Higgs mass, width, line shape and interferences

Daniel de Florian Universidad de Buenos Aires - Argentina

> **Higgs Couplings 2013 Freiburg, October 14**

I would like to invite you to present a REVIEW TALK about

"Higgs mass and width, line-shape" (covering also signal/background/interference)

I would like to invite you to present a REVIEW TALK about

"Higgs mass and width, line-shape" (covering also signal/background/interference)

Basic Considerations

•Higgs Boson is an unstable particle and can not be observed

Lifetime at 125 GeV $1.56 \times 10^{-22} s$

Issue for a proper QFT treatment

 Still one talks about Higgs production cross section and Higgs partial decay widths

•YR provides numbers for both (big TH effort)

•Convention to relate pseudo-Observables (TH) $\sigma_H(m_H)$ $Br(H \to X)$ to realistic observables (EXP) $\sigma(pp \to X)$ Example: Based on Zero Width Approximation (ZWA)

signal contribution $\sigma_{signal}(pp \to X) = \sigma_H(m_H) \times Br(H \to X)$ + neglecting interference

 $\sigma(pp \to X) \sim \sigma_{signal}(pp \to X) + \sigma_{background}(pp \to X)$

Relate EXP and TH results

$$\frac{\sigma(pp \to X) - \sigma_{background}(pp \to X)}{Br(H \to X)} \sim \frac{\sigma_{signal}(pp \to X)}{Br(H \to X)} \sim \sigma_H(m_H)$$

Example: Based on Zero Width Approximation (ZWA)

signal contribution $\sigma_{signal}(pp \to X) = \sigma_H(m_H) \times Br(H \to X)$ + neglecting interference

$$\sigma(pp \to X) \sim \sigma_{signal}(pp \to X) + \sigma_{background}(pp \to X)$$

Relate EXP and TH results

$$\frac{\sigma(pp \to X) - \sigma_{background}(pp \to X)}{Br(H \to X)} \sim \frac{\sigma_{signal}(pp \to X)}{Br(H \to X)} \sim \sigma_H(m_H)$$

Proper treatment requires

- QFT treatment of line-shape
- Consideration of resonant and non-resonant contributions

Interferences

$$\begin{array}{rcl} & \text{signal} & \text{background} \\ \mathcal{A}_{ij \rightarrow X} = & \mathcal{A}_{ij \rightarrow H} & \Delta_{H} & \mathcal{A}_{H \rightarrow X} & +\mathcal{A}_{continuum} \\ & \text{Propagator} & & +\mathcal{A}_{continuum} \\ & \text{Substance} & & & \\ & \text{Substance} & & & \\ & \text{Substance} & & & \\ & \text{Goria, Passarino, Rosco} \\ \end{array}$$
Goria, Passarino, Rosco
Dyson resummed propagator $\Delta_{H}(s) = \left[s - M_{H}^{2} + S_{HH}\left(s, M_{L}^{2}, M_{H}^{2}, M_{W}^{2}, M_{Z}^{2}\right)\right]^{-1} \\ & \text{(renormalized) H mass} & \text{H self energy} \\ \end{array}$
Can be written as (LO) $\Delta_{H}^{-1} = s - s_{H}$ Complex mass scheme
Complex solution of $s_{H} - M_{H}^{2} + S_{HH}\left(s_{H}, M_{L}^{2}, M_{H}^{2}, M_{W}^{2}, M_{Z}^{2}\right) = 0 \\ \text{The complex pole can be parametrized as} \\ s_{i} = \mu_{i}^{2} - i \mu_{i} \gamma_{i} \qquad \begin{array}{c} \text{can be computed in SM} \\ \text{as on-shell width} \\ & \text{input parameter} \\ & \text{similar to on-shell mass} \\ \end{array}$

Complex mass scheme can be translated into more familiar language (Bar-scheme)

$$\frac{1}{s - s_{\rm H}} = \left(1 + i \,\frac{\overline{\Gamma}_{\rm H}}{\overline{M}_{\rm H}}\right) \left(s - \overline{M}_{\rm H}^2 + i \,\frac{\overline{\Gamma}_{\rm H}}{\overline{M}_{\rm H}} \,s\right)^{-1}$$

 $\overline{M}_{\rm H}^2 = \mu_{\rm H}^2 + \gamma_{\rm H}^2 \qquad \mu_{\rm H} \,\overline{\Gamma}_{\rm H} = \overline{M}_{\rm H} \,\gamma_{\rm H}$

equivalent to BW with running width (not on-shell parameters)

$\mu_{\rm H}[{\rm GeV}]$	$\Gamma_{\rm H}^{\rm OS}[{\rm GeV}] \ ({\rm Ref.} \ [1])$	$\gamma_{\rm H} [{\rm GeV}]$	$\overline{M}_{\rm H}[{\rm GeV}]$	$\overline{\Gamma}_{\mathrm{H}}[\mathrm{GeV}]$
200	1.43	1.35	200	1.35
400	29.2	25.60	400.9	26.66
600	123	103.93	608.9	105.48
700	199	162.97	718.7	167.33
800	304	235.57	834.0	245.57
900	449	320.55	955.4	340.28
1000	647	416.12	1083.1	450.71

Goria, Passarino, Rosco

Numerator provides right asymptotic behavior $\ s \to \infty$

Bar scheme provides good approx. for on-shell mass for light Higgs $\gamma_{\rm H} \ll \mu_{\rm H}$

Different schemes in the literature (prop., on-shell/off-shell)

DNBW
$$\mathcal{A}_{ij \to H}^{prod}(\mu_H) \Delta_H^{BW}(Q) \mathcal{A}_{H \to X}^{decay}(\mu_H)$$
 $_{\mathrm{BW}(\zeta) = \frac{1}{\pi} \frac{\mu_{\mathrm{H}} \Gamma_{\mathrm{H}}^{\mathrm{OS}}}{\left(\zeta - \mu_{\mathrm{H}}^2\right)^2 + \left(\mu_{\mathrm{H}} \Gamma_{\mathrm{H}}^{\mathrm{OS}}\right)^2}$

ad-hoc BW, neglect off-shell effects, violates gauge invariance

OFFBW
$$\mathcal{A}_{ij \to H}^{prod}(Q) \ \Delta_H^{BW}(Q) \ \mathcal{A}_{H \to X}^{decay}(Q)$$

ad-hoc BW, violates gauge invariance

ONP
$$\mathcal{A}_{ij\to H}^{prod}(\mu_H) \Delta_H^{prop}(Q) \mathcal{A}_{H\to X}^{decay}(\mu_H)$$

neglect off-shell effects, violates gauge invariance

OFFP
$$\mathcal{A}_{ij \to H}^{prod}(Q) \ \Delta_{H}^{prop}(Q) \ \mathcal{A}_{H \to X}^{decay}(Q)$$

violates gauge invariance

$$\mathsf{CPP} \qquad \mathcal{A}_{ij\to H}^{prod}(s_H) \ \Delta_H^{BW}(Q) \ \mathcal{A}_{H\to X}^{decay}(s_H)$$

respects all requirements (calculation on second Riemann sheet)

For light Higgs different implementations provide similar results (within QCD uncertainties) Goria, Passarino, Rosco

$\mu_{\rm H}[{ m GeV}]$	$\sigma_{\mathrm{iHixs}}[\mathrm{pb}]$	$\Delta_{\mathrm{iHixs}}[\%]$	$\sigma_{\rm HTO}[{\rm pb}]$	$\Delta_{ m HTO}[\%]$	$\delta [\%]$
200	5.57	+7.19 - 9.06	5.63	+9.12 - 9.30	1.08
220	4.54	+6.92 - 8.99	4.63	+8.93 - 8.85	1.98
240	3.80	+6.68 - 8.91	3.91	+8.76 - 8.51	2.89
260	3.25	+6.44 - 8.84	3.37	+8.61 - 8.22	3.69
280	2.85	+6.18 - 8.74	2.97	+8.49 - 7.98	4.21
300	2.57	+5.89 - 8.58	2.69	+8.36 - 7.75	4.67

For heavy Higgs sizable differences in cross section and shape

$\mu_{\rm H}[{\rm GeV}]$	$\Gamma_{\rm H}^{\rm OS}[{\rm GeV}]$	$\gamma_{\rm H}[{\rm GeV}]$	$\sigma^{\rm OS}[{\rm pb}]$	$\sigma^{\rm BW}[{\rm pb}]$	$\sigma^{\rm prop}[{\rm pb}]$
500	68.0	60.2	0.8497	0.8239	0.9367
550	93.1	82.8	0.5259	0.5161	0.5912
600	123	109	0.3275	0.3287	0.3784
650	158	139	0.2064	0.2154	0.2482
700	199	174	0.1320	0.1456	0.1677
750	248	205	0.0859	0.1013	0.1171
800	304	245	0.0567	0.0733	0.0850
850	371	277	0.0379	0.0545	0.0643
900	449	331	0.0256	0.0417	0.0509

Zero width approximation?

Zero width approximation based on

$$D_H(q^2) = \frac{1}{\left(q^2 - M_H^2\right)^2 + \Gamma_H^2 M_H^2} = \frac{\pi}{M_H \Gamma_H} \delta\left(q^2 - M_H^2\right) + PV\left[\frac{1}{\left(q^2 - M_H^2\right)^2}\right] + \sum_{n=0}^N c_n(\alpha) \,\delta_n\left(q^2 - M_H^2\right)$$

$$\sigma = \frac{1}{2s} \left[\int_{q_{\min}^2}^{q_{\max}^2} \frac{dq^2}{2\pi} \left(\int d\phi_p |\mathcal{M}_p(q^2)|^2 D(q^2) \int d\phi_d |\mathcal{M}_d(q^2)|^2 \right) \right]$$

$$\sigma_{\text{ZWA}} = \frac{1}{2s} \left(\int d\phi_p |\mathcal{M}_p(M^2)|^2 \right) \left(\int_{-\infty}^{\infty} \frac{dq^2}{2\pi} D(q^2) \right) \left(\int d\phi_d |\mathcal{M}_d(M^2)|^2 \right)$$

$$\sigma_{\text{ZWA}} = \frac{1}{2s} \left(\int d\phi_p |\mathcal{M}_p|^2 \right) \frac{1}{2M\Gamma} \left(\int d\phi_d |\mathcal{M}_d|^2 \right) \Big|_{q^2 = M^2}$$

 $\frac{\Gamma}{M} \ll 1 \quad \text{contribution from tail} \quad \int_{(M-n\Gamma)^2}^{(M+n\Gamma)^2} \frac{dq^2}{2\pi} \frac{1}{(q^2 - M^2)^2 + (M\Gamma)^2} \approx \frac{1}{2M\Gamma} \left(1 - \frac{1}{n\pi}\right)$ for Higgs n=1000 means only 4 GeV ~ 0.03% effect
but precise calculation shows ~0.5% difference with ZWA ~ $100 \frac{\Gamma}{M}$

Decay amplitude can produce a significant deformation of the Higgs lineshape

Threshold effects

$$|\mathcal{M}_d(H \to f\bar{f})|^2 \sim M_f^2 q^2 \quad \text{for } \sqrt{q^2} \gtrsim 2 M_f$$
$$|\mathcal{M}_d(H \to VV)|^2 \sim (q^2)^2 \quad \text{for } \sqrt{q^2} \gtrsim 2 M_V$$

can compensate the $\frac{1}{q^4}$ in
$$D_H(q^2) = \frac{1}{(q^2 - M_H^2)^2 + \Gamma_H^2 M_H^2}$$

resulting in a lineshape strongly enhanced at large virtualities

Integration over large kinematical range enhances off-shell effects

100-125	125 - 150	150 - 175	175 - 200	200-225	225 - 250	250 - 275
0.252	0.252	$0.195 \cdot 10^{-3}$	$0.177 \cdot 10^{-2}$	$0.278 \cdot 10^{-2}$	$0.258 \cdot 10^{-2}$	$0.240 \cdot 10^{-2}$

Offshell + Interferences in VV production

Offshell + Interference effects (WW)

Higgs: standard+ $M_{\ell\ell} < 50 \,\text{GeV}, \,\Delta\phi_{\ell\ell} < 1.8$

Additional cut on transverse mass to reduce contribution from $M_{WW} \gg 2M_W$

$$M_T = \sqrt{(M_{T,\ell\ell} + \not\!\!\!p_T)^2 - (\mathbf{p}_{T,\ell\ell} + \not\!\!\!p_T)^2} \quad \text{with} \quad M_{T,\ell\ell} = \sqrt{p_{T,\ell\ell}^2 + M_{\ell\ell}^2}$$

Strong suppression with $M_T < M_H$

In the vicinity of the Higgs resonance, finite width and Higgscontinuum interference effects are negligible for $gg (\rightarrow H) \rightarrow VV$ if $M_H \ll 2M_V$

Offshell + Interference effects (ZZ)

$$R = \sigma_{H,\text{ZWA}} / \sigma_{H,\text{offshell}} \qquad |H_{ofs} + \text{cont}|^2 / (H_{ofs}^2 + \text{cont}^2)$$

$gg \ (\to H)$	$\rightarrow ZZ \rightarrow \ell$	$\bar{\ell} \nu_{\ell} \bar{\nu}_{\ell}, \ \sigma \ [\text{fb}]$, pp , $\sqrt{s} =$	= 8 TeV, $M_H =$	= 125 GeV	Interf. (dest.)
M_T cut	$H_{\rm ZWA}$	H_{offshell}	cont	$ H_{\rm ofs} + {\rm cont} ^2$	R	
none	0.1593(2)	0.2571(2)	1.5631(7)	1.6376(9)	0.6196(7)	0.89
$M_T < M_H$	0.1593(2)	0.1625(2)	0.4197(5)	0.5663(6)	0.980(2)	0.97

 $gg \to H \to ZZ \to \ell \bar{\ell} \ell \bar{\ell} and \ \ell \bar{\ell} \ell' \bar{\ell'}$ Kauer, Passarino

	gg						
	σ [fb	ZWA	interfe	erence			
mode	$H_{\rm ZWA}$	H_{offshell}	cont	$ H_{\rm ofs} + {\rm cont} ^2$	R_0	R_1	R_2
$\ell \bar{\ell} \ell \bar{\ell}$	0.0748(2)	0.0747(2)	0.000437(3)	0.0747(6)	1.002(3)	0.994(8)	0.994(8)
$\ell \bar{\ell} \ell' \bar{\ell'}$	0.1395(2)	0.1393(2)	0.000583(2)	0.1400(3)	1.002(2)	1.001(2)	1.001(2)

 $|M_{ZZ} - M_H| < 1 \,\text{GeV}$ ZWA very accurate

 $gg \to H \to ZZ \to \ell \bar{\ell} \ell \bar{\ell}$ and $\ell \bar{\ell} \ell' \bar{\ell}'$ Kauer, Passarino

	gg						
	σ [fb], pp , $\sqrt{s} = 8 \text{ TeV}$, $M_H = 125 \text{ GeV}$				ZWA	interfe	erence
mode	$H_{\rm ZWA}$	H_{offshell}	cont	$ H_{\rm ofs} + {\rm cont} ^2$	R_0	R_1	R_2
$\ell \overline{\ell} \ell \overline{\ell}$	0.0748(2)	0.0747(2)	0.000437(3)	0.0747(6)	1.002(3)	0.994(8)	0.994(8)
$\ell \bar{\ell} \ell' \bar{\ell}'$	0.1395(2)	0.1393(2)	0.000583(2)	0.1400(3)	1.002(2)	1.001(2)	1.001(2)

 $|M_{ZZ} - M_H| < 1 \,\text{GeV}$ ZWA very accurate

Off-shell region sensitive to width Caola, Melnikov

in ZWA
$$\sigma_{i \to H \to f} \sim \frac{g_i^2 g_f^2}{\Gamma_H}$$
 invariant under $g = \xi g_{\rm SM}$
 $\Gamma_H = \xi^4 \Gamma_{\rm H,SM}$,

but off-shell and interference scale
$$\frac{\Gamma_H}{\Gamma_H^{SM}}$$
onshell
 $\sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}}$ onshell
 $N_{exp} = 432 + 3.72 \times \frac{\Gamma_H}{\Gamma_H^{SM}} - 9.91 \times \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}} \pm 31$ $M_{4l} > 130 \text{ GeV}$ $\Gamma_H \le 38.8 \ \Gamma_H^{SM} \approx 163 \text{ MeV}$ @ 95% cl

Interference in diphoton channel

Interference in diphoton

$$\mathcal{A}_{gg \to \gamma\gamma} = \frac{-\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma}}{\hat{s} - m_H^2 + im_H \Gamma_H} + \mathcal{A}_{\text{cont}}$$

Dixon and Siu (2003)

$$\delta\hat{\sigma}_{gg\to H\to\gamma\gamma} = -2(\hat{s} - m_H^2) \frac{\operatorname{Re}\left(\mathcal{A}_{gg\to H}\mathcal{A}_{H\to\gamma\gamma}\mathcal{A}_{\mathrm{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2\Gamma_H^2} - 2m_H\Gamma_H \frac{\operatorname{Im}\left(\mathcal{A}_{gg\to H}\mathcal{A}_{H\to\gamma\gamma}\mathcal{A}_{\mathrm{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2\Gamma_H^2}$$

~ vanishes upon integration over s very different for WW where this term dominates

need relative phase to get Im part

 $\mathcal{A}_{gg \to H}$ and $\mathcal{A}_{H \to \gamma\gamma}$ are mainly real due to t,W dominance in the loop $m_H < 2m_W$

At 1 loop \mathcal{A}_{cont}^* mainly real because $\mathcal{A}^{tree}(g^{\pm}g^{\pm} \rightarrow q\bar{q}) = \mathcal{A}^{tree}(q\bar{q} \rightarrow \gamma^{\pm}\gamma^{\pm}) = 0$ for $m_q = 0$ Needs 2 loop to interfere with signal $\mathcal{A}_{gg \rightarrow \gamma\gamma}^{2-loop}$

Im negative contribution

Dixon and Siu (2003)

about -4% at 125 GeV, non trivial angular dependence

(20)

Effects from other channels go in opposite direction

LO for interference $O(\alpha_s^2)$

60

40

20

0

-20

-40

-60

124.96 124.98 125.00

do/dM₇₇(fb/GeV)

gg interference

qg interference

 $q\bar{q}$ interference

125.02 125.04

 $M_{\gamma\gamma}$ (GeV)

 $90 \text{ MeV} \longrightarrow 60 \text{ MeV}$

Interference at NLO

L.Dixon, Y.Li (2013)

Higgs transverse momentum (same channel)

 $p_T > p_{T,H}$

use two bins with 3 ab⁻¹

<15 x SM width at 95% c.l.

How to include interference?

Problem: signal/background computed to higher order than interference

signal to NNLO background NLO Interference LO

even "order counting" not trivial

Caution, Born for interference means $\,\alpha_s^2\,$ which is formally NNLO for background and LO for signal

How to include interference

MCFM Campbell, Ellis, Williams

Add to signal
$$\sigma_{Hi} = \sigma_H + \sigma_{interference}$$

K - factor?

Some effects (like soft gluon emission) partially cancel in ratios

 $\sigma_{Hi}^{NNLO} = \sigma_{H}^{NNLO} \left(\frac{\sigma_{Hi}^{Born}}{\sigma_{H}^{Born}} \right)$ full factorization of Interference effects

Some ambiguity for exclusive distributions

Equivalent to apply signal K-factor to interference

$$\sigma_{Hi}^{NNLO} = \sigma_{H}^{NNLO} \left(\frac{\sigma_{Hi}^{Born}}{\sigma_{H}^{Born}} \right) = \left(\frac{\sigma_{H}^{NNLO}}{\sigma_{H}^{Born}} \right) \sigma_{Hi}^{Born}$$
$$K_{\text{signal}}$$

Problems :

- Privileges the signal (distorts line-shape)
- QCD correction to signal and background (box) can be different

QCD recommendations G.Passarino

Signal-background interference effects for $gg \rightarrow H \rightarrow W^+W^-$ beyond leading order

M.Bonvini, F.Caola, S.Forte, K.Melnikov, G.Ridolfi

•Use soft-virtual approximation at NNLO (assuming two-loop Higgs coefficient for background)

in the soft limit:

up to NLO

 c_1 depends on the 1 loop corrections (+ soft)

Known up to 2 loops for the signal but not for the background

 $gg \rightarrow W^+W^-$ in the kinematical limit $4m_W^2 \ll Q^2 \ll 4m_t^2$, $m_b \sim m_t$ •dominated by longitudinally polarized W's ~ $gg \rightarrow HH$ •in the large mass limit *HH* very similar to *H* production •almost identical effective Lagrangian $\mathcal{L}_{eff} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu}\left(C_H\frac{H}{v} - C_{HH}\frac{H^2}{v^2}\right)$

•use for background same "virtual coefficient" from signal

allow for uncertainty $-5\bar{c}_{1,2} < c_{1,2} < 5\bar{c}_{1,2}$ $\mathcal{O}(10\%)$

•QCD corrections enhance interference, similar to enhancement for signal (multiplicative approach)

K_{signal}	\sim	K_{interf}
--------------	--------	--------------

$m_h = 600 \text{ GeV}$, $\sqrt{s} = 8 \text{ TeV}$					1	$\sqrt{s} = 13$ [ГeV
	LO	NLO	NNLO		LO	NLO	NNLO
σ_{H}	0.379	0.83(2)	1.07(5)		1.55	3.29(8)	4.2(2)
σ_{Hi}	0.427	0.93(3)	1.20(7)		1.66	3.5(1)	4.5(2)
$\sigma_H/\sigma_H^{ m LO}$		2.19(5)	2.8(1)			2.13(5)	2.7(1)
$\sigma_{Hi}/\sigma_{Hi}^{ m LO}$		2.19(7)	2.8(2)			2.12(6)	2.7(1)

Conclusions

•Do not make naive assumptions about off-shell/interference

- •Off-shell effects can be considerably enhanced in VV channels sizable corrections wrt ZWA
- Interference effects can also be enhanced
- Interference in diphoton can produce shift due to detector resolution

requires better EXP understanding

Conclusions

•Do not make naive assumptions about off-shell/interference

- •Off-shell effects can be considerably enhanced in VV channels sizable corrections wrt ZWA
- Interference effects can also be enhanced
- Interference in diphoton can produce shift due to detector resolution

requires better EXP understanding

With some care : cuts that suppress contribution from large virtualities (light Higgs only)

can sweep (part of) the dust under the carpet.

