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Higgs Beyond the Standard Model: 
Expectations in Strongly vs Weakly 

Interacting Theories



The organizers asked me ‘to present a 
REVIEW TALK about "Strongly interacting 
physics versus weakly interacting SUSY and/or 
non-SUSY approaches"’

A big topic! There are many new physics 
models of both types. 

I’ll discuss the two general ideas I think are 
most plausible: composite Higgs and SUSY.

Both are becoming at least moderately tuned 
in light of data.



A COMPOSITE HIGGS
A generic composite Higgs would come with many other 
composite resonances. So we usually consider composite 
Higgses that are pseudo-Nambu-Goldstone bosons.

(Georgi, Kaplan 80s; recent review: R. Contino, 1005.4269)
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E.g. SO(5) →SO(4): one complex Higgs doublet.



EWSB FOR COMPOSITES
A potential is generated for the Higgs by G-violating 
couplings. Usually this is done with elementary top quarks 
coupled to composite top-like fermions.
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Both terms contain h2 and h4 pieces, so v << f is always a 
tuning: 
(Exception: “little Higgs” theories with extended symmetry structure.)

Expect v/f corrections to be large, if EWSB is 
natural.
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WHERE IS THE SCALE?
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Before even looking at Higgs properties, we had strong 
bounds on the composite scale, e.g. from the S-parameter:

or S ≈ 4π(v/mρ)2. This puts the resonance masses at about 
3 TeV or above.
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Implies some tuning, e.g. the quadratically divergent W loop:

Also via                        it means minimum factor ~3 tree-
level tuning of the Higgs potential. 
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COMPOSITE HIGGS 
COUPLINGS

The lighter the composites, the more they affect Higgs 
couplings. E.g. coupling to vectors (see e.g. recent Azatov/Galloway 
review 1212.1380):

we can find the Higgs coupling directly from Eq. (1.1):
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More explicitly we note that the couplings can be easily computed in the CCWZ construction

from the two-derivative term containing the masses of the broken gauge fields:
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As can be seen from the expansion of d in terms of pion fields (cf. Appendix C) the coe�cient

of Eq. (4.10) is determined simply by fixing canonically normalized kinetic terms for the

pions. From the expansion, and defining
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one straightforwardly recovers Eq. (4.9). This form highlights the fact that the compos-

ite Higgs setup interpolates between a technicolor limit where v = f and the Higgs state

decouples entirely, and the SM where f ! 1 and the hierarchy problem fully returns.

The form Eq. (4.9) also gives a first estimate of the scale of new physics we might

anticipate given a measurement of the coupling itself. Following [20], we expect vector

resonances ⇢ that couple generically with strength g⇢ to other composite fields to enter with

masses

m2

⇢ = g2

⇢f
2 ⇠ 16⇡2

N
f 2, (4.13)

where N is the number of colors associated with the confining gauge group. Thus

m⇢ ⇠ 4⇡vp
(1 � a2) ⇥ N

. (4.14)

Large (small) deviations from a = 1 correspond to the presence of typically light (heavy)

vectors, and we see explicitly the connection between the decoupling of additional states

from the EWSB sector and the return to SM-like values of Higgs couplings.

Minimal Composite Higgs 4 and 5 (MCHM4, MCHM5): In order to see how

fermion couplings are expressed as functions of the scale of the confining dynamics, we discuss

two models based on a minimal coset that endows the theory with a custodial symmetry.

These are the ‘Minimal Composite Higgs’ models [21], with G/H = SO(5)/SO(4) giving
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Given the S-parameter bound on f, this correction ends up 
at ~6% for N = 3 and mρ = 3 TeV. So it’s not surprising 
there’s no deviation observed.
Interestingly, Goldstone shift symmetry favors larger deviations in Zγ 
than γγ or gg. Choose good basis:
(Giudice et al. hep-ph/0703164; Montull et al. 1308.0559; Azatov et al. 1308.2676)

1 Introduction

The LHC phase of data taking at 8 TeV is over and a large collection of experimental results

on the Higgs boson has been derived. Although data still have to be fully analyzed, a

clear picture seems to be emerging: the properties of the newly discovered particle closely

resemble those of the Standard Model (SM) Higgs boson. Overall, the quantitative agreement

between its measured couplings and the SM predictions is at the 20 � 30% level [1, 2]. This

strongly suggests that the new particle is indeed part of an SU(2)L doublet H, and that the

scale of New Physics (NP) must be somewhat higher than the electroweak scale. From this

perspective it is important to ask which observables or processes are most sensitive to NP

e↵ects and where we may be likely to see deviations from the SM pattern in the future.

It is well known that Higgs processes occurring at loop level in the SM, such as the decays

h ! �� and h ! Z�, and the gluon-fusion production gg ! h, are particularly sensitive

probes of weakly-coupled extensions of the SM. This is typically not true, however, in theories

with a light Higgs where the electroweak symmetry breaking (EWSB) dynamics is strong. If

the Higgs is a composite Nambu-Goldstone (NG) boson of a new strongly-interacting sector,

parametrically large shifts are expected in the tree-level couplings, while hgg and h�� contact

interactions violate the Higgs shift symmetry and are thus suppressed. On the other hand,

a similar symmetry suppression does not hold for a hZ� contact interaction.

To make this point more quantitative, contributions to the gg, �� and �Z decay rates

induced by the exchange of new particles with mass much larger than the electroweak scale

can be conveniently parametrized by local operators. For a Higgs doublet, the leading NP

e↵ects are parametrized by dimension-6 operators. A complete characterization of the Higgs

e↵ective Lagrangian at the dimension-6 level has been performed in previous studies [3–5];

see Ref. [6] for a recent review. In the basis of the Strongly Interacting Light Higgs (SILH)

of Ref. [7], the CP-conserving operators relevant for the gg, �� and Z� rates are: 2
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(1.1)

2We normalize the Wilson coe�cients according to the convention of Ref. [6].
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A LESSON?
Strongly-interacting new physics predicts a large set of 
new higher-dimension operators, many of which were 
already highly constrained. May have a large “footprint” in 
terms of signals showing up across a number of channels.

Weakly-interacting new physics can predict more localized 
discrepancies. Because of this, Higgs measurements so far 
may tell us more new information about weakly-
interacting new physics than strongly interacting new 
physics (which was already quite constrained).



WHY LIGHT TOP PARTNERS?

(Could have light bound states from anomaly matching: example in hep-ph/0312287, 
“A Composite Little Higgs Model,” by E. Katz, J. Lee, A. Nelson, D. Walker)

the top partners need to be light for a reasonably natural theory, the way the tuning scales with the

top-partners’ mass is instead di↵erent in each case. In this paper we focus on the possibility that

the right handed top quark t
R

is a SO(4) singlet belonging to the strong sector, therefore the top

Yukawa simply arises from an SO(5) breaking perturbation of the form

�
L

q
L

O
R

+ h.c. . (1.1)

Here O
R

is a composite operator, which in the low energy theory maps to Ht
R

, thus giving rise to

a top Yukawa coupling y
t

⇠ �
L

. The operator O
R

however also interpolates in general for massive

states, the top partners. Now, from simple power counting, and also from explicit constructions [14],

at leading order in the breaking parameter �
L

we expect the Higgs potential to have the form
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where a, b, c, . . . are coe�cients expected to be O(1), f is the decay constant of the �-model, while

m⇤ broadly indicates the mass scale of the top partners. Then, since  is, ideally, the lightest top-

partner we have M
 

<⇠ m⇤. Given m⇤ and f , the measured values v ⌘ hhi = 246 GeV and m
h

= 125

GeV, may require a tuning of a and b below their expected O(1) size. More explicitly one finds

a =
m2

h

m2⇤

4⇡2

3y2
t

'
✓
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2

(1.3)

and, defining the top-partner coupling as g⇤ ⌘ m⇤/f according to Ref. [4],

b =
m2

h

m2

t

2⇡2

3g2⇤
' 4

g2⇤
. (1.4)

By these equations we deduce that in the most natural scenario the top partners should not only

be light (say below a TeV) but also not too strongly coupled. While of course the whole discussion

is very qualitative, we still believe eqs. (1.3)-(1.4) give a valid rule of thumb for where the top

partners should best be found. It is with eqs. (1.3)-(1.4) in mind that one should interpret the

results of the searches for top partners. Notice that while naturalness favors sub-TeV fermionic

resonances, electroweak precision constraints favor instead bosonic resonances above 2-3 TeV. A

technically natural and viable model should therefore be more complex than a generic composite

model described by a single scale. This situation closely resembles that of supersymmetric models,

where the light squark families and the gluinos are pushed up by direct searches, while technical

naturalness demands the stops to be as light as possible.

This paper is organized as follows. In Section 2 we discuss the structure of the models and their

main features such as the mass spectrum and the couplings of the top partners. Then, in Section 3

we turn to analyse the phenomenology of the top partners, their production mechanisms and decay

channels, highlighting the most relevant channels to focus LHC searches on. The bounds on the

model parameters are derived in Section 4, using the LHC data available at present 2. Finally, our

concluding remarks are collected in Section 5.

2 While this work was being completed ATLAS [22] and CMS [23] presented dedicated searches for top partners,

which we did not include in our analysis. From a preliminary investigation we expect mild changes in our results from

these new data because both the ATLAS and the CMS searches are optimized to detect pair production. As we will

discuss in the conclusions, a radical improvement of the bounds could perhaps be achieved, with the present energy

and luminosity, but only with searches dedicated to single production.
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Elementary/composite mixing for top:
Puzzles: 1. need large top Yukawa; operator of dim 5/2?

2. why a light bound state?

3. One-loop computation

For flat space, the bulk fermion mass would receive a one-loop quantum correction
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2
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⇤
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The result tells us two things:

• Unlike 4D fermion whose mass would receive only log corrections, 5D fermion mass is
linear divergent and more sensitive to the ultraviolet physics.

• The correction is proportional to the mass itself. There’s no chiral symmetry for 5D
fermion in general. But there exists a parity symmetry which is

x1 ! �x1,  (x1)! �1 (�x1),  ̄(x1)! � ̄(�x1)�1, (3.2)

which, in the bulk, is only broken by the mass term in both flat space and AdS space.
It has an interesting implication that the fermion zero mode is radiatively stable. This
may not be true taking into account of boundary e↵ects.

For the AdS space, the two features of the flat space correction should still remain. But
the calculation is much more involved as there is no notation of momentum in the warped
direction z. For massless fermion and massless scalar, the action is invariant under Weyl
transformations at the classical level. Then one could use the Rattazzi’s trick to map the
theory in AdS space to one living on half of the flat space and the computations is just
the same as that of the flat space. The bulk mass receives no correction at all. Either
numerically evaluate the integration, which probably is tricky, as it is divergent
and depend on the regulator OR do perturbation around the flat space limit
R!1.

3.1 Naive dimension analysis

From the calculation, we know the loop expansion parameter goes like

�

2⇤
(4⇡)2

. (3.3)

It tells us the e↵ective 5D theory breaks down when this is O(1). For a crude estimate,

� ⇠ g5 ⇠ R/N

⇤ ⇠ Ms ⇠ N

1/4
/R. (3.4)

then �2⇤ ⇠ 1/N

7/4 so the correction is not big for large N theory and our loop calculation is
valid.

– 2 –

“Bulk naturalness puzzle”: 5D fermions are unprotected by 
chiral symmetry. Mass terms violate parity, but it’s broken by 
heavier masses. Why a light bulk fermion? (6D? 10D?)

Some notes on the SHu Hd model

Matthew Reece

Department of Physics, Harvard University, Cambridge, MA 02138, USA

August 20, 2013

1 Goals
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Figure 1: Loops.
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Figure 2: Stop decay.

One step in this project is to understand bounds on squark/higgsino/singlet and gluino/squark/higgsino/singlet
simplified models. The first part of this step is to understand the mass spectrum and decays for just higgsinos and
the singlino/singlet fields. Among the questions we want to answer are:

1

P:



FERMIONIC TOP PARTNERS
recent survey of models / limits in 1211.5663: de Simone, Matsedonskyi, 
Rattazzi, Wulzer

� [fb] @ NNLO

pair production

M [GeV]
p
s = 7 TeV

p
s = 8 TeV

400 (0.920) 1.41 ⇥103 (1.50) 2.30 ⇥103

500 (218) 330 (378) 570

600 (61.0) 92.3 (113) 170

700 (19.1) 29.0 (37.9) 56.9

800 (6.47) 9.88 (13.8) 20.8

900 (2.30) 3.55 (5.33) 8.07

1000 (0.849) 1.33 (2.14) 3.27

1100 (0.319) 0.507 (0.888) 1.37

1200 (0.122) 0.196 (0.375) 0.585

1300 (4.62) 7.60 ⇥10�2 (0.160) 0.253

Table 2: Cross sections for the NNLO pair production of heavy fermions at
p
s = 7, 8 TeV (the LO values

are in brackets), with HATHOR [28].

t

X
V

b

X
V

Figure 3: The single-production diagrams.

and for this reason it will not be reported here, however it is easily implemented in a Mathematica

package.

The single production cross-sections are quadratic polynomials in the couplings, with coe�cients

that encapsulate the e↵ect of the QCD interactions, the integration over the phase-space and the

convolution with the parton distribution functions. These coe�cients depend uniquely on the mass

of the partner and can be computed by Monte Carlo integration. Once the latter are known we obtain

semi-analytical formulae for the cross-sections. The production in association with the b is simply

proportional to g2
Xb

L

while the one with t would be, a priori, the sum of three terms proportional

to g2
Xt

L

, g2
Xt

R

and g
Xt

L

· g
Xt

R

which account, respectively, for the e↵ect of the left-handed coupling,

of the right-handed one and of the interference among the two. However in the limit of massless

top quark, m
t

⌧ m
X

, the processes mediated by the left-handed and by the right-handed couplings

become physically distinguishable because the anti-top produced in association with X will have

opposite chirality in the two cases. Therefore in the limit m
t

! 0 the interference term can be

neglected. Moreover, the coe�cients of the g
Xt

L

2 and g
Xt

R

2 terms will be equal because the QCD
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Figure 11: Maxmal and minimal bounds on the masses of top partners for y 2 [0.3, 3], c1 2 [0.3, 3] and
⇠ 2 [0.1, 0.3] for the models M45, M15 (left pannel) and M414, M114 (right pannel). Blue and green bars
correspond respectively to high and low values of y. Black dashed lines correspond to the exclusions for the
reference values ⇠ = 0.1, c1 = 1, y = 1.

5 Conclusions

In this paper we described an approach to systematically construct the low-energy e↵ective la-

grangian for the lighest colored fermion multiplet related to the UV completion of the top quark

sector: the top partner. Our construction is based on robust assumptions, as concerns symmetries,

and on plausible assumptions, as concerns the dynamics. Our basic dynamical assumption, following

Ref. [4], is that the electroweak symmetry breaking sector, or at least the fermionic sector, is broadly

decribed by a coupling g⇤ and a mass scale m⇤. This assumption implies a well definite power count-

ing rule. In particular the derivative expansion is controlled by inverse powers of m⇤. In the technical

limit where the top partner multiplet  , is parametrically much lighter than the rest of the spectrum

(M
 

⌧ m⇤), our power counting provides a weakly coupled e↵ective lagrangian description of the

phenomenology of  . The basic idea is that, in this case, the e↵ects of the bulk of the unknown

spectrum at the scale m⇤ can be systematically described by an expansion in powers of M
 

/m⇤. The

lagrangian obtained in this limit defines our simplified description of the top parters. One should

however keep in mind that the most likely physical situation is one where m⇤ � M
 

⇠ M
 

, where

an e↵ective lagrangian is formally inappropriate. In practice, however, we expect it to be more

than adequate for a first semi-quantitative description of the phenomenology and certainly to assess

experimental constraints. The comparison with explicit constructions supports this expectation.

As concerns the symmetries of the strong sector, we considered the minimal composite Higgs

based on the SO(5)/SO(4) coset. Furthermore we focussed on the simplest possibility where the

right-handed top quark t
R

is itself a composite fermion. The leading source of breaking of SO(5) is

thus identified with top quark Yukawa coupling y
t

. In our construction, we have fully exploited the

selection rules obtained by treating y
t

as a small spurion with definite transformation properties. For

instance the structure of the mass spectrum and the couplings are greatly constrained by symmetry

and selection rules. In particular the pNGB nature of the Higgs doublet implies the couplings

originating from the strong sector are purely derivative: at high energy, or for heavy on-shell fermions,

these couplings are e↵ectively quite sizeable and yet they do not a↵ect the spectrum even accounting

for hHi 6= 0. If the Higgs were not treated as a pNGB a large trilinear would be associated with a

large Yukawa coupling and the spectrum would necessarily be a↵ected when hHi 6= 0.

34

�m2 ⇠ y2v2

�m2 = 0

�m2 ⇠ y2f 2

B
T

t

X2/3
X5/3

Figure 2: The typical spectrum of the top partners.

nature of the Higgs and it would be generically violated, as previously discussed, if this assumption

was relaxed. This result also depends on t
R

being a composite singlet. If t
R

was instead a partially

composite state mixing to a non-trivial representation of SO(5) (for instance a 5) there would be

additional entries in the mass matrix. 8 In a sense our result depends on y being the only relevant

parameter that breaks SO(5) explicitly.

Once the mass-matrix has been put in the block-diagonal form of eq. (2.17) it is straightforward

to diagonalize it and to obtain exact formulae for the rotation matrices and for the masses of the

top and of the T partner. However the resulting expressions are rather involved and we just report

here approximate expressions for the masses. We have

m
t

' c
2

y fp
2

g
 q

g2
 

+ y2
sin ✏


1 + O

✓
y2

g2
 

⇠

◆�
,

m
T

'
q

M2

 

+ y2f2

"
1 � y2

�
g2
 

+ (1 � c2
2

)y2
�

4
�
g2
 

+ y2
�
2

sin2 ✏ + . . .

#
. (2.18)

From the above equation we obtain the correct order of magnitude for the top mass if, as anticipated,

y ⇠ y
t

and g
 

& 1. In this region of the parameter space the corrections to the approximate formulae

are rather small, being suppressed by both a factor y2/g2
 

(which is preferentially smaller than one)

and by ⇠ ⌧ 1. However we will consider departures from this theoretically expected region and

therefore we will need to use the exact formulae in the following sections.

Similarly we can study the sector of �1/3 charge states. It contains a massless b
L

, because we

are not including the b
R

in our model, plus the heavy B particle with a mass

m
B

=
q

M2

 

+ y2f2 . (2.19)

This formula is exact and shows that the bottom sector does not receive, in this model, any con-

tribution from EWSB. By comparing the equation above with the previous one we find that the

8The top partner’s spectrum with partially composite t
R

has been worked out in Ref. [14, 10].
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Single production can be important:

Want below 1 TeV for tuning: Panico, Redi, Tesi, Wulzer 1210.7114



LITTLE HIGGS
Little Higgs models have an extra symmetry, naturally 
parametrically separating f and v. EWPT can be protected 
with T-parity (similar to SUSY with R-parity). 

Here there are generally new elementary fermionic top 
partners. At least 20% tuning (Berger, Hubisz, Perelstein 
1205.0013).

Pay a price in model complexity, and still we haven’t seen 
top partners.



SUSY: TREE-LEVEL HIGGS 
COUPLINGS 3

f

f̄

hhihhi

h
H

FIG. 1: The mixing between h and H, induced by the quartic interaction �h3H, modifies the couplings of h to the

fermions w.r.t to its SM value.

Now, notice that the equations of motion for H imply a small vev hHi ⇡ 2
p
2�(v3/m2

H), so that the expression
for the fermion mass is modified accordingly and we can write the coupling of the physical Higgs h̃ = h�p

2 v,
normalized with its SM value ySM

f = mf/v, as

cf ⌘ yf
mf/v

⇡
Y h
f � 6Y H

f � v2

m2
H

Y h
f � 2Y H

f � v2

m2
H

⇡ 1 � 4�
Y H
f

Y h
f

v2

m2
H

. (9)

Using Eq. (3) to read Y h,H
f , we finally obtain

cb,⌧ ⇡ 1 � 4 tan�� v2

m2
H
,

ct ⇡ 1 + 4 cot�� v2

m2
H
. (10)

This simple, yet important, expression summarizes the goal of this work: any new physics that is responsible
for the large Higgs mass Eq. (5) also a↵ects the Higgs couplings to fermions. This approximate formula allows
us to understand qualitatively how this connection works and predicts whether a given contribution to the
Higgs mass results in an increase or decrease of the couplings to tops and bottoms/taus (similar methods have
been used in Refs. [13–15] to study Higgs couplings modifications). Nevertheless, notice that in our plots we
always use the exact expressions listed in Appendix II, rather than Eq. (10).

Deviations in the Higgs couplings to vectors can be studied in a similar way, giving

cV = 1 � O
✓
�2

v4

m4
H

◆
(11)

which is generally suppressed w.r.t. deviations in the couplings to fermions (we have checked that in the region
preferred by data this statement holds at better then the 2 % level and deviations in cV can be ignored).

In principle, complete analyses of Higgs couplings in a SUSY context should take into account possible
modifications of the tree-level couplings to up-type quarks, to down-type quarks (and leptons) and to vectors;
at the loop level extra contributions from light SUSY partners to the couplings to gluons and photons could be
present, and in total generality also the possibility of an invisible decay width should be considered (see Ref. [2]
for a motivated scenario were the Higgs can decay invisibly in a SUSY context): a total of six parameters (see
Refs. [16, 17] for a list of recent analyses of this type). Nevertheless, ignoring the last possibility, Eq. (11)
tells us that in the simplest SUSY models, couplings to vectors are not expected to deviate much from the
SM ones (this is not true when the Higgs sector is extended to include extra states in di↵erent SU(2)L
representations that can mix with the Higgs, as we shall discuss in section VA). Furthermore, the null results
of direct SUSY searches suggest that SUSY partners should have masses of a few hundreds GeV and that
their loop contributions to the e↵ective hgg and h�� couplings might be small (we comment about this in
section VI). For these reasons, in what follows, we orient our analysis mostly to the Higgs couplings to tops
and to bottoms/taus and compare theoretical expectations with data through an intuitive simplified scenario
where only ct,cb are free to vary, and all other couplings are fixed to their SM values.

In SUSY have (at least) a 2HDM. 
Useful way to think about the 
physics: Gupta, Montull, Riva 
1212.5240. Go to Higgs vev 
basis, rather than mass basis.

Eigenstate with VEV has SM couplings. Deviations in 
fermion couplings ~ v2/mH2 suppressed.

MSSM:

4

III. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

The technique of the previous section can be applied also to the tree-level contribution of the Minimal
Supersymmetric Standard Model (MSSM)2. The only contribution to the quartic potential comes from the
D-term which, for the SU(2)L ⇥ U(1)Y MSSM gauge group, reads

�VMSSM =
g2 + g0 2

8

�|H0
1 |2 � |H0

2 |2�2 =
g2 + g0 2

32

�
(c2� � s2�)

2h4 + 8(c2� � s2�)s�c�h
3H + · · · � (12)

with c� ⌘ cos� and s� ⌘ sin� and in what follows we shall also use t� ⌘ tan�. This defines

�� =
m2

Z

16v2
(c2� � s2�)

2, (13)

� =
m2

Z

2v2
s�c�(c

2
� � s2�). (14)

From Eq. (10), this gives

cb ⇡ 1 � m2
Z

2m2
H

sin 4� tan� (15)

ct ⇡ 1 +
m2

Z

2m2
H

sin 4� cot�. (16)

which coincides with the usual decoupling limit of the MSSM [18] with the identification mH ⇡ mA (which
is accurate for mA,H � mZ or in the large tan� limit), and we will use in what follows in the comparison
between exact and approximate results. At the same time, Eq. (13) provides the well known contribution
to the Higgs mass m2

h = m2
Z cos2 2�; this tree-level result is modified by loop e↵ects, in particular from top

quarks/squarks, which we consider in what follows.

A. Top Squarks with no mixing

We begin with the case of top squarks with no mixing (realized in popular SUSY breaking mechanisms such
as gauge mediation and gaugino mediation where a small trilinear coupling is expected [19]). The dominant
loop contribution to the scalar e↵ective potential is [18, 20],

�Vstop =
�2

2
|H2|4 , (17)

where,

�2 ⇡ 3y4t
8⇡2

log[mt̃1
mt̃2

/M2
t ] (18)

(a more accurate expression can be found in Appendix II). After rotating into the basis of Eq. (2) one identifies

�� = s4�
�2

8
(19)

� = �4s3�c�
�2

8
. (20)

From Eq. (18) and from Eq. (19) it follows that, in order to obtain a Higgs mass compatible with experiment,
multi-TeV stop masses are required. Such heavy stops also destabilize the EW scale through loop e↵ects and

2 In this case, h and H can be thought of as the eigenstate of the mass matrix before electroweak symmetry breaking.
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FIG. 4: Same as FIG.2, but for near maximal mixing and, again, we adjust
p
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mt̃2
2 [550, 2000] GeV in order to

obtain the observed Higgs mass. We take xt =
p
6± 0.1 for the blue/red curve in order to show the influence, for large

tan�, of small deviations from maximal mixing; µ = 400GeV.

mixing discussed in the previous paragraph. As mentioned above, this term is maximized by large mixing,
with drastic e↵ects and the stop mass can be as low as 550 GeV in this case. Nevertheless, a fine-tuning at
the percent level persists due to the fact that large At terms also contribute to the Higgs mass-parameter [21].

Unfortunately, for a generic choice of µ and At, the multitude of parameters introduced by mixing weakens
the Higgs mass/coupling connection as shown by Eq. (25) where sizable �5,7 can a↵ect the Higgs couplings
without contributing to the Higgs mass. We show this e↵ect in Fig. 4 where we consider small deviations from
maximal mixing: departures from �7 = �MaxMix

7 = 0 are enhanced at large tan� & 20 and the contribution
to � and to our predictions can be seizable. Nevertheless such large values of tan� are already in tension
with rare B processes, such as Bs ! µ+µ� [26], and with direct searches for H/A ! ⌧̄ ⌧ [59], so that we do
not expect our results to change significantly in the intermediate tan� region, where our bounds are more
competitive, see Fig. 3.

IV. EXTRA D-TERMS

As discussed above, a 125 GeV Higgs in the MSSM is generally associated with fine-tuning. This suggests
that the principle of SUSY, if realized at low energy in a natural way, extends beyond the MSSM, with
new tree-level e↵ects contributing to the Higgs quartic. The first possibility is to envisage additional gauge
symmetries that contribute to the Higgs quartic, similarly to the MSSM gauge group [19, 23, 27]. In this
section we study the example of an additional abelian gauge group under which H1 and H2 have opposite
charges (as compatible with the µ-term). Then, the extra contribution to the Higgs sector quartic3

�V = 
�|H0

1 |2 � |H0
2 |2�2 (26)

3 The form of the potential in Eq. (26) holds also for the non-abelian extension considered in Refs [23, 27].
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where,

 =
g2X

8(1 +
M2

Z0
2m2

�
)
. (27)

Here m� is the soft SUSY breaking mass of the MSSM singlets that breaks the U(1)X group (with gauge
coupling gX) and MZ0 the SUSY-preserving mass of the gauge boson. Eq. (27) shows that, in the limit
MZ0 � m�, the Z 0 can be supersymmetrically integrated out and the D-term contribution of the U(1)X
group decouples: non-decoupling D-terms require a large soft mass m� ⇠ MZ0 and result in an e↵ective hard
breaking in the Higgs sector.

The contributions to �� and � are similar to Eqs. (13,14), with the substitution m2
Z/v

2 ! 4. In the absence
of other e↵ects that a↵ect the Higgs mass (we assume the loop e↵ects of Eqs. (20,24) to be subdominant), we
can fix  in order to obtain the observed Higgs mass 4, we can then write

cb ⇡ 1 + 2
m2

h

m2
H

t2�
t2� � 1

(28)

ct ⇡ 1 � 2
m2

h

m2
H

1

t2� � 1
. (29)

meaning that, for tan� > 1, positive (negative) deviations are expected in cb (ct). For large tan� the
modifications in ct vanish, as usual, while those on cb asymptote to cb � 1 ⇡ (176GeV/mH)2. This is shown,
using the exact expressions from Appendix II, in Fig. 5. Di↵erently from Fig. 2, the global fit of Fig. 5 includes
the e↵ect of a light stop at 500 GeV (as opposed to the previous section, where heavy stops were necessary
to increase the Higgs mass, here this is taken care by the additional D-terms, and the stops can be naturally
light, see also Section VI). Masses mH . 300GeV can already be excluded, with better results in the small
tan� region (see also Fig. 3).

In principle we could relax the assumption that H1 and H2 carry equal and opposite U(1)X charges. In this
case, however, additional structure is needed in order to generate a µ-term. For example an extra SM singlet,
charged under U(1)X can generate this term by aquiring a non-vanishing vev. This extension, however, implies
additional contributions to the quartic potential from F-terms which, as we comment in the next-section, are
expected to dominate.

V. F-TERMS, THE NMSSM AND THE BMSSM

It is tempting to parametrize these new e↵ects using an e↵ective field theory approach with an expansion
in powers of the scale of physics beyond the MSSM (in the example of the previous section, this would be the
mass of the new gauge bosons MZ0). The most general such parametrization, however, lacks any predictive
power (peculiar directions in parameter space can be found where an increase in the Higgs quartic coupling
doesn’t imply modifications of the couplings [28]). Nevertheless, as shown in Ref. [29], the leading order e↵ects
in such an expansion have a very specific form5:

L5 =

Z
d2✓

✓
�1

M
(H1H2)

2 + Z �2

M
(H1H2)

2

◆
(30)

where Z = ✓2mSUSY is a dimensionless spurion that parametrizes SUSY breaking. This leads to additional
contributions to the scalar potential,

�V5 = 2✏1H1H2(H
†
1H1 +H†

2H2) + ✏2(H1H2)
2 + c.c (31)

4 Notice that as tan � ! 1, all contributions to the Higgs mass from D-terms vanish; hence these expressions have to be trusted
only away from this singular point: in FIG. 5 we show curves of constant gX (in the limit of large m� � MZ0 ) to show that
in the region of interest the parameters are under control.

5 For large tan� interactions at higher order in the expansion could be enhanced and dominate.
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FIG. 3: Exclusion plot in the mA, tan� plane for the MSSM with heavy stops (red), for models with additional non-

decoupling D-terms (blue) and F-terms (green); regions to the left of the lines are excluded. The shaded region corre-

sponds to bounds from direct searches [59]. Left: present data; right: longterm projection based on [39] assuming no

deviations from the SM, shaded region from Ref. [40] (the dashed part of the line corresponds to a region where �S is

bigger than 2 and non reaches the non-perturbative regime below approximately 10 TeV [21, 23]).

searches of the heavy Higgs decaying into ⌧ pairs, as performed by CMS [59]. As can be appreciated, analyses
of the light Higgs couplings o↵er a complementary search strategy in the intermediate tan� region.

B. Top Squarks with mixing

In the presence of sizable A-terms, L and R top squarks can mix, inducing additional contributions to the
Higgs e↵ective potential [20, 25],

�V mix =
�2

2
|H2|4 + (

�5

2
|H1H2|2 + �7|H2|2H1H2 + c.c), (23)

where the values of �2, �5 and �7 depend in particular on the parameter µ and the trilinear At and their
expression, at the one loop level, can be found in Appendix II. In the point of ‘maximal mixing’, when the
trilinear term is |At � µ cot�| = p

6mt̃ (where mt̃ is the geometric mean of the lightest stop masses), the
contribution to the Higgs mass proportional to �2 is maximized, while �7 = 0. Recasting the potential in the
h,H basis gives,

�� = s4�

 
�2

8
+

�5

4 t2�
+

�7

2 t�

!
, (24)

� = s3�c�

0

@�2

2
+

�5

2

 
1 � 1

t2�

!
+

�7

2

t2� � 3
q

t2� + 1

1

A , (25)

where it can be seen that for large tan� (which is necessary in the MSSM to maximize the tree-level mass),
the dominant contribution to the Higgs mass still comes from the first term �2, similarly to the case with no
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Figure 1. LHC bounds on the non-SM doublet admixture D and singlet admixture S in the

126 GeV Higgs particle. Green and yellow regions correspond to 68% and 95% C.L. allowed

by Higgs data fit.

where m2

Z = g2v2, µ = �s. We defined g2 = (g2
1

+ g2
2

)/2 ⇡ 0.52, where g
1

and g
2

are the

SM U(1)Y and SU(2)L couplings respectively.

Expanding around the vacuum yields the physical Higgs fields: three CP-even and

two CP-odd electrically neutral states, plus one charged Higgs. (An additional 2 neutral

and 1 charged degrees of freedom are the Goldstone bosons absorbed by the SM gauge

bosons.) For the CP-even fields, it is convenient to work in the basis (h0

v, H
0

v , h
0

s),

– 5 –

Figure 5. Fine-tuning vs. the singlet fraction S (left) and the non-SM doublet fraction D

(right) in the 126 GeV scalar, for � = 2 and various ranges of tan�. Green points satisfy

all constraints, while pink points satisfy all constraints except the LHC Higgs couplings

fit. Points shown in yellow satisfy all constraints, but lie in the “anomalous” region where

loop corrections can be important for definitively establishing vacuum stability as well as

consistency with LHC Higgs data.

– 16 –

Fits to Higgs couplings show that 
large mixing is not allowed; forces 
fine-tuning for mh = 126 GeV.



ONE-LOOP COUPLINGS: 
LOW-ENERGY THEOREM

The Higgs-gluon-gluon and Higgs-photon-photon 
couplings are related to beta function coefficients:

Let’s say, for instance, that m̃D dominates, and is 1 TeV, with ⌅ = 0.1, Mmess = 100 TeV

(which is consistent with
�
F ⇥ 100 TeV as well), mY = 2 TeV, and mS = 150 GeV. Then

we have:

m̃2
S = �2970 GeV2 ⇧ mscalar =

⇥
1502 � 2970 GeV ⇤ 140 GeV. (2.4)

So, this model is easily compatible with the sort of splittings we’re interested in.

2.2 Couplings to Gauge Bosons and Gauginos

Now we will integrate out Y and Ȳ and study the induced couplings of S to gauge bosons.

To keep things simple, we will assume that the mass of the Y s is dominantly supersymmetric.

In that case, we expect to find an e⇤ective operator of the form:

c

mY

�
d2⇤SW�W

� + h.c. (2.5)

Let’s work out the coe⌃cient c and then compute the resulting decays.

To compute the coe⌃cient, let me try to flesh out JiJi’s statement that it’s related to a

beta function coe⌃cient. Suppose we have a Lagrangian

L = � 1

4g2
Ga

µ⇧G
aµ⇧ . (2.6)

Then in fact g is a running coupling. In particular, suppose that we have fields at a scale M ,

with µ < M < ⇥, so that the beta function coe⌃cient changes from b below M to b + �b

above M . Then taking account of that threshold,

1

g2(µ)
=

1

g2(⇥)
+

b

8⌃2
log

⇥

µ
+

�b

8⌃2
log

⇥

M
. (2.7)

Now, the trick is to allow the threshold M to have spatial variation, M ⌅ M + ⇥M(x), which

will lead to a spatially varying coupling at the scale µ:

1

g2(µ, x)
=

1

g2(µ)
+

�b

8⌃2
log

M

M(x)
=

1

g2(µ)
� �b

8⌃2

⇥M(x)

M
. (2.8)

In our case, we have fermions with massmY +⌅S(x) and scalars with mass-squared |mY + ⌅S(x)|2,
implying that to leading order for all the fields we integrate out, ⇥M(x)

M = ⇤S(x)
mY

. The contribu-

tion of the chiral multiplets Y, Ȳ to the beta function of SU(3) is that of one supersymmetric

flavor for SQCD, i.e. b = +1, so we have a coupling:

⌅

32⌃2mY
SGa

µ⇧G
aµ⇧ . (2.9)

If I then canonically normalize my gluon fields and change their name to F , this becomes:

⌅�s

8⌃mY
SF a

µ⇧F
aµ⇧ . (2.10)
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LOW-ENERGY THEOREM
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In particular, if         depends on the Higgs,                    , 
then we extract an effective coupling:     

M(x) M = M(h(x))

�b

32�2
hGa

µ�G
aµ� ⇥ logM(v)

⇥v Shifman, Vainshtein, ....
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Things to note:

Minus sign: large mixing 
leads to opposite-sign 

couplings

Small numerator factor 
(for heavy stops): no 
longer nondecoupling

Intuition: in the highly mixed case, larger VEV means more 
mixing, splitting light and heavy stops more. The light one 
contributes more, and is pushed lighter, so the overall sign 
reverses.



DANGER IN LOOPS
Fermions generically cause Higgs vacuum stability problems 
(Arkani-Hamed, Blum, D’Agnolo, Fan 1207.4482)

and including N copies with identical couplings, the relevant RGEs read [48, 49]
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The RGEs for yc and ycn are similar to that for y and yn. The gauge beta functions are
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Vector doublets + triplet (“wino-higgsino”). For our “wino-higgsino” scenario, including N
copies with identical couplings and allowing for an additional singlet n, the relevant RGEs read [50]
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We take as initial conditions, at a scale µ = 100 GeV,

g
1

= 0.36
p

5/3, g
2

= 0.65, g
3

= 1.2, yt = 0.99, � =
m2

h

2v2
= 0.129. (A.5)

The vacuum stability cuto↵ scale ⇤UV is determined by [51]
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with the Hubble constant H = 70 km/s/Mpc = 1.5 · 10�42 GeV. We comment that for the problem
under study, Landau poles of the Yukawa couplings appear at much higher scales, beyond the scale
where the vacuum instability sets in, posing no additional constraint.
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Figure 2. Left: “vector-like lepton” model. Right: “wino-higgsino” model. The horizontal and vertical axes

correspond to the light and heavy mass eigenvalues, respectively. Pink bands denote the diphoton enhancement

µ�� . Gray bands denote the vacuum instability cut-o↵ ⇤UV . Dark is for y = y

c; pale is for y = 2yc. The

width of the bands (for both µ�� and ⇤UV ) correspond to varying the electroweak-conserving mass splitting

term �m (see Eq. (2.3)) from zero to one. Green dashed band, on the right, denotes the SUSY wino-higgsino

scenario.

100 110 120 130 140 150 160 170 180 190 200
250

300

350

400

450

500

550

600

650

700

mL1 [GeV]

m
L2

 [G
eV

]

vector doublet + singlet
N=2

µ
aa

=1.25

µ
aa

=1.5

µ
aa

=1.75
µ
aa

=2

6m=1 6m=0

6m=0

6m=1

RUV=10 TeV

RUV=1 TeV

100 110 120 130 140 150 160 170 180 190 200
250

300

350

400

450

500

550

600

650

700

ml [GeV]

m
h [G

eV
]

vector doublet + triplet
N=2

RUV=10 TeV

RUV=1 TeV

µ
aa

=1.25

6m=1 6m=0

6m=1

6m=0

µ
aa

=1.5

µ
aa

=1.75µ
aa

=2

Figure 3. Same as Fig. 2, but for N = 2 copies of vector like fermions.

3 Collider signals and electroweak constraints

The light charged fermions discussed in the previous section are produced through electroweak pro-
cesses with appreciable rates at hadron colliders. In this section we consider constraints and detection
prospects from current and upcoming searches, assessing charchteristic detection channels and provid-
ing rough estimates of the experimental sensitivity. We stress that our analysis is simplistic, and can
by no means replace a full-fledged collider study. Nevertheless, our estimates provide solid motivation
and concrete guidelines for a more dedicated study in the future, should the diphoton enhancment be

precision constraints on this field content, in the context of modified Higgs couplings.
8See Eqs. (2.2-2.3) and the discussion between them for the definition of y, yc, �m and �.

– 7 –

Any large deviation in hγγ 
coupling arising from fermions 
would imply a low cutoff to 
prevent rapid vacuum decay.



DANGER IN LOOPS
Large deviations from scalars in loops are also dangerous:
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Figure 4: Tree-level potential V (h, t̃ L , t̃R) along the subspace t̃ L = t̃R. We have fixed mQ = mU = 800 GeV and
adjusted Xt to produce A(hGG) = �ASM(hGG). The right-hand plot zooms in near the good EWSB vacuum where
hhi ⇡ 246 GeV and the stops have no VEV. A much deeper minimum is located near the D-flat direction where
the Higgs and stop VEVs are all equal. The barrier separating the two minima is shallow.

a bounce action S0
>⇠ 400, necessary for a sufficiently long-lived metastable vacuum to describe our

universe, occurs only for a light stop mass eigenstate below 70 GeV. Such a light stop is excluded by
LEP, even in the case of small t̃1� �̃0

1 mass splitting [59,60].

3.2 Inverting hGG with charged scalar color octets

Here we will consider a different possibility that does not involve large mixing effects. If we drop the
assumption of supersymmetry, we can consider charged scalar octets that have a mass that decreases
with increasing Higgs mass,

V = �µ2H†H +�H

Ä
H†H
ä2
+
Ä

m2
O ��HOH†H
ä

O†O+�O

Ä
O†O
ä2

, (16)

with �HO > 0. This is a simplified subset of the interactions that arise, for example, for the Manohar-
Wise scalar in the (8,2)1/2 representation of the Standard Model gauge group [61]. Other interactions
contract the SU(2) indices of H with those of O. There is no principled reason to ignore them, but we
restrict to a low-dimensional parameter space for ease of plotting the results and because we expect
it will capture the qualitative story of the interplay between vacuum stability and Higgs corrections.
Quantitatively, it could be worthwhile to explore the full set of operators, but this is beyond the scope
of this paper.

The Manohar-Wise representation contains both a neutral scalar O0 and a charged scalar O+; as-
suming they have the same mass, as they do with this simplified set of interactions with the Higgs,
one finds that they affect the Higgs decay widths as shown by the dashed purple curve in Figure 2,

vent a minimum-finding step from skipping over a shallow minimum and falling into a deep one.

9

Large trilinears (e.g. A-terms in SUSY 
theories) or large negative quartics 
both imply tree-level instabilities.

Can have rapid tunneling.
MR 1208.1765; earlier : Kusenko, 
Langacker, Segre hep-ph/9602414

One lesson: even though changing sign of hGG amplitude 
could preserve the rate, theories that do it are usually 
ruled out. Large hγγ enhancements are a priori unlikely.



NATURALNESS
An Observation

h h
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n�1)
⇥ ⇤ factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:

�
d4⇤

(2⇥)4
�1µ (2⇤µ + kµ1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(⇤2 �m2)((⇤+ k1)2 �m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in ⇤µ,
can only be proportional to kµ1 , because all dependence on the other momenta factors out of the integrand.

So, we can in fact drop every diagram with only one gluon connected on one side of a bubble. It’s tempting
to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesn’t work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i =
µ�̃i

hµ ii for all i.

In the + + +� case, we can make �i · �j = 0 by taking �i =
�4�̃i
h4 ii for i = 1, 2, 3 and �4 = �4�̃1

[4 1] . Thus, we can

discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.

The box diagram is:
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�
d4⇤

(2⇥)4
�1 · ⇤ �2 · (⇤+ k1) �3 · (⇤� k4) �4 · ⇤

(⇤2 �m2)((⇤+ k1)2 �m2)((⇤+ k1 + k2)2 �m2)((⇤� k4)2 �m2)
. (2)
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Higgs potential -μ2|H|2+λ|H|4: large quantum corrections 
to the mass2 term. Direct searches constrain them:

�m2
Hu

= � 3

8⇡2
y2t

⇣
m2

t̃L
+m2

t̃R
+ |At|2

⌘
log

⇤

TeV

.

Either the stop is light, or Higgs potential is finely-tuned.

Two stops (LH/RH), one sbottom (LH) should all be light!



THE DATA SO FAR
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Figure 9: A fit to BSM contact operators h ! �� and h ! gg, setting other Higgs couplings

to their SM values. We restrict priors to the range where e↵ects of new matter fields do not

‘overshoot’ the SM contribution [59]. Hatted couplings ĉ are normalized by corresponding SM

quantities, with positive ĉ�� corresponding to constructive interference with W loops and positive

ĉgg to constructive interference with top loops. We indicate lines along which new contributions

from color fundamentals (denoted generically as ‘squarks’) of varying electric charge would lie (cf.

Eq. (5.22)). The shaded regions are inaccessible when only one species contributes significantly.

a fundamental of SU(3)C , a heavy state of electric charge Q traces out a line in the space of

(ĉgg, ĉ��) shown in Fig. 9 with slope

ĉ��
ĉgg

' �0.6 ⇥ Q2 , (5.22)

the numerical prefactor arising from normalizing c�� by its SM value (compare Eq. (5.24)

below; see also [60] for a similar analysis).11 New contributions along these contours can

then be determined in terms of masses. Taking squarks, as an example:

ĉgg =
1

2

b
0

b
1/2

✓
m2

q

m2

q̃
1

+
m2

q

m2

q̃
2

� m2

qX
2

q

m2

q̃
1

m2

q̃
2

◆
, (5.23)

where bi is the coe�cient of a spin-i particle’s contribution to the beta function. For uncol-

ored doublets with physical masses m
˜i
1,2

and mass mi for the SM partner, we look directly

11The sign of the slope can be understood from the low-energy theorems: matter fields enter the QED
and QCD beta functions with the same sign, but interfere destructively with the dominant W loops in the
coupling with which we normalize ĉ�� (e.g. the top quark enhances gluon fusion but reduces h ! ��).
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Azatov & Galloway, fit in 
1212.1380 (updated post-
Moriond)

Consistent with SM! Puts 
bounds on new physics.



STOP BOUNDS FROM HIGGS
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A pair of stop masses is 
associated with a maximum Xt 
(property of 2x2 matrices: 
can’t have equal eigenvalues if 
nonzero off-diagonal term).

Fitting data with light stops 
requires a minimum Xt. Part of 
parameter space is simply 
ruled out; more is tuned, even 
running from only 10 TeV.
Even without direct searches, know stop/Higgs 
tuned by factor ~ 5 or more.

higgs mass tuning
higgs coupling tuning

5

10

5
10

J. Fan, MR, not yet published

Impact of NnLO K-factors?



A “NO-HIDE” THEOREM?
Model builders can build increasingly byzantine 
constructions to hide natural physics from direct searches, 
but anything enforcing naturalness must couple to the Higgs.

4

(a)

e�

e+

h

ZG0

(b)

e�

e+

h

ZZ

FIG. 1: Sample counterterm diagrams that depend on the
Higgs self-energy.

O(0.5%) uncertainty [15]. Thus Higgs boson coupling
measurements can constrain natural new physics for
generic top partners even when they are neutral under

the SM gauge group. To see the relevant e↵ects clearly,
consider the theory of Eq. (3) when all scalar top part-
ners, �i, are gauge singlets. In the limit m� � v, we may
integrate out the �i and express their e↵ects in terms
of an e↵ective Lagrangian below the scale m� involv-
ing only Standard Model fields with appropriate higher-
dimensional operators. At one loop, integrating out the
�i leads to shifts in the wave-function renormalization
and potential of the Higgs doublet H as well as opera-
tors of dimension six and higher. Most of these shifts
and operators are irrelevant from the perspective of low-
energy physics, except for one dimension-six operator in
the e↵ective Lagrangian:

Leff = LSM +
cH
m2

�

✓
1

2
@µ|H|2@µ|H|2

◆
+ . . . (10)

where the ellipses include additional higher-dimensional
operators that are irrelevant for our purposes. Match-
ing to the full theory at the scale m�, we find cH(m�) =
n�|��|2/96⇡2. Although this operator may be exchanged
for a linear combination of other higher-dimensional op-
erators using field redefinitions or classical equations of
motion, the physical e↵ects are unaltered. Below the
scale of electroweak symmetry breaking, Eq. (10) leads
to a shift in the wave-function renormalization of the
physical scalar h as in Eq. (2), with �Zh = 2cHv2/m2

�.
Canonically normalizing h alters its coupling to vectors
and fermions, leading to a measurable correction to, e.g.,
the hZ associated production cross-section

��Zh = �2cH
v2

m2
�

= �n�|��|2
48⇡2

v2

m2
�

. (11)

where we have defined ��Zh as the fractional change in
the associated production cross section relative to the SM
prediction, which by design vanishes for the SM alone.
Since n�|��|2 is required to be large in order to cancel the
top quadratic divergence, this e↵ect may be observable
in precision measurements of �Zh despite arising at one
loop.

While this e↵ective Lagrangian approach makes the
physical e↵ect transparent, naturalness dictates that
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FIG. 2: Scalar top-partner corrections to the Higgs associ-
ated production cross-section at a 250 GeV linear collider as
a function of the top-partner mass m� in the e↵ective the-
ory of naturalness of Eq. (3). Corrections are shown for
n� = 1, .., 6 top partners. Estimates for the measurement
precision of 2.5% [22, 23] and 0.5% [29] are also shown. It
is remarkable that with current precision estimates a large
portion of model-independent parameter space for Higgs nat-
uralness can be probed. In particular, if one compares with
the tuning estimates of Eq. (9), this broadly corresponds to
probing 10% tuned regions for a single scalar top partner and
close to 25% tuned regions for n� = 6 scalar top partners as
in SUSY. Optimistically, if the precision could be improved to
��Zh ⇠ 0.1%, then virtually all parameter space for generic
natural scalar theories with up to ⇠ 10% tunings could be
probed.

m� ⇠ v, and threshold corrections to Eq. (10) may be
large and a complete calculation is required. In the on-
shell renormalization scheme, the Higgs self-energy en-
ters through the counter-term part of the renormalized
e+e� ! hZ amplitude via the diagrams depicted in
Fig. 1. Thus the hG0Z and hZZ vertices receive correc-
tions from the Higgs wave-function renormalization.10

For scalar top partners the Higgs wave-function renor-
malization arises at one loop through scalar trilinear cou-
plings, which gauge invariance relates to the quartic ver-
tices, which are in turn directly relevant for the cancel-
lation of the quadratic divergences in �m2

h.
At one loop the e↵ective theory of naturalness defined

in Eq. (3) leads to a correction to the associated produc-
tion cross-section of the form [15]

��Zh = n�
|��|2v2
8⇡2m2

h

(1 + F (⌧�)) (12)

=
9�2

tm
2
t

2⇡2n�m2
h

(1 + F (⌧�)) (13)

10 See e.g. Ref. [31] for a complete list of SM Feynman rules.

Craig, Englert, McCullough 1305.5251:

Anything that modifies the Higgs wave function 
renormalization (anything coupling to the Higgs) should 
alter the Zh associated production rate. ILC could rule out 
naturalness at the 10%-tuned level. Is it enough?



RARE HIGGS DECAYS
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Figure 9: Left: fits to the invisible Higgs boson branching fraction under the two di↵erent

assumptions described in section 5.8. The full fit (continuos curves) is well approximated by

the universal fit (dotted curves). Right: upper limit on the spin-independent DM cross section

on nucleons as a function of the DM mass for scalar (green), Majorana fermion (red) and

vector (blue) DM. We adopted the 95% C.L. bounds BR
inv

< 0.24 (solid, eq. (27)) and < 0.34

(dot-dashed, eq. (28)). The shaded region is excluded at 90% C.L. by Xenon100 [49].

5.8 Higgs boson invisible width

Next, we allow for a Higgs boson invisible width, for example into Dark Matter. We perform

two fits.

1. In the first fit, the invisible Higgs width is the only new physics. We find (blue curves

in fig. 9a) that present data imply BR
inv

= �0.07 ± 0.15. The one-sided upper bound,

computed restricting to 0  BR
inv

 1, is

BR
inv

< 0.24 at 95% C.L. (27)

2. In addition to the invisible width we also allow for non-standard values of h ! �� and

h $ gg, finding a weaker constraint on BR
inv

(red curves in fig. 9a)

BR
inv

< 0.34 at 95% C.L. (28)

The reason is that an enhanced gg ! h production rate can partially compensate for an

invisible Higgs width, but a full compensation would be possible only by enhancing all

production rates by the same amount. The Higgs coupling to vectors is independently

measured to agree with SM predictions from electroweak precision data.

Notice that the main constraint con BR
inv

does not come from the direct search for pp ! Zh !
`` /ET (included in our data-set) but from the global fit [8, 46].
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One exciting result of the relatively small SM Higgs 
couplings is that the Higgs could have a large width into 
non-SM (e.g. “hidden valley”),
even with small couplings.

Most familiar : invisible Higgs. 
Complementary to direct 
DM detection. Right: 
Giardino, Kannike, Masina, 
Raidal, Strumia1303.3570.
Many other possibilities: e.g. decays to dark photons, light 
pseudoscalars, exotic fermions.... Search broadly!
See Stefania Gori’s talk for more.



CONCLUSIONS
Higgs couplings provide a very interesting probe of new physics, 
complementary to direct searches. Directly probe naturalness.

Example: some light stops may not be excluded by direct 
searches if they decay in unusual ways, but they are excluded 
because they change ggH coupling.

Strongly-coupled models were already pushed by EWPT into a 
range where large deviations in Higgs properties are not 
expected. But Higgs offers a new set of EWPT observables.

The Higgs completes the SM; perhaps it will also be a window 
to beyond the SM.



HIGGS COUPLINGS FOR 
NATURAL MODELS

Two effects we’ve discussed impact the Higgs 
production and decay:

Mixing alters bb rate, thus changing all other smaller 
branching ratios. No signal: bad for λSUSY.

Loops alter gg and γγ couplings. No signal: bad for 
stops.

“Typically,” in natural models, would like to have seen 
effects ~20%.

_



WHAT NEXT?
It’s interesting that very conservative and general 
arguments already put most of our favorite models at at 
least ~20% tuning.

For composite Higgs, the S-parameter alone does 
approximately that.

For SUSY, absence of large stop loop corrections to Higgs 
properties also does approximately that.

In most specific models, combining constraints (e.g. direct 
searches) requires a much worse tuning!



STOP BOUNDS

1



GLUINO TO STOP BOUNDS
Great progress here. 
We have many 
complementary 
channels and the 
bounds are one of 
the biggest worries 
for natural SUSY.

But: Dirac gluino 
could be heavier and 
natural....

3



NATURAL HIDDEN SUSY?
This “split generations” scenario is increasingly constrained 
by stop & sbottom searches and has tension with flavor. 
But natural SUSY doesn’t require splitting the squark 
generations if they’re hidden.

Some ways to hide superpartners:
- decay through RPV
- decay through hidden valley (large multiplicity, less phase 
space for missing momentum)
- decay through lepton jets (special case of hidden valley)
- decay through stealth SUSY (another special case, with a 
nearly-supersymmetric hidden sector)
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STOPS WITH R-PARITY 
VIOLATION

Some experimental results are already appearing, e.g. CMS 
1306.6643 with LQD operator (muon/top/bottom)5

Table 2: Kinematically allowed stop decay modes with RPV coupling l0
233. The allowed neu-

tralino decay modes for mt < mec0
1
< met1

are ec0
1 ! µtb and nbb.

Label Kinematic region Decay mode
A mt < met1

< 2mt, mec0
1

et1 ! tnbb
B 2mt < met1

< mec0
1

et1 ! tµtb or tnbb
C mec0

1
< met1

< mW± + mec0
1

et1 ! `nbec0
1 or jjbec0

1
D mW± + mec0

1
< met1

< mt + mec0
1

et1 ! bW± ec0
1

E mt + mec0
1
< met1

et1 ! tec0
1

1000 GeV in 50 GeV steps and bino masses 200–850 GeV in 50 GeV steps. In both cases, slepton
and sneutrino masses are 200 GeV above the bino mass. Other particles are irrelevant to the
interpretation of our results in these models.

To calculate our limits, we divide the channels shown in Table 1 by lepton flavor and perform
a counting experiment using the observed event yields, the background expectations, and the
signal expectations as inputs. We combine the limits from the channels with the highest in-
dividual sensitivities, which we require in aggregate to contain at least 90% of the signal ac-
ceptance at the relevant model grid point [14]. We use the LHC-type CLs method in the limit
calculation, which uses the ratio of profiled likelihoods as the test statistic [38, 39]. We introduce
log-normal nuisance parameters to account for uncertainties on the signal and background es-
timates.

For all of the couplings, we expect two bottom-quark jets and up to two leptons from the two
top quarks. For the leptonic RPV coupling l122, we also expect four electrons or muons. For
leptonic coupling l233, we expect four leptons with up to two muons and the rest tau leptons.
We use all tau lepton decay channels. For the semileptonic coupling l0

233, we expect up to two
muons, as well as two top quarks and two bottom quarks.

In the models with leptonic couplings, we find that the limits are approximately independent
of the bino mass, and, using the conservative minus-one-standard-deviation result where the
bino mass is 200 GeV, we are able to exclude models with the stop mass below 1020 GeV when
l122 is non-zero, and below 820 GeV when l233 is non-zero. These limits are shown in Fig. 2.
There is a change in kinematics at the line mec0

1
= met1

� mt, below which the stop decay is two-
body, while above it is a four-body decay. Near this line, the ec0

1 and top are produced almost
at rest, which results in soft leptons, reducing our acceptance. This loss of acceptance is more
pronounced in the l233 6= 0 case and causes the loss of observed sensitivity near the line at
mec0

1
= 800 GeV. This feature is enhanced in the observed limit because the data has a lower

number of events in the relevant signal regions than the simulated signal samples.

In the semileptonic RPV model, which has non-zero l0
233, the kinematics of the decay are more

complicated. These different kinematic regions are described in Table 2. The most significant
effect is when the decay c0

1 ! µ + t+ b is kinematically disfavored, which reduces the number
of available leptons. The different regions where this effect is pronounced drive the shape of
the exclusion for l0

233. The area inside the curve is excluded. The observed limit is stronger
than the expected one, which allows the observed exclusion region to reach into the regime
where the bino decouples.

We have performed a search for RPV supersymmetry in models with top-squark pair produc-
tion using a variety of multilepton final states. We see good agreement between observations
and SM expectations. We set stringent limits on the top-squark mass in models with leptonic

6
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Figure 2: The 95% confidence level limits in the stop mass and bino mass plane for models with
RPV couplings l122, l233, and l0

233. For the couplings l122 and l233, the region to the left of the
curve is excluded. For l0

233, the region inside the curve is excluded. The different regions, A,
B, C, D, and E, for the l0

233 exclusion result from different stop decay products as explained in
Table 2.

Or 1302.0531 paired dijets 
(e.g. stop via UDD)

5

to dijets, and they are compared with calculations for the coloron model [8] described above.
At 95% CL we exclude pair production of colorons with mass mC in the range 250 < mC <
740 GeV, assuming that colorons have flavor-universal couplings and decay only into qq [10].
Assuming the branching fraction of colorons into qq is reduced due to competition with a
C ! S8S8 channel where mS8 = 150 GeV and tan q = 0.3 (the suppression factor of gluon
coupling to qq compared with the analogous QCD coupling) [10], we exclude pair production
in the range 250 < mC < 580 GeV. This analysis is not sensitive to the pair-produced S8, where
the color-octet scalars decay exclusively to qq. We also compare the results with those of a
SUSY model for pair-produced stops, where the stops decay exclusively to qq and R-parity
is violated [13, 14]. The calculation is done at next-to-leading order (NLO) with next-to-NLO
corrections [33–37].

Table 1: The acceptances for the coloron and stop models after applying all selection criteria.
Most of the variation in the acceptance as a function of resonance mass is due to the jet pT
requirement.

mass [GeV] 200 300 400 500 600 700 800 900 1000
coloron acceptance 0.4% 2.2% 5.2% 8.0% 9.6% 10.6% 11.6% 11.8% 12.1%

stop acceptance 0.9% 3.6% 7.9% 10.7% 12.9% — — — —
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Figure 3: The observed and expected 95% CL limits on the product of the resonance pair pro-
duction cross section, the square of the branching fraction to dijets, and the detector acceptance,
given by the solid and dot-dashed black curves, respectively. The shaded regions indicate the
1s and 2s bands around the expected limits. Predictions of a coloron model and a SUSY model
are also shown.

In summary, a search for pair production of a narrow dijet resonance has been performed with
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WHICH RPV?
RPV is a huge space of models. The “MFV RPV” framework  
(Csaki, Grossman, Heidenreich 1111.1239) and the 
“Bilinear RPV” case (only LH operators; Graham, Kaplan, 
Rajendran, Saraswat 1204.6038) seem like two of the 
most reasonable to me. Long lifetimes evade some 
bounds?

t̃

Ñ , g̃ t̄

b̄

s̄

t̃

C̃ b̄

b̄

s̄

Figure 10: Neutralino/gluino (left) and chargino (right) LSP decays.

left-right mass insertion. In this case, the partial widths �(b̃L ! ūid̄j) are

�ij ⇠ m
˜b

8⇡
y2b |�00

ij3|2 , (7.6)

giving a total lifetime

⌧
˜bL

⇠ (41 µm)

✓
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tan �

◆
6

✓
300 GeV

m
˜bL

◆
. (7.7)

Thus, displaced vertices are expected at low tan�, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.7

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately

�
˜N ⇠ m

˜N

128 ⇡3

|�00
tsb|2 , (7.8)

where we estimate a phase-space suppression of 1/16⇡2 for each additional final state particle.
The lifetime is then

⌧
˜N ⇠ (12 µm)

✓
20

tan �

◆
4

✓
300 GeV

m
˜N

◆
. (7.9)

As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
di↵erence, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

7If m
˜b
<⇠ mt, the phenomenology will be di�erent yet again, with displaced vertices more likely due the

reduced width, but no extra top production.
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Multi-jet resonances (possibly top+jets) as a signal of 
naturalness?
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RPV STOPS
Brust, Katz, Sundrum 1206.2353
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Figure 1. The sbottoms are pair-produced and undergo charged-current decay. When both W s
(either on- or off-shell) decay leptonically, they leave a spectacular signature of two leptons + jets,
which reconstruct two equal-mass resonances. We analyze this signal in Sec. 3 and 4.

invariant masses. Discard the event if the minimal possible mass difference is too big.

This step is essentially identical to the standard multi-jet resonances search [40].

Unfortunately our events with 2 leptons, MET and multijets have an appreciable back-

ground, on top of which we are looking for our bumps. This background is heavily domi-

nated by dileptonic tt̄ (including lτl decay modes). One can show that with an adequate

choice of cuts all other backgrounds (Z → τlτl + jets, DY dileptonic production with jets,

WW + jets) are highly subdominant to tt̄, and we will discuss it in more detail in the

next section. Production cross section for dileptonic tt̄ exceeds our signal by two orders of

magnitude, and even though the extra jets in these events do not come from resonances,

reconstructing “by accident” two pairs of jets with similar invariant masses is common.

The above mentioned steps, plus standard cuts for the overall hardness of the event, are

still not enough in order to see clear bumps on top of this continuous tt̄ background after√
s = 8 TeV run. We therefore use other, less standard discriminators to distinguish the

signal from the background.

There are two additional important features which distinguish our signal from the

background. Usually in a dileptonic tt̄ event, hardness of the entire event correlates with

the hardness of the leptons and the /ET . This happens because the W is often boosted in

the rest frame of the decaying top. However it is not the case in the signal. As we have

explained in Sec. 2, naturalness and visibility motivate mild splittings between the stop

and the sbottom, usually so small that they do not allow emission of the on-shell W . Even

if emission of the on-shell W is allowed it typically has little boost in the rest frame of the

decaying sbottom. This results in relatively small pT (l) and /ET even if the event overall

is very hard. We demonstrate the distribution of /ET and the transverse momentum of

the leading lepton in signal and background events on Fig. 2. This immediately suggest

that just cutting on the tail of high /ET and high pT (l1) should be a decent discriminator
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Figure 4. Signal and background events for the benchmark point 1 after L = 20 fb−1. Red
represents the signal, blue the dileptonic tt̄ background, violet is tt̄, lτl background and grey is
tt̄, τlτl background. On the LH side plot we do not impose b-veto, while on the RH side plot we
do. We conservatively assume b-tag efficiency ∼ 40%.

resonances, and smaller radius usually leads to losing relevant hadronic activity. The

clustering radius is not optimized, but radii of order R ∼ 1.0 are likely to be the most

adequate.

2. Demand precisely two isolated leptons (carrying more than 85% of the pT in the cone

around the lepton with radius R = 0.3) in each event. We demand pT (l1) > 20 GeV

and pT (l2) > 10 GeV.4 The leptons should have |η| < 2.5. We discard the event if the

leptons have same flavor and 81 GeV < mll < 101 GeV to remove the background

from Z + jets events.

3. Demand that the event is sufficiently hard, ST > 400 GeV as defined in Eq. (3.2)

and /ET > 35 GeV.

4. Require four or more hard jets in the event with pT (j4) > 30 GeV. This requirement

is natural since we are trying to reconstruct two resonances of t̃1, which both decay

into two quarks.

5. Using the variables in Eq. (3.3), demand r/ET
< 0.15 and rl < 0.15.

6. Try all possible pairings between four leading jets, and pick up the combination

which minimizes the difference between the reconstructed invariant masses. Discard

the event if the minimal possible mass difference is bigger than 10 GeV.5 If the event

4The logic of the cut on the pT of these leptons is dictated by trigger demands. Unfortunately the

trigger information is not public. However relying on the logic of
√
s = 7 TeV run, we hope that the events

with these leptons should be triggered on with sufficiently high efficiency, namely more than 90% [29].

Parenthetically we notice that if the threshold on the pT of the leading lepton can be lowered, the results

that we performed can be further improved. Moreover, some of the events can be triggered on because they

have sufficient HT or 4 or more sufficiently high-pT jets. We do not try to take into account the events

which do not pass these lepton requirement, however lots of them can be “salvaged” since they pass other

triggers and the ideal search will have to combine several different triggers.
5These cuts are not optimized, but it is also not very different from 7.5% of the resonance mass which

was used in [37] . We explicitly checked our results with respect to variation of this cut. The results are

rather stable as long as this cut does not exceed ∼ 25 − 30 GeV. We leave further optimization of these

cuts to the experimentalists as it is also going to be affected by jet energy resolution.
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Figure 2: Left: Limits on two-body decays of the stops. The thick black curve is the stop pair-production

cross section [90]. For decays to a lepton and a quark (LQD) we present the limit from the CMS search

for second generation leptoquarks [44] for the LQD232 case. A similar limit applies to the LQD131 case

based on the search for first generation leptoquarks [44]. These limits cover the analogous cases with

b-jets (LQD233 and LQD133) as well. We also present the limit from the CMS search for third generation

leptoquarks [45] relevant to the LQD333 case. In the LQD332 case, which does not have a dedicated search,

we obtain a limit from the ATLAS searches for 2⌧+jets+MET [72, 73] and the CMS search for opposite-

sign (OS) dileptons+MET (with ⌧ ’s) [55], and at low masses from the tt cross section measurements in the

dilepton channel [46, 47]. For decays to pairs of jets (UDD), the limits from the ATLAS searches [41, 42]

and the CMS search [43] are shown (the dashed lines are the expected limits). None of the other searches

we examined has appreciable sensitivity to these UDD3jk decays. Right: in the context of the CMS paired

dijets search [43], distributions (normalized to 1) of the average mass for the coloron model [91] used in [43]

and our UDD312 stop signal, both for m = 320 GeV.

as a signal hypothesis in that CMS search. The limits derived in that search can only be translated

onto stops (after including the selection e�ciencies) because these distributions have approximately

the same shape.13 As we show in figure 2 (left), this search sets no limits on the stop (whose cross

section is much smaller than that of the coloron, due to both spin and color), neither do the ATLAS

searches at lower masses. These decays to two jets, even if one of them is a b-jet, also receive no

appreciable limits from any of the other searches we examined.

13From our communication with CMS, we understand that future versions of their analysis may use a di↵erent
model for the coloron. If this changes the width of the coloron bump, then it will be impossible to do this kind of
re-interpretation. For the ATLAS search, whose updated version [42] has appeared just recently, we did not do full
simulation, and the presented limit assumes the cut e�ciencies and width of the stop bump to be identical to those
of the “sgluon” of [42]. Ideally, CMS and ATLAS would include the RPV stop as one of the benchmark models for
which they optimize the searches in this final state.
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Figure 6: Limits on stops decaying via other superpartners (see legend) in the presence of UDD operators.

For the 212 and 213 couplings, the first intermediate particle is either very heavy (dotted curves), 10%

heavier than the stop (dashed) or 100 GeV lighter than the stop (thin solid: �̃0, �̃± ! RPV, thick solid:

�̃± ! �̃0 ! RPV). For 312 and 323 couplings (through which the stop can decay directly), the Higgsino

(bino) is taken to be 100 GeV (200 GeV) lighter than the stop. For 212 and 213 couplings, the tt cross

section measurements [46, 47] have the best sensitivity at low masses (except for the Higgsino case with

�̃± ! �̃0). For the 312 and 323 couplings, the limits on the H̃-mediated cases with �̃± ! �̃0, and

B̃-mediated cases, are set by SS dileptons [61, 63, 64].

(a source of E/T ). The weakest limits are obtained for the 123 and 233 couplings when the mediator

is a heavy wino, where the dominant signature is a pair of opposite-sign taus, two b-jets and E/T
(in appendix A, we explain why this final state dominates for winos much heavier than the stop).

For LQD couplings that do not involve the stop (table 2, figure 4), the limits are weaker than in

the LLE case because there are fewer leptons. For light-lepton LQD couplings (221 and 123), gluino,
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Figure 3: Limits on stops decaying via other superpartners (see legend) in the presence of LLE operators.

The first intermediate particle is either very heavy (dotted curves), 10% heavier than the stop (dashed) or

100 GeV lighter than the stop (thin solid: �̃0, �̃± ! RPV, thick solid: �̃± ! �̃0 ! RPV). In most cases,

the best limits are set by multilepton or same-sign (SS) dilepton searches, in particular [7, 61, 64, 65, 70].

In heavy W̃ cases with 122 or 231, and H̃-⌧̃R cases with �̃0, �̃± ! RPV, the best (or comparable) limits

are set by the leptonic mT2

search [51], supplemented by the tt cross section measurements [46–48] at low

m
stop

. Searches for 1 or 2⌧+jets+MET [71–73, 55] are comparable to the SS dilepton searches in the 123

heavy W̃ case and provide the best limits on the 233 heavy W̃ case. The 2⌧+jets+MET searches [72, 73]

also sets the best limits in the 233 H̃-⌫̃⌧/⌧̃L case with �̃± ! �̃0 transitions.

an o↵-shell top the five-body decay would likely be displaced (assuming in the B̃ case that the

sleptons are not much lighter than 200 GeV).

For LLE couplings (table 1, figure 3), in almost all cases, we find that the lower bounds on the

stop mass are as high as 600-700 GeV, beyond the natural range for stops. These strong limits
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STOPS IN STEALTH SUSY
Unlike the minimal “stealthy stop” scenario,              with 
the stop mass just above the top mass, here we mean a 
cascade through a stealthy “hidden sector.”

t̃ ! t�̃0

An Observation

SUSY

MSSM Stealth

Mediation

" coupling

(Portal)

Absent or
suppressed coupling

M
SUSY

⇠ M
EWK

M���
SUSY

⇠ �M
EWK

production

cascade
NLSP

G̃

SM partner

cascade
NLSP

G̃

SM partner

Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n�1)
! � factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:
Z

d4�

(2⇡)4
✏1µ (2�µ + kµ

1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(�2 � m2)((� + k1)2 � m2)
. (1)

1

Figure 1: A schematic of the sectors involved in a general stealth model. Flavor-blind mediation
gives rise to standard MSSM soft SUSY-breaking terms, but the soft terms in the stealth sector are
suppressed relative to this. The MSSM and the stealth sector are weakly coupled, and the size of soft
terms in the stealth sector is suppressed relative to the supersymmetric mass scale of the stealth sector
by a weak-coupling factor.

as the splittings are su�ciently small and the typical multiplicity is low, SUSY can still be

hidden at colliders.)

2.2 Stealth SUSY Is Not Compressed SUSY

It is well-known that, for standard gravity-mediated MSSM spectra, collider signals are more

di�cult to observe as the masses are compressed. For instance, a gluino decaying to a bino

and two quarks, g̃ ! qq̄B̃, is most constrained if the bino is nearly massless, in which case

a significant fraction of the gluino’s energy goes into invisible momentum from the bino. As

the mass splitting is reduced, the typical missing energy in the event is reduced, and limits

from LHC searches grow weaker. Recent discussions of limits on compressed scenarios can

be found in [22]. Superficially, stealth SUSY might sound like a special case of compressed

SUSY: mass splittings are small, missing E
T

is reduced, and limits are weaker. However,

there is a crucial kinematic di↵erence, associated with the fact that in standard compressed

SUSY, the invisible particle is a heavy decay product, whereas in stealth SUSY the invisible

particle is very light. This ensures that the reduced missing E
T

of stealth SUSY is much

more robust against e↵ects like initial state radiation.

To clarify this di↵erence, we will review some basic relativistic kinematics and rules-of-

thumb for hadron collider physics. First, consider the decay of a heavy particle of mass M to

a particle of mass m = M � �M and a massless particle. In the rest frame, the momentum

– 4 –

Inside the hidden sector, 
a near-degeneracy of R-
odd and R-even particles 
(due to approximate 
SUSY) leads to small 
missing momentum.
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Figure 1: Stop decay.

One step in this project is to understand bounds on squark/higgsino/singlet and gluino/squark/higgsino/singlet
simplified models. The first part of this step is to understand the mass spectrum and decays for just higgsinos and
the singlino/singlet fields. Among the questions we want to answer are:

• What are the branching ratios for H̃ 0
1 ! S̃+Z and H̃ 0

1 ! S̃+h? (Presumably � is suppressed)?

• Does the charged Higgsino decay as H̃±!W ±⇤H̃ 0
1 , or does it prefer to decay to S̃+W ±? The former is phase-

space suppressed and the latter is suppressed by a small coupling. How small does the coupling have to be
for these to be comparable decay widths?

• Then there’s the analogous question about the heavier neutral Higgsino H̃ 0
2 .

1

In stealth SUSY models, the signal of stops might be tops + 
extra jets (possibly with weak bosons). Also 1st, 2nd gen 
squarks: many-jet events, possibly with weak bosons. 31

(off shell?)


