the kinematics of the
decay products of the W+W− system in the hadronic
center-of-mass frame; they are related to the correspond-
ing variables ŷ, {θ̂i} in the partonic center-of-mass frames
by a boost with rapidity ycm = 1

2 ln
x1

x2
, and thus the θ̂i

are functions of {θi}, x1, x2 and z.
In the soft (z → 1) limit, the rapidity distribution

of the W+W− pair is entirely determined by the inclu-
sive cross section [13–15], up to corrections suppressed
by powers of (1 − z), and the partonic cross section in
Eq. (1) takes the form

dσ̂

(

z, ŷ, {θ̂i},αs,
Q2

µ2
R

,
Q2

µ2
F

)

= dσ̂(0)({θ̂i},αs)z G

(

z,αs,
Q2

µ2
R

,
Q2

µ2
F

)

, (3)

where dσ̂(0)({θ̂i},αs)δ(1−z) is the leading order partonic
cross section, and G

(

z,αs, Q2/µ2
R
, Q2/µ2

F

)

is the inclusive
coefficient function computed in the soft limit, i.e. (up
to the explicit z factor) the inclusive partonic cross sec-
tion normalized to the leading order in such a way that
G(z,αs) = δ(1 − z) +O(αs).
In the same limit, the momenta of the W bosons in

the partonic center-of-mass frame are given by

p̂W± =

√

Q2

2

(

1,±β sin θ̂, 0,±β cos θ̂
)

(4)

with θ̂ the W boson scattering angle in the partonic
center-of-mass frame, and β =

√

1− 4m2
W /Q2 (for sim-

plicity, we have assumed that the W -bosons are on-shell,
but we will not make this assumption in the sequel). The
kinematics of the process in the soft limit is therefore the
same as the leading order kinematics, except that the
total energy squared is rescaled by a factor z.
The boost that relates the partonic and hadronic

center-of-mass frames is fixed by taking for the momenta
of the colliding gluons either p1 = zx1P1, p2 = x2P2

or p1 = x1P1, p2 = zx2P2, where P1,2 are four-
momenta of the colliding protons [14]. Alternatively,
one may also take as momenta of the colliding gluons
p1 =

√
zx1P1, p2 =

√
zx2P2 [13]. These two choices

coincide in the soft limit up to terms suppressed by two
powers of (1−z) [15] and, in fact, give very similar results
for observables considered in this paper. We will make
the first choice at NLO, where it is actually exact, while
at NNLO we will take the average of the results obtained
with either choice cases.
We now turn to the explicit form of the coefficient func-

tion G(z,αs, Q2/µ2
R
, Q2/µ2

F
), which contains the core of

our soft-collinear approximation. We first sketch the im-
portant features of the soft gluon approximation and its
modifications by focusing on the next-to-leading order.
Further details on this, including required modifications
at NNLO, can be found in Refs. [16, 17].
Working to NLO accuracy and in the soft limit and

neglecting all non-singular terms, we write the function G
as (we suppress explicit scale dependence for simplicity)

G(z,αs) = δ(1− z)

+
αs

2π

[

8CAD1(z) +

(

2π2

3
CA + c1

)

δ(1 − z)

]

(5)

where Di(z) =
[

lni(1− z)/(1− z)
]

+
and c1 is the ratio

of the infrared regulated higher-order virtual contribu-
tions to the cross section and the leading order cross
section for gg → W+W−, see [16] for its proper defi-
nition.2 For our purposes, the important feature of this
formula is that non universal NLO corrections for the
process gg → WW only enter through the coefficient c1.
This is because only emissions from external gluon lines
in each diagram contribute to the amplitude in the soft
limit. For the signal-only process gg → H → WW , c1
is known both in the infinite mt [18, 19] approximation
and for finite mt [20]. The determination of c1 for the
interference would require the evaluation of complicated
gg → W+W− amplitudes which is beyond existing tech-
nical capabilities.
However, we note that the value of c1 can be ob-

tained without any computation in the kinematic limit

2 Because we consider here the 2 → 2 scattering process, c1 does
depend on the scattering angle. We assume that this depen-
dence is mild and systematically ignore it in this paper. Partial
justification for this assumption is given below.

depends on the 1 loop corrections (+ soft)
Known up to 2 loops for the signal but not for the background

 Enhanced terms: emission of soft gluons

Bulk of the result, universal
Compute as Stefano discussed this morning

Assign uncertainty to the approximation (reg. terms)

Process-dependent

�̂ = �0 + �0
↵s

2⇡

 
8CA


ln 1� z

1� z

�

+

+ c1�(1� z) + reg

!
+ h.o.

F.Caola

31



•QCD corrections enhance interference, similar to 
enhancement for signal (multiplicative approach) 4

√
s = 8 TeV

√
s = 13 TeV

LO NLO NNLO LO NLO NNLO

σH 0.909 1.99(5) 2.6(1) 3.77 8.1(2) 10.3(5)

σHi 1.188 2.6(1) 3.4(3) 4.56 9.7(4) 12.5(9)

σH/σLO
H — 2.19(5) 2.8(1) — 2.14(5) 2.7(1)

σHi/σLO
Hi — 2.2(1) 2.9(2) — 2.13(9) 2.8(2)

TABLE II: Results (in fb) for the Higgs-only cross sec-
tion σH and the signal+interference cross section σHi, with
mh = 600 GeV. No cuts on the final state applied. The errors
represent the uncertainty on the soft-collinear approximation
and on the unknown background coefficients, estimated as
explained in the text.

in which only powers of lnN and constant terms are kept.
Both approximations reproduce the exact result to

O(3%) or better in all configurations. At
√
s = 8 TeV,

where the soft-collinear terms are expected to domi-
nate [27], our soft-collinear approximation reproduces the
exact result to better thanO(2%), while at higher energy,√
s = 13 TeV, the agreement deteriorates slightly, be-

cause non-soft terms become relatively more important.
However, whereas at NNLO the soft-collinear approxi-
mation is more accurate than the N -soft, at NLO the
opposite happens. This occurs because numerically the
N -soft approximation happens to be closer to the exact
result than our improved soft-collinear one in the small-
N limit. Since the small-N limit is beyond the region of
applicability for both of these approximations, we con-
sider this feature to be accidental but note that one can
improve both of these approximations by matching them
to the correct small-N limit [29]. In what follows we use
the soft-collinear approximation as the default and take
the spread of values between the soft-collinear and the
N -soft approximations as an estimate of the uncertainty
due to deficiencies of these approximations in the small-
N region.
We have also checked the reliability of our approxi-

mation for differential distributions when decays are in-
cluded. Indeed, at NLO accuracy, we find that our ap-
proximate results for the lepton pt and rapidity distribu-
tions and for the lepton invariant mass mll distribution
are in good agreement with the full result obtained from
MCFM [28].
Having assessed the accuracy of our approximation, we

can now apply it to study higher order corrections to the
signal-background interference. As explained in the pre-
vious Section, we need the exact leading order prediction
for the interference. We extract it from Ref. [7], as im-
plemented in MCFM. For the Higgs boson signal, we use
the exact expression obtained as discussed above. For the
background, we include the contributions of all the three
quark generations, see [7] for details. We also need the
infrared-regulated virtual cross section c1, and the analo-
gous NNLO coefficient c2. As already mentioned, we take
the signal values for these coefficients c̄1,2 as a reference,

√
s = 8 TeV

√
s = 13 TeV

LO NLO NNLO LO NLO NNLO

σH 0.379 0.83(2) 1.07(5) 1.55 3.29(8) 4.2(2)

σHi 0.427 0.93(3) 1.20(7) 1.66 3.5(1) 4.5(2)

σH/σLO
H — 2.19(5) 2.8(1) — 2.13(5) 2.7(1)

σHi/σLO
Hi — 2.19(7) 2.8(2) — 2.12(6) 2.7(1)

TABLE III: Same as Table II, but with Higgs-based cuts on
the final state. See text for details.

and study the impact of virtual corrections on the inter-
ference by varying c1,2 in the range −5c̄1,2 < c1,2 < 5c̄1,2.
We first discuss the impact of QCD corrections on

the inclusive cross section. Following Ref. [7], we
compare the signal-only cross section σH with the
background-subtracted cross section σHi ≡ σgg→WW −
σgg→WW |bg only, which includes interference effects. We
report our results for the signal only cross section σH and
the signal+interference cross section σHi for c1,2 = c̄1,2
in Table II. To facilitate the comparison with the results
of Ref. [7], LO results are computed using NLO PDFs.
For the signal, the quoted error is obtained by comparing
our soft-collinear approximation to the N -soft approxi-
mation. For the background, we also consider the ad-
ditional uncertainty coming from independently varying
the c1,2 coefficients for the first two and the third gener-
ation in the −5c̄1,2 < c1,2 < 5c̄1,2 range. This leads to an
uncertainty of about 6% on the interference predictions
which, combined with the uncertainty of the soft approx-
imation, gives an overall uncertainty of about 8− 9% at
NNLO, see Table II. This uncertainty is of same order
of magnitude as the current uncertainties in the Higgs
production rate σNNLO related to higher-order QCD ra-
diative corrections, PDF and αs uncertainties etc, see [3].
We conclude that our approach to estimate higher order
corrections to the signal-background interference in the
Higgs production offers a robust framework and adequate
phenomenological precision.
We turn to a discussion of the impact of the interfer-

ence in a more realistic setup, by imposing selection cuts
on leptons and neutrinos. Apart from the standard ac-
ceptance cuts on the lepton rapidity ηl, lepton transverse
momentum pt and missing energy /Et,

|ηl| < 2.5, pt > 25 GeV, /Et > 20 GeV (7)

we impose additional signal-enhancement cuts, linearly
extrapolating numerical values given in Ref. [30]. To this
end, we require at least one lepton with pt > 130 GeV,
and impose the following cuts on the lepton invariant
mass mll, azimuthal separation ∆φll of the two leptons
and transverse mass of the W+W− pair m⊥:

mll < 500 GeV, ∆φll < 3.05,

120 GeV < m⊥ < mh. (8)

We note that we have validated the soft-collinear ap-
proximation at NLO QCD against MCFM for the differ-
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mh = 600 GeV. No cuts on the final state applied. The errors
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and on the unknown background coefficients, estimated as
explained in the text.

in which only powers of lnN and constant terms are kept.
Both approximations reproduce the exact result to

O(3%) or better in all configurations. At
√
s = 8 TeV,

where the soft-collinear terms are expected to domi-
nate [27], our soft-collinear approximation reproduces the
exact result to better thanO(2%), while at higher energy,√
s = 13 TeV, the agreement deteriorates slightly, be-

cause non-soft terms become relatively more important.
However, whereas at NNLO the soft-collinear approxi-
mation is more accurate than the N -soft, at NLO the
opposite happens. This occurs because numerically the
N -soft approximation happens to be closer to the exact
result than our improved soft-collinear one in the small-
N limit. Since the small-N limit is beyond the region of
applicability for both of these approximations, we con-
sider this feature to be accidental but note that one can
improve both of these approximations by matching them
to the correct small-N limit [29]. In what follows we use
the soft-collinear approximation as the default and take
the spread of values between the soft-collinear and the
N -soft approximations as an estimate of the uncertainty
due to deficiencies of these approximations in the small-
N region.
We have also checked the reliability of our approxi-

mation for differential distributions when decays are in-
cluded. Indeed, at NLO accuracy, we find that our ap-
proximate results for the lepton pt and rapidity distribu-
tions and for the lepton invariant mass mll distribution
are in good agreement with the full result obtained from
MCFM [28].
Having assessed the accuracy of our approximation, we

can now apply it to study higher order corrections to the
signal-background interference. As explained in the pre-
vious Section, we need the exact leading order prediction
for the interference. We extract it from Ref. [7], as im-
plemented in MCFM. For the Higgs boson signal, we use
the exact expression obtained as discussed above. For the
background, we include the contributions of all the three
quark generations, see [7] for details. We also need the
infrared-regulated virtual cross section c1, and the analo-
gous NNLO coefficient c2. As already mentioned, we take
the signal values for these coefficients c̄1,2 as a reference,
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TABLE III: Same as Table II, but with Higgs-based cuts on
the final state. See text for details.

and study the impact of virtual corrections on the inter-
ference by varying c1,2 in the range −5c̄1,2 < c1,2 < 5c̄1,2.
We first discuss the impact of QCD corrections on

the inclusive cross section. Following Ref. [7], we
compare the signal-only cross section σH with the
background-subtracted cross section σHi ≡ σgg→WW −
σgg→WW |bg only, which includes interference effects. We
report our results for the signal only cross section σH and
the signal+interference cross section σHi for c1,2 = c̄1,2
in Table II. To facilitate the comparison with the results
of Ref. [7], LO results are computed using NLO PDFs.
For the signal, the quoted error is obtained by comparing
our soft-collinear approximation to the N -soft approxi-
mation. For the background, we also consider the ad-
ditional uncertainty coming from independently varying
the c1,2 coefficients for the first two and the third gener-
ation in the −5c̄1,2 < c1,2 < 5c̄1,2 range. This leads to an
uncertainty of about 6% on the interference predictions
which, combined with the uncertainty of the soft approx-
imation, gives an overall uncertainty of about 8− 9% at
NNLO, see Table II. This uncertainty is of same order
of magnitude as the current uncertainties in the Higgs
production rate σNNLO related to higher-order QCD ra-
diative corrections, PDF and αs uncertainties etc, see [3].
We conclude that our approach to estimate higher order
corrections to the signal-background interference in the
Higgs production offers a robust framework and adequate
phenomenological precision.
We turn to a discussion of the impact of the interfer-

ence in a more realistic setup, by imposing selection cuts
on leptons and neutrinos. Apart from the standard ac-
ceptance cuts on the lepton rapidity ηl, lepton transverse
momentum pt and missing energy /Et,

|ηl| < 2.5, pt > 25 GeV, /Et > 20 GeV (7)

we impose additional signal-enhancement cuts, linearly
extrapolating numerical values given in Ref. [30]. To this
end, we require at least one lepton with pt > 130 GeV,
and impose the following cuts on the lepton invariant
mass mll, azimuthal separation ∆φll of the two leptons
and transverse mass of the W+W− pair m⊥:

mll < 500 GeV, ∆φll < 3.05,

120 GeV < m⊥ < mh. (8)

We note that we have validated the soft-collinear ap-
proximation at NLO QCD against MCFM for the differ-

Ksignal ⇠ Kinterf

•in the large mass limit HH very similar to H production

•almost identical effective Lagrangian
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Higgs pair production at NNLO
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Abstract

We compute the next-to-next-to-leading order (NNLO) QCD corrections for Standard Model Higgs boson
pair production inclusive cross section at hadron colliders, within the large top-mass approximation. We
provide numerical results for the LHC, finding that the corrections are large, resulting in an increase of
O(20%) with respect to the NLO result at c.m. energy

√
sH = 14TeV. We observe a substantial reduction

in the scale dependence, with overlap between the current and previous order prediction. All our results
are normalized using the full top and bottom-mass dependence at leading order. We also provide analytical
expressions for the K-factors as a function of sH .

I. INTRODUCTION

The recent discovery of a new boson [1, 2], so far com-
patible with the long sought Standard Model (SM) Higgs
boson [3], at the Large Hadron Collider (LHC) opens a
new stage in the task of understanding the mechanism of
electroweak symmetry breaking. In order to determine
the connection between this phenomenon and the new
particle, it is crucial to measure its couplings to gauge
bosons, fermions and its self-interactions. In particular,
the knowledge of the Higgs self-couplings is the only way
to reconstruct the scalar potential.
Higgs trilinear coupling can be studied via Higgs pair

production. Recently, several papers have analysed the
possibility of measuring this process at the LHC [4–12].
In general, it has been shown that despite the smallness of
the signal and the large background its measurement can
be achieved at a luminosity upgraded LHC. For example,
for bb̄γγ and bb̄τ+τ− final states, after the application
of proper cuts, the significances obtained are ∼ 16 and
∼ 9 respectively, for a c.m. energy of 14TeV and an
integrated luminosity of 3000 fb−1 [7]. These are so far
the most promising final states for the Higgs trilinear
coupling analysis. The sensitivity of these channels can
be further improved by the application of jet substructure
techniques, as it was shown in Refs. [5, 6, 12].
The SM Higgs pair production at hadron colliders is

dominated by the gluon fusion mechanism mediated by
a heavy-quark loop. At leading order (LO) in QCD per-
turbation theory this process can occur either through a
box gg → HH or a triangle gg → H∗ → HH diagram,
of which only the latter is sensitive to the Higgs trilin-
ear coupling. This cross section has been calculated in

∗ deflo@df.uba.ar
† jmazzi@df.uba.ar

Refs. [13–15]. The QCD next-to-leading order (NLO)
corrections, within the large top-mass (Mt) approxima-
tion, have been computed in Ref. [16], finding an inclu-
sive K-factor close to 2. The size of this correction makes
essential to reach higher orders to be able to provide ac-
curate theoretical predictions.
Recently, the two-loop corrections were calculated by

us in Ref. [17], again in the large top-mass limit, and the
NNLO cross section was evaluated within the soft-virtual
approximation, following the results of Ref. [18]. We
found an increase close to 23% with respect to the NLO
result. On the other hand, the finite top-mass effects were
analysed at NLO in Ref. [19], finding that the accuracy
of the NLO prediction is dramatically improved if the
exact leading order cross section is used to normalize the
results, with a precision of O(10%).
In this article we present the full next-to-next-to-

leading order (NNLO) corrections for the inclusive cross
section in the large top-mass limit. We also provide nu-
merical predictions for the LHC, using the exact leading
order result to normalize the partonic cross section.

II. RESULTS

Within the large top-mass approximation, the effective
single and double-Higgs coupling to gluons is given by the
following Lagrangian

Leff = −
1

4
GµνG

µν

(

CH
H

v
− CHH

H2

v2

)

, (1)

where Gµν stands for the gluonic field strength tensor
and v % 246GeV is the Higgs vacuum expectation value.
While the O(α3

S) of the CH expansion is known [20, 21],
the QCD corrections of CHH are only known up to O(α2

S)
[22]. Up to that order, both expansions yield the same
result. Even when this approximation is not reliable at
LO, it is a very accurate mechanism for the computation

•use for background same “virtual coefficient” from signal
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TABLE II: Results (in fb) for the Higgs-only cross sec-
tion σH and the signal+interference cross section σHi, with
mh = 600 GeV. No cuts on the final state applied. The errors
represent the uncertainty on the soft-collinear approximation
and on the unknown background coefficients, estimated as
explained in the text.

in which only powers of lnN and constant terms are kept.
Both approximations reproduce the exact result to

O(3%) or better in all configurations. At
√
s = 8 TeV,

where the soft-collinear terms are expected to domi-
nate [27], our soft-collinear approximation reproduces the
exact result to better thanO(2%), while at higher energy,√
s = 13 TeV, the agreement deteriorates slightly, be-

cause non-soft terms become relatively more important.
However, whereas at NNLO the soft-collinear approxi-
mation is more accurate than the N -soft, at NLO the
opposite happens. This occurs because numerically the
N -soft approximation happens to be closer to the exact
result than our improved soft-collinear one in the small-
N limit. Since the small-N limit is beyond the region of
applicability for both of these approximations, we con-
sider this feature to be accidental but note that one can
improve both of these approximations by matching them
to the correct small-N limit [29]. In what follows we use
the soft-collinear approximation as the default and take
the spread of values between the soft-collinear and the
N -soft approximations as an estimate of the uncertainty
due to deficiencies of these approximations in the small-
N region.
We have also checked the reliability of our approxi-

mation for differential distributions when decays are in-
cluded. Indeed, at NLO accuracy, we find that our ap-
proximate results for the lepton pt and rapidity distribu-
tions and for the lepton invariant mass mll distribution
are in good agreement with the full result obtained from
MCFM [28].
Having assessed the accuracy of our approximation, we

can now apply it to study higher order corrections to the
signal-background interference. As explained in the pre-
vious Section, we need the exact leading order prediction
for the interference. We extract it from Ref. [7], as im-
plemented in MCFM. For the Higgs boson signal, we use
the exact expression obtained as discussed above. For the
background, we include the contributions of all the three
quark generations, see [7] for details. We also need the
infrared-regulated virtual cross section c1, and the analo-
gous NNLO coefficient c2. As already mentioned, we take
the signal values for these coefficients c̄1,2 as a reference,

√
s = 8 TeV

√
s = 13 TeV

LO NLO NNLO LO NLO NNLO

σH 0.379 0.83(2) 1.07(5) 1.55 3.29(8) 4.2(2)

σHi 0.427 0.93(3) 1.20(7) 1.66 3.5(1) 4.5(2)

σH/σLO
H — 2.19(5) 2.8(1) — 2.13(5) 2.7(1)

σHi/σLO
Hi — 2.19(7) 2.8(2) — 2.12(6) 2.7(1)

TABLE III: Same as Table II, but with Higgs-based cuts on
the final state. See text for details.

and study the impact of virtual corrections on the inter-
ference by varying c1,2 in the range −5c̄1,2 < c1,2 < 5c̄1,2.
We first discuss the impact of QCD corrections on

the inclusive cross section. Following Ref. [7], we
compare the signal-only cross section σH with the
background-subtracted cross section σHi ≡ σgg→WW −
σgg→WW |bg only, which includes interference effects. We
report our results for the signal only cross section σH and
the signal+interference cross section σHi for c1,2 = c̄1,2
in Table II. To facilitate the comparison with the results
of Ref. [7], LO results are computed using NLO PDFs.
For the signal, the quoted error is obtained by comparing
our soft-collinear approximation to the N -soft approxi-
mation. For the background, we also consider the ad-
ditional uncertainty coming from independently varying
the c1,2 coefficients for the first two and the third gener-
ation in the −5c̄1,2 < c1,2 < 5c̄1,2 range. This leads to an
uncertainty of about 6% on the interference predictions
which, combined with the uncertainty of the soft approx-
imation, gives an overall uncertainty of about 8− 9% at
NNLO, see Table II. This uncertainty is of same order
of magnitude as the current uncertainties in the Higgs
production rate σNNLO related to higher-order QCD ra-
diative corrections, PDF and αs uncertainties etc, see [3].
We conclude that our approach to estimate higher order
corrections to the signal-background interference in the
Higgs production offers a robust framework and adequate
phenomenological precision.
We turn to a discussion of the impact of the interfer-

ence in a more realistic setup, by imposing selection cuts
on leptons and neutrinos. Apart from the standard ac-
ceptance cuts on the lepton rapidity ηl, lepton transverse
momentum pt and missing energy /Et,

|ηl| < 2.5, pt > 25 GeV, /Et > 20 GeV (7)

we impose additional signal-enhancement cuts, linearly
extrapolating numerical values given in Ref. [30]. To this
end, we require at least one lepton with pt > 130 GeV,
and impose the following cuts on the lepton invariant
mass mll, azimuthal separation ∆φll of the two leptons
and transverse mass of the W+W− pair m⊥:

mll < 500 GeV, ∆φll < 3.05,

120 GeV < m⊥ < mh. (8)

We note that we have validated the soft-collinear ap-
proximation at NLO QCD against MCFM for the differ-

allow for uncertainty O(10%)
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II. SETUP

We begin by describing the setup of our computation.
We are interested in higher order QCD corrections to
the interference between the signal process gg → H →
W+W− and the pure QCD background gg → W+W−.
We compute these corrections in the soft gluon approx-
imation, which is known to describe the full NLO and
NNLO Higgs cross section to very good accuracy. We
will numerically assess the accuracy of our approxima-
tion in Sec. III by comparing it with known NLO and
NNLO results for the signal process.
The cross section for the production of a W+W− pair

with invariant mass Q2, fully differential in the kinemat-
ics variables of the two W ’s, is given by

dσ
(

τ, y, {θi}, Q2
)

=

∫

dx1dx2dz fg(x1, µF)fg(x2, µF)

× δ(τ − x1x2z) dσ̂

(

z, ŷ, {θ̂i},αs,
Q2

µ2
R

,
Q2

µ2
F

)

(1)

where fg is the gluon distribution, and dσ̂ is the differ-
ential partonic cross section for the process

g(p1) + g(p2) → W+(pW+) +W−(pW−) +X, (2)

with (pW+ + pW−)2 = Q2; µF and µR are the factoriza-
tion and the renormalization scales, αs = αs(µR) is the
strong coupling constant at the scale µR, τ ≡ Q2/s. We
denote by y the rapidity of the W pair, and by {θi} a
generic set of variables describing the kinematics of the
decay products of the W+W− system in the hadronic
center-of-mass frame; they are related to the correspond-
ing variables ŷ, {θ̂i} in the partonic center-of-mass frames
by a boost with rapidity ycm = 1

2 ln
x1

x2
, and thus the θ̂i

are functions of {θi}, x1, x2 and z.
In the soft (z → 1) limit, the rapidity distribution

of the W+W− pair is entirely determined by the inclu-
sive cross section [13–15], up to corrections suppressed
by powers of (1 − z), and the partonic cross section in
Eq. (1) takes the form

dσ̂

(

z, ŷ, {θ̂i},αs,
Q2

µ2
R

,
Q2

µ2
F

)

= dσ̂(0)({θ̂i},αs)z G

(

z,αs,
Q2

µ2
R

,
Q2

µ2
F

)

, (3)

where dσ̂(0)({θ̂i},αs)δ(1−z) is the leading order partonic
cross section, and G

(

z,αs, Q2/µ2
R
, Q2/µ2

F

)

is the inclusive
coefficient function computed in the soft limit, i.e. (up
to the explicit z factor) the inclusive partonic cross sec-
tion normalized to the leading order in such a way that
G(z,αs) = δ(1 − z) +O(αs).
In the same limit, the momenta of the W bosons in

the partonic center-of-mass frame are given by

p̂W± =

√

Q2

2

(

1,±β sin θ̂, 0,±β cos θ̂
)

(4)

with θ̂ the W boson scattering angle in the partonic
center-of-mass frame, and β =

√

1− 4m2
W /Q2 (for sim-

plicity, we have assumed that the W -bosons are on-shell,
but we will not make this assumption in the sequel). The
kinematics of the process in the soft limit is therefore the
same as the leading order kinematics, except that the
total energy squared is rescaled by a factor z.
The boost that relates the partonic and hadronic

center-of-mass frames is fixed by taking for the momenta
of the colliding gluons either p1 = zx1P1, p2 = x2P2

or p1 = x1P1, p2 = zx2P2, where P1,2 are four-
momenta of the colliding protons [14]. Alternatively,
one may also take as momenta of the colliding gluons
p1 =

√
zx1P1, p2 =

√
zx2P2 [13]. These two choices

coincide in the soft limit up to terms suppressed by two
powers of (1−z) [15] and, in fact, give very similar results
for observables considered in this paper. We will make
the first choice at NLO, where it is actually exact, while
at NNLO we will take the average of the results obtained
with either choice cases.
We now turn to the explicit form of the coefficient func-

tion G(z,αs, Q2/µ2
R
, Q2/µ2

F
), which contains the core of

our soft-collinear approximation. We first sketch the im-
portant features of the soft gluon approximation and its
modifications by focusing on the next-to-leading order.
Further details on this, including required modifications
at NNLO, can be found in Refs. [16, 17].
Working to NLO accuracy and in the soft limit and

neglecting all non-singular terms, we write the function G
as (we suppress explicit scale dependence for simplicity)

G(z,αs) = δ(1− z)

+
αs

2π

[

8CAD1(z) +

(

2π2

3
CA + c1

)

δ(1 − z)

]

(5)

where Di(z) =
[

lni(1− z)/(1− z)
]

+
and c1 is the ratio

of the infrared regulated higher-order virtual contribu-
tions to the cross section and the leading order cross
section for gg → W+W−, see [16] for its proper defi-
nition.2 For our purposes, the important feature of this
formula is that non universal NLO corrections for the
process gg → WW only enter through the coefficient c1.
This is because only emissions from external gluon lines
in each diagram contribute to the amplitude in the soft
limit. For the signal-only process gg → H → WW , c1
is known both in the infinite mt [18, 19] approximation
and for finite mt [20]. The determination of c1 for the
interference would require the evaluation of complicated
gg → W+W− amplitudes which is beyond existing tech-
nical capabilities.
However, we note that the value of c1 can be ob-

tained without any computation in the kinematic limit

2 Because we consider here the 2 → 2 scattering process, c1 does
depend on the scattering angle. We assume that this depen-
dence is mild and systematically ignore it in this paper. Partial
justification for this assumption is given below.
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4m2
W ! Q2 ! 4m2

t , mb ∼ mt. In this limit, the in-
terference is dominated by the contribution of longitudi-
nally polarized W bosons, which can be obtained from
QCD corrections to the production of two neutral scalars
gg → HH in the heavy top mass limit [21]. Since both
the box contribution for gg → HH and the triangle con-
tribution for gg → H are described by the same effec-
tive Lagrangian, the virtual QCD corrections should be
identical in the two cases. Although the assumptions
Q2 ! 4m2

t , mt ∼ mb are not really justified, we take the
value for c1 that is obtained in that limit as a reference
value, and estimate the sensitivity of the final result to
its variations.
The soft approximation of Eq. (5) is of course only de-

fined up to subleading terms. An optimal choice of sub-
leading terms can be found [17] by using a combination
of analiticity arguments in Mellin space, and information
on universal subleading terms in the z → 1 limit, aris-
ing partly from the exact soft-gluon kinematics [15] and
partly from universal collinear splitting kernels [12, 22].
A discussion of this optimal soft approximation is be-
yond the scope of this paper, and we refer to Ref. [17]
for a full discussion. Here, we note that the best approx-
imation proposed in [17] (called soft2 there) effectively
amounts to performing in Eq. (5) the replacement

Di(z) → Di(z) + δDi(z),

δDi(z) = (2 − 3z + 2z2)
lni 1−z√

z

1− z
−

lni(1− z)

1− z
, (6)

where δDi(z) is an ordinary function (not a distribution).
In what follows, we will call the approximation based on
Eq. (5) with such replacement a “soft-collinear” approxi-
mation. We will quantify the impact of subleading effects
by comparing this improved soft-collinear approximation
to a purely soft result.
At higher orders the soft approximation Eq. (5) is also

known: see e.g. Eq. (79) in [16]. We improve it anal-
ogously to Eq. (6), see Ref. [17] for details. This soft-
collinear approximation is the basis for the NLO and
NNLO numerical results for the signal and the interfer-
ence that we discuss in the next Section.

III. NUMERICAL RESULTS

We consider the process gg → W+(e+ν)W−(e−ν̄) at
the LHC for two values of the center-of-mass energy:√
s = 8 TeV and

√
s = 13 TeV. We take the Higgs mass

to be mh = 600 GeV, and its total decay width to be
Γh = 122.5 GeV [23]. All numerical results presented be-
low are obtained with a fixed-width Breit-Wigner func-
tion. We have checked that use of the running-width in
the Breit-Wigner propagator [24] leads to results for the
signal and interferences that differ by an amount that
is below our accuracy goal, and we expect that same is
likely to be the case for a full treatment of finite-width
effects [5, 6]. Moreover, we have found that the QCD

√
s = 8 TeV

√
s = 13 TeV

NLO NNLO NLO NNLO

exact 2.150 2.78 2.074 2.67

soft-collinear 2.187 2.820 2.127 2.730

N-soft 2.135 2.700 2.073 2.607

TABLE I: K-factors for the inclusive Higgs-only cross section
in the narrow width approximation, with mh = 600 GeV,
computed using the exact theory, our best soft-collinear ap-
proximation, and an unimproved soft approximation (see text
for details). The (N)NLO result is computed using (N)NLO
PDFs, while the reference LO cross section is always com-
puted with NLO PDFs. Numerical results are obtained using
the code [26].

radiative corrections are insensitive to the propagator, to
the accuracy we work to. We let both the W -bosons de-
cay leptonically and reconstruct all kinematic variables
from the charged lepton and neutrino momenta. We take
theW total width to be ΓW = 2.11 GeV and heavy quark
masses mt = 172.5 GeV and mb = 4.4 GeV.
We use the NNPDF2.3 PDF set [25] at NLO and

NNLO, with αs(mZ) = 0.118. Throughout this paper,
we set the renormalization and factorization scales equal
to the Higgs boson mass µR = µF = mh. In constructing
our soft-collinear approximation, we retain the exact mt

and mb dependence where available. For example, we
use the exact value of c1, Eq. (5), for the signal process,
while for the analogous O(α2

s) coefficient c2 we use the
value computed in the infinite mt (point-like) approxi-
mation. Note that with this choice, all logarithmic terms
at NNLO have the exact mt and mb dependence, while
the coefficient of the δ(1 − z) term is only approximate.
As mentioned in Sect. II, for the interference we take the
result in the m2

W ! Q2 ! m2
t , mb ∼ mt limit as our

reference value.
To assess the quality of the soft-collinear approxima-

tion, we first test it against the signal-only gg → H pro-
cess at NLO and NNLO. Results are shown in Tab. I for
two values of the collider energy. The K-factors com-
puted (without including the Higgs decay) using the ex-
act theory3 are compared to those obtained with our soft-
collinear approximation, or with the so-called N -soft ap-
proximation, defined in Ref. [17]. The latter amounts to
approximating the partonic cross section with the inverse
Mellin transform of a pure N -space soft approximation,

3 At NNLO, an exact result valid for large Higgs masses is not
currently available. For our result, we use the exact result at
NLO [18] plus the point-like result at O(α2

s), improving it with
those mt, mb dependent terms which are fully determined by
lower orders (which include all soft-collinear terms). We have
checked that the result obtained in this way is stable upon varia-
tion of small-z terms up to the accuracy shown in Table I, which
is a consequence of the dominance of soft-collinear terms for a
heavy Higgs boson at the LHC [27].

in the kinematical limit

•dominated by longitudinally polarized W’s ~  
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W ! Q2 ! 4m2

t , mb ∼ mt. In this limit, the in-
terference is dominated by the contribution of longitudi-
nally polarized W bosons, which can be obtained from
QCD corrections to the production of two neutral scalars
gg → HH in the heavy top mass limit [21]. Since both
the box contribution for gg → HH and the triangle con-
tribution for gg → H are described by the same effec-
tive Lagrangian, the virtual QCD corrections should be
identical in the two cases. Although the assumptions
Q2 ! 4m2

t , mt ∼ mb are not really justified, we take the
value for c1 that is obtained in that limit as a reference
value, and estimate the sensitivity of the final result to
its variations.
The soft approximation of Eq. (5) is of course only de-

fined up to subleading terms. An optimal choice of sub-
leading terms can be found [17] by using a combination
of analiticity arguments in Mellin space, and information
on universal subleading terms in the z → 1 limit, aris-
ing partly from the exact soft-gluon kinematics [15] and
partly from universal collinear splitting kernels [12, 22].
A discussion of this optimal soft approximation is be-
yond the scope of this paper, and we refer to Ref. [17]
for a full discussion. Here, we note that the best approx-
imation proposed in [17] (called soft2 there) effectively
amounts to performing in Eq. (5) the replacement

Di(z) → Di(z) + δDi(z),

δDi(z) = (2 − 3z + 2z2)
lni 1−z√

z

1− z
−

lni(1− z)

1− z
, (6)

where δDi(z) is an ordinary function (not a distribution).
In what follows, we will call the approximation based on
Eq. (5) with such replacement a “soft-collinear” approxi-
mation. We will quantify the impact of subleading effects
by comparing this improved soft-collinear approximation
to a purely soft result.
At higher orders the soft approximation Eq. (5) is also

known: see e.g. Eq. (79) in [16]. We improve it anal-
ogously to Eq. (6), see Ref. [17] for details. This soft-
collinear approximation is the basis for the NLO and
NNLO numerical results for the signal and the interfer-
ence that we discuss in the next Section.

III. NUMERICAL RESULTS

We consider the process gg → W+(e+ν)W−(e−ν̄) at
the LHC for two values of the center-of-mass energy:√
s = 8 TeV and

√
s = 13 TeV. We take the Higgs mass

to be mh = 600 GeV, and its total decay width to be
Γh = 122.5 GeV [23]. All numerical results presented be-
low are obtained with a fixed-width Breit-Wigner func-
tion. We have checked that use of the running-width in
the Breit-Wigner propagator [24] leads to results for the
signal and interferences that differ by an amount that
is below our accuracy goal, and we expect that same is
likely to be the case for a full treatment of finite-width
effects [5, 6]. Moreover, we have found that the QCD
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√
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NLO NNLO NLO NNLO

exact 2.150 2.78 2.074 2.67

soft-collinear 2.187 2.820 2.127 2.730
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TABLE I: K-factors for the inclusive Higgs-only cross section
in the narrow width approximation, with mh = 600 GeV,
computed using the exact theory, our best soft-collinear ap-
proximation, and an unimproved soft approximation (see text
for details). The (N)NLO result is computed using (N)NLO
PDFs, while the reference LO cross section is always com-
puted with NLO PDFs. Numerical results are obtained using
the code [26].

radiative corrections are insensitive to the propagator, to
the accuracy we work to. We let both the W -bosons de-
cay leptonically and reconstruct all kinematic variables
from the charged lepton and neutrino momenta. We take
theW total width to be ΓW = 2.11 GeV and heavy quark
masses mt = 172.5 GeV and mb = 4.4 GeV.
We use the NNPDF2.3 PDF set [25] at NLO and

NNLO, with αs(mZ) = 0.118. Throughout this paper,
we set the renormalization and factorization scales equal
to the Higgs boson mass µR = µF = mh. In constructing
our soft-collinear approximation, we retain the exact mt

and mb dependence where available. For example, we
use the exact value of c1, Eq. (5), for the signal process,
while for the analogous O(α2

s) coefficient c2 we use the
value computed in the infinite mt (point-like) approxi-
mation. Note that with this choice, all logarithmic terms
at NNLO have the exact mt and mb dependence, while
the coefficient of the δ(1 − z) term is only approximate.
As mentioned in Sect. II, for the interference we take the
result in the m2

W ! Q2 ! m2
t , mb ∼ mt limit as our

reference value.
To assess the quality of the soft-collinear approxima-

tion, we first test it against the signal-only gg → H pro-
cess at NLO and NNLO. Results are shown in Tab. I for
two values of the collider energy. The K-factors com-
puted (without including the Higgs decay) using the ex-
act theory3 are compared to those obtained with our soft-
collinear approximation, or with the so-called N -soft ap-
proximation, defined in Ref. [17]. The latter amounts to
approximating the partonic cross section with the inverse
Mellin transform of a pure N -space soft approximation,

3 At NNLO, an exact result valid for large Higgs masses is not
currently available. For our result, we use the exact result at
NLO [18] plus the point-like result at O(α2

s), improving it with
those mt, mb dependent terms which are fully determined by
lower orders (which include all soft-collinear terms). We have
checked that the result obtained in this way is stable upon varia-
tion of small-z terms up to the accuracy shown in Table I, which
is a consequence of the dominance of soft-collinear terms for a
heavy Higgs boson at the LHC [27].
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Conclusions
•Do not make naive assumptions about off-shell/interference

•Off-shell effects can be considerably enhanced in VV channels 
sizable corrections wrt ZWA

•Interference effects can also be enhanced 

•Interference in diphoton can produce shift due to detector resolution 

requires better EXP understanding
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Conclusions

With some care : cuts that suppress contribution 
from large virtualities (light Higgs only)

can sweep (part of) the dust under the carpet..

•Do not make naive assumptions about off-shell/interference

•Off-shell effects can be considerably enhanced in VV channels 
sizable corrections wrt ZWA

•Interference effects can also be enhanced 

•Interference in diphoton can produce shift due to detector resolution 

requires better EXP understanding
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