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The organizers asked me to

non-SUSY approaches™

A big topic! There are many
models of both types.

I discuss the two general I

bresent a

REVIEW TALK about "Strongly interacting
bhysics versus weakly interacting SUSY and/or

new physics

eas | think are

most plausible: composite

in light of data.

iggs and SUSY.

Both are becoming at least moderately tuned



A COMPOSITE HIGGS

A generic composite Higgs would come with many other
composlite resonances. SO we usually consider composite

Higoses that are pseudo-Nambu-Goldstone bosons.

(Georgl, Kaplan 80s; recent review: R. Contino, 1005.4269)

G—f>/—/

SR @S > 50)(4): one complex IHiges doublet.



EVWSB FOR COMPOSITES

A potential Is generated for the Higgs by G-violating
couplings. Usually this is done with elementary top quarks
coupled to composite top-like fermions.

a\? b2
1672 cos(h/f) 1672

V(h) sin®(h/ f)

Both terms contain h? and h* pieces, so v << f'is always a
tuning; —2cos(h/f) — (1 + €)sin®(h/f) = (h)° ~ 2¢f?

(Exception: “little Higgs™ theories with extended symmetry structure.)

Expect v/f corrections to be large, if EWSB is
natural.



BVHIERE IS [ RE SCACES

Before even looking at Higgs properties, we had strong

bounds on the composite scale, e.g. from the S-parameter:

1 | |
~ —H'c'HW} ,B*
ity

or S = 4m(v/mp)?. This puts the resonance masses at about
3 TeV or above.

Implies some tuning, e.g. the quadratically divergent W loop:

-g°m?2 2 (250 GeV)®

Also via m, ~ 4w f/V N it means minimum factor ~3 tree-
level tuning of the Higgs potential.



COMPOSITE HIGGS
COUPLINGS

The lighter the composites, the more they affect Higgs
couplings. E.g. coupling to vectors (see e.g. recent Azatov/Galloway

review 1212.1380):
i gvvh 1 U_2
9VVh<SM> e

Gliven the S-parameter bound on f, this correction ends up

at ~6% for N = 3 and mp = 3 IeV. So it's not surprising
there's no deviation observed.

Interestingly, Goldstone shift symmetry favors larger deviations In Ly
than yy or gg. Choose good basis: Omw = o (D*H)''(D"H)W,

(Giudice et al. hep-ph/0703 1 64; Montull et al. |308 0559; Azatov et al. 1308.2676)



A LESSON!?

Strongly-interacting new physics predicts a large set of

new hig
already

ner-dimension operators, many of which were
nighly constrained. May have a large “footprint’ in

terms of signals showing up across a number of channels.

Weakly-interacting new physics can predict more localized
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WHY LIGHT TOP PARTNERS!

Elementary/composite mixing for top: AzgrOr + h.c.

Puzzles: |. need large top Yukawa; operator of dim 5/2!
2. why a light bound state?

~~~~
< 2N 2N
4 N & N
’ s / ,
’ 1 Y 1
L \ 1 L \ 1

[ 4 [ 4
2
&2A &
omn~ 5—=m 6m~(12ﬂ_3 M

R e i () () 15(951) o —15(—551)71

Bulk naturalness puzzle™ 5D fermions are unprotected by
chiral symmetry. Mass terms violate parity, but it's broken by
heavier masses. Why a light bulk fermion? (6D¢ 10D?)

(Could have light bound states from anomaly matching: example in hep-ph/03 12287,
“A Composite Little Higgs Model,” by E. Katz, |. Lee, A. Nelson, D. Walker)




FERMIONIC TOP PARTNERS

recent survey of models / imits in |21 1.5663: de Simone, Matsedonskyi,
Rattazzi, Wulzer

: : : V
Single production can be important: — X
\ < b
Am2~y202{—?
Am2~y2f2{
5 Xa/3
Am* =0 —X5/3
t

Figure 11: Maxmal and minimal bounds on the masses of top partners for y € [0.3,3], ¢; € [0.3,3] and
¢ € [0.1,0.3] for the models M45, M15 (left pannel) and M4;4, M1, (right pannel). Blue and green bars
correspond respectively to high and low values of y. Black dashed lines correspond to the exclusions for the
reference values £ =0.1,¢c; =1, y = 1.

Want below | TeV for tuning: Panico, Red, Tesi, Wulzer 1210.71 |4



LIT TLE HIGGS

_ittle Higgs models have an extra symmetry, naturally
barametrically separating f and v. EWPT can be protected

with T-parity (similar to SUSY with R-parity).

—ere t
Dartne

nere are generally new elementary fermionic top

rs. At least 20% tuning (Berger, Hubisz, Perelstein

1205.0013).

Pay a price In model complexity, and still we haven't seen
top partners.



SUSY: TREE-LEVEL HIGGS
COUPLINGS

n SUSY have (at least) a 2HDM. (B (B

Useful way to think about the A ;7 f
physics: Gupta, Montull, Riva A
1212.5240. Go to Higgs vev N
basis, rather than mass basis. /

Cigenstate with VEV has SM couplings. Deviations In
fermion couplings ~ v//mH* suppressed.

2

27:122 sin48tan8 enhances other branching
H -
ratios

NMESRE o ~ 1




TREE-LEVEL 2HDM EFFECTS

Even though these are weakly-coupled theories,
corrections can be very important. Affecting the Higgs
coupling to b quarks can dramatically change other branching
ratios. In SUSY, can be correlated with mp = 125 GeV.

N Gupta, Montull, Riva 1212.5240

10

Exclusion to left of lines, depending on source

| | of new Higgs quartic
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) blue: D-terms av =« (1592 - |52P?)’
l( oreen: F-terms &= [ @ (§ronm + 25y )
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NMSSM TROUBLE!?

Farina, Perelstein, Shakya 1310.0549: look at ASUSY
(Barbieri/Hall/Nomura/Rychkov), where ASH.H4 coupling is
large.

-Its to Higgs couplings show that
arge mixing Is not allowed; forces
fine-tuning for mpy = 126 GeV.
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ONE-LOOP COUPLINGS:
L OW-ENERGY [HEOREM

The Higgs-gluon-gluon and Higgs-photon-photon
couplings are related to beta function coefficients:

Gauge theory: L= —4“—5}2GZVG‘W

Run from A down to p with an intermediat

threshold p# < M < Aat which the beta fu
changes from b to b+ Ab.

RG:

e
nction



L OW-ENERGY [HEOREM

Suppose the mass threshold is actually a function
of space and time:

M — M+6M(z)

Then we have a spatially varying sauge coupling:

. M, M Ab §M ()
gl ) B Gl SR ) S

n particular; If M(x) depends on the Higgs, M = M (h(x)),
then we extract an effective coupling:

Ab 0log M (v)
a apv
S G & ov

Shifman, Vainshtein, ....



STOPS

i fﬁé e (ytZ N 0(92)) v YU sin BXy
g yrv sin Xy my, + (%2 g5 0(9/2)) v

Here X; = A; — pcot 8,the O(g?) parts are D-terms | will
nereafter ignore, and the key point is that the Higgs
VEV appears in both diagonal and off-diagonal

terms.

For large soft masses:

1(910gdet]\4£2 . ﬁzé—l—ﬁzi—stinQB
2 v il mZm2 — X7m3 sin® 3




STOPS

Things to note:
1 0logdet M? N@Thé - ﬁzi@XtZ sin? 3

2 v : mgmZ — X7m3 sin® 3
Small numerator factor Minus sign: large mixing
(for heavy stops): no leads to opposite-sign
longer nondecoupling couplings

nturtion: In the highly mixed case, larger VEV means more
mixing, splitting light and heavy stops more. [ he light one
contributes more, and Is pushed lighter; so the overall sign
e erses,




DANGER IN LOOPS

Fermions generically cause Higgs vacuum stability problems
(Arkani-Hamed, Blum, D’Agnolo, Fan 120/.4482)

dA

0 2
167r2E — (24)\ O L % +12y7 + 4N (v2 + ¥y +y* + y02)@ @ Lol @— 6y

3 392\ 2
iz (293 e (g% o %) ) . (A1)

A =1 A =0
m m
¥ _¥

Any large deviation In hyy
coupling arising from fermions
would imply a low cutoff to
prevent rapid vacuum decay.

m, [GeV]
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DANGER IN LOOPS

Large deviations from scalars in loops are also dangerous:

_arge trilinears (e.g. A-terms in SUSY
theories) or large negative quartics
both Imply tree-level instabllities.

;L = ;R [TCV]

Can have rapid tunneling.
MR 1208.1765; earlier: Kusenko,

_angacker, Segre hep-ph/96024 |4

One lesson: even though changing sign of hGG amplitude
could preserve the rate, theories that do It are usually

ruled out. Large hyy enhancements are a priori unlikely.




NATURALNESS

o~
W
1
W T
1

Higgs potential -p2|H|2+A|H|" large quantum corrections
to the mass? term. Direct searches constrain them:

3 A
e 2 2 2 2
5mHu = T3 (h (me o T | Ay ) log TV

Erther the stop Is light, or Higgs potential Is finely-tuned.

ITwo stops (LH/RH), one sbottom (LH) should all be light!
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THE DATA 5O FAR

Combined Likelih(‘)ods:‘ ATLAS + CMS + Tevatrqn
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STOP BOUNDS FROM HIGGS

A pair of stop masses Is e N N
. . , o :hlggs mass tuning " |
assoclated with a maximum X; w0 {1 /higgs.coupling tuning'x
(property of 2x2 matrices: oo H- |
can't have equal eigenvalues if IR B M
. R : : ,'.// \\\ ,7\\
nonzero off-diagonal term). T N
. . . 8 \/\/ \\\
Fitting data with light stops AN
requires a minimum X Part of s
iy S N [
parameter space Is simply A e~ S—
ruled out; more Is tuned, even 100 200 300 400 500 60 700 800
J. Fan, MR not yet published m; [GeV]

running from only 10 TeV.

Even without direct searches, know stop/Higgs
tuned by factor ~ 5 or more. [Impactof N'LO K-factors?



Model

A "NO-HIDE" THEOREM!?

ouillders can build increasingly
constructions to hide natural physics

Dyzantine
rom direct searches,

but anything enforcing naturalness must couple to the Higgs.
Cralg, Englert, McCullough |305.5251:
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One exciting result of the relatively sma
- the Higgs could have a

1077 £

couplings Is tha
(e.g.""hi
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RARE HIGGS DECAYS

dden valley"),

even with small couplings.

Most familiar: invisible Higgs.
Complementary to direct

DM detection.

Gilardino, Kanni
Raidal, Strumia

Right:
<e, Masina,

By
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| SM Higgs

arge width mto

DM mass in GeV

Many other possibilities: e.g. decays to dark photons, light
pseudoscalars, exotic fermions....

See Stefania Gori'’s talk for more.

Search broadly!



CONCLUSIONS

Higes couplings provide a very interesting probe of new physics,
complementary to direct searches. Directly probe naturalness.

Example: some light stops may not be excluded by direct
searches If they decay In unusual ways, but they are excluded

because they change goH coupling.

Strongly-coupled models were already pushed by EVWPT into a
range where large deviations in Higgs properties are not
expected. But Higgs offers a new set of EWPT observables.

The Higgs completes the SM; perhaps it will also be a window
to beyond the SM.



HIGGS COUPLINGS FOR
NATURAL MODELS

Two effects we've discussed impact the Higgs
production and decay:

Mixing alters bb rate, thus changing all other smaller
branching ratios. No signal: bad for ASUSY.

Loops alter gg and yy couplings. No signal: bad for
Stops.

“lypically,” in natural models, would like to have seen
effects ~20%.



WHAT NEXT?

[t's interesting that very conservative and general
arguments already put most of our favorite models at at
least ~207% tuning.

For composite Higgs, the S-parameter alone does
approximately that.

For SUSY, absence of large stop loop corrections to Higgs
properties also does approximately that.

In most specific models, combining constraints (e.g. direct
searches) requires a much worse tuning!



M_o [GeV]

STOP BOUNDS

t,t, production Status: EPS 2013
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M_o [GeV]

GLUINO TO STOP BOUNDS

ag production, g— ti;‘{?. m(@) >> m(g), \s =8 TeV

Lepton & Photon 2013
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Great progress here.

We
com

nave many

blementary

channels and the

But:

bounds are one of
‘he biggest worries
for natiicalfSIeEu

Dirac gluino

could be heavier and
natural....
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NATURAL HIDDEN SUSY?

This “split generations’ scenario Is Increasingly constrained

stop & sbo
natural SU

SY doesn't require splitting the squark
they're hidden.

tom searches and has tension with flavor:

Some ways to hide superpartners:
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nidden valley (large multiplicity, less phase

ng momentum)

N lepton jets (special case of hidden valley)
N stealth SUSY (another special case, with a

nearly-supersymmetric hidden sector)
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STOPS WITH R-PARITY
VIOLATION

Some experimental results are already appearing, e.g. CMS
| 306.6643 with LOQD operator (muon/top/bottom)

. . 3 : (s=8TeV, [Ldt=19.5fb"
Table 2: Kinematically allowed stop decay modes with RPV coupling A’,,. The allowed neu- — CN:S, —— ,s, , Ie, f ————
tralino decay modes for m; < Mzo < My are )E? — utb and vbb. E 1200F- Stop RPbV 7‘233 oot mne
- observe: % CLs Limits i
~ o Th tainty (NLO+NLL)—
Label Kinematic region Decay mode o000 000 pE ] S e exs:gelén;g;oagl_i (Limits+ )_‘
= = L ted 1 ) ]
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: § . paired dijets
10-2 E_ ~~‘ _E ]
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WHICH RPV?

RPV Is a huge space of models. T
(Csaki, Grossman, Heidenreich |
“Bilinear RPV" case (only LH ope

bounds!

S

F
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7
7
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N,§

naturalness?’

rato

ne “MFV RPV" framework

239) and the

rs; Graham, Kaplan,

Rajendran, Saraswat |204.6038) seem like two of the
most reasonable to me. Long lifetimes evade some

S
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7
7
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C

Vulti-jet resonances (possibly top+jets) as a signal of
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RPV STOPS

ERE <z, Stindrum | 206.2353
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STOPS IN STEALTH SUSY

Unlike

susy

Mediation

MSSM

al “'stealthy st
bove the t

the minim
DRSS

the sto
cascade through a s

just a

"'.,Absent or
suppreSsed coupling

@

MM ~ e Mewk

b’ scenario, t — tx° with
D Mass, here we mean a
realthy “hidden sector.”

Inside the hiddemfseciel
a near-degeneracy of R-
odd and R-even particles

(due to approximate
SUSY) leads to small
MIssINg momentum.
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STOPS IN STEALTH SUSY
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