Higgs Beyond the Standard Model: Expectations in Strongly vs Weakly Interacting Theories

Matthew Reece Harvard University at Higgs Couplings, Freiburg, October 2013 The organizers asked me 'to present a REVIEW TALK about "Strongly interacting physics versus weakly interacting SUSY and/or non-SUSY approaches"

A big topic! There are many new physics models of both types.

I'll discuss the two general ideas I think are most plausible: composite Higgs and SUSY.

Both are becoming at least moderately tuned in light of data.

A COMPOSITE HIGGS

A generic composite Higgs would come with many other composite resonances. So we usually consider composite Higgses that are **pseudo-Nambu-Goldstone** bosons.

(Georgi, Kaplan 80s; recent review: R. Contino, 1005.4269)

$G \rightarrow H$

E.g. $SO(5) \rightarrow SO(4)$: one complex Higgs doublet.

EWSB FOR COMPOSITES

A potential is generated for the Higgs by G-violating couplings. Usually this is done with elementary top quarks coupled to composite top-like fermions.

$$V(h) \sim \frac{a\lambda^2}{16\pi^2} \cos(h/f) + \frac{b\lambda^2}{16\pi^2} \sin^2(h/f)$$

Both terms contain h^2 and h^4 pieces, so $v \le f$ is always a tuning: $-2\cos(h/f) - (1+\epsilon)\sin^2(h/f) \Rightarrow \langle h \rangle^2 \approx 2\epsilon f^2$ (Exception: "little Higgs" theories with extended symmetry structure.)

Expect v/f corrections to be large, if EWSB is natural.

WHERE IS THE SCALE?

Before even looking at Higgs properties, we had strong bounds on the composite scale, e.g. from the S-parameter:

$$\sim \frac{1}{m_{
ho}^2} H^{\dagger} \sigma^i H W^i_{\mu\nu} B^{\mu\nu}$$

or $S \approx 4\pi (v/m_{\rho})^2$. This puts the resonance masses at about 3 TeV or above.

Implies some tuning, e.g. the quadratically divergent W loop: $\delta m_h^2 \approx \frac{9}{64\pi^2} g^2 m_\rho^2 \gtrsim (250 \text{ GeV})^2$

Also via $m_{\rho} \sim 4\pi f/\sqrt{N}$ it means minimum factor ~3 treelevel tuning of the Higgs potential.

COMPOSITE HIGGS COUPLINGS

The lighter the composites, the more they affect Higgs couplings. E.g. coupling to vectors (see e.g. recent Azatov/Galloway review 1212.1380):

$$a = \frac{g_{VVh}}{g_{VVh^{(\mathrm{SM})}}} = \sqrt{1 - \frac{v^2}{f^2}}.$$

Given the S-parameter bound on f, this correction ends up at ~6% for N = 3 and $m_{\rho} = 3$ TeV. So it's not surprising there's no deviation observed.

Interestingly, Goldstone shift symmetry favors larger deviations in $Z\gamma$ than $\gamma\gamma$ or gg. Choose good basis: $O_{HW} = \frac{ig}{m_W^2} (D^{\mu}H)^{\dagger} \sigma^i (D^{\nu}H) W^i_{\mu\nu}$ (Giudice et al. hep-ph/0703164; Montull et al. 1308.0559; Azatov et al. 1308.2676)

A LESSON?

Strongly-interacting new physics predicts a large set of new higher-dimension operators, many of which were already highly constrained. May have a large "footprint" in terms of signals showing up across a number of channels.

Weakly-interacting new physics can predict more localized discrepancies. Because of this, Higgs measurements so far may tell us more *new* information about weaklyinteracting new physics than strongly interacting new physics (which was already quite constrained).

WHY LIGHTTOP PARTNERS?

Elementary/composite mixing for top: $\lambda_L q_L \mathcal{O}_R + h.c.$

Puzzles: I. need large top Yukawa; operator of dim 5/2? 2. why a light bound state?

"Bulk naturalness puzzle": 5D fermions are unprotected by chiral symmetry. Mass terms violate *parity*, but it's broken by heavier masses. Why a light bulk fermion? (6D? 10D?) (Could have light bound states from anomaly matching: example in hep-ph/0312287, "A Composite Little Higgs Model," by E. Katz, J. Lee, A. Nelson, D. Walker)

FERMIONIC TOP PARTNERS

recent survey of models / limits in 1211.5663: de Simone, Matsedonskyi, Rattazzi, Wulzer

Figure 11: Maxmal and minimal bounds on the masses of top partners for $y \in [0.3, 3]$, $c_1 \in [0.3, 3]$ and $\xi \in [0.1, 0.3]$ for the models M4₅, M1₅ (left pannel) and M4₁₄, M1₁₄ (right pannel). Blue and green bars correspond respectively to high and low values of y. Black dashed lines correspond to the exclusions for the reference values $\xi = 0.1$, $c_1 = 1$, y = 1.

Want below I TeV for tuning: Panico, Redi, Tesi, Wulzer 1210.7114

LITTLE HIGGS

Little Higgs models have an extra symmetry, *naturally* parametrically separating *f* and *v*. EWPT can be protected with *T*-parity (similar to SUSY with *R*-parity).

Here there are generally new elementary fermionic top partners. At least 20% tuning (Berger, Hubisz, Perelstein 1205.0013).

Pay a price in model complexity, and still we haven't seen top partners.

SUSY:TREE-LEVEL HIGGS COUPLINGS

In SUSY have (at least) a 2HDM. Useful way to think about the physics: Gupta, Montull, Riva 1212.5240. Go to **Higgs vev basis**, rather than mass basis.

Eigenstate with VEV has SM couplings. Deviations in fermion couplings ~ $v^2/m_{\rm H}^2$ suppressed.

MSSM: $c_b \approx 1 - \frac{m_Z^2}{2m_H^2} \sin 4\beta \tan \beta$ enhances other branching ratios

TREE-LEVEL 2HDM EFFECTS

Even though these are weakly-coupled theories, corrections can be very important. Affecting the Higgs coupling to b quarks can dramatically change other branching ratios. In SUSY, can be correlated with $m_h = 125$ GeV.

ONE-LOOP COUPLINGS: LOW-ENERGY THEOREM

The Higgs-gluon-gluon and Higgs-photon-photon couplings are related to beta function coefficients:

Gauge theory:
$$\mathcal{L} = -\frac{1}{4g^2}G^a_{\mu\nu}G^{a\mu\nu}$$

Run from Λ down to μ with an intermediate threshold $\mu < M < \Lambda$ at which the beta function changes from b to $b + \Delta b$.

RG:

$$\frac{1}{g^2(\mu)} = \frac{1}{g^2(\Lambda)} + \frac{b}{8\pi^2}\log\frac{\Lambda}{\mu} + \frac{\Delta b}{8\pi^2}\log\frac{\Lambda}{M}$$

LOW-ENERGYTHEOREM

Suppose the mass threshold is actually a function of space and time:

 $M \to M + \delta M(x)$

Then we have a spatially varying gauge coupling:

$$\frac{1}{g^2(\mu, x)} = \frac{1}{g^2(\mu)} + \frac{\Delta b}{8\pi^2} \log \frac{M}{M(x)} = \frac{1}{g^2(\mu)} - \frac{\Delta b}{8\pi^2} \frac{\delta M(x)}{M(x)} + \frac{\delta b}{M(x)} \frac{\delta M(x)}{M(x)} + \frac{\delta b}{8\pi^2} \frac{\delta M(x)}{M(x)} + \frac{\delta M(x)}$$

In particular, if M(x) depends on the Higgs, M = M(h(x)), then we extract an effective coupling:

$$\frac{\Delta b}{32\pi^2} h G^a_{\mu\nu} G^{a\mu\nu} \frac{\partial \log M(v)}{\partial v}$$

Shifman, Vainshtein,

STOPS

$$M_{\tilde{t}}^2 = \begin{pmatrix} \tilde{m}_Q^2 + \left(y_t^2 + \mathcal{O}(g^2)\right) v^2 & y_t v \sin \beta X_t \\ y_t v \sin \beta X_t & \tilde{m}_u^2 + \left(y_t^2 + \mathcal{O}(g'^2)\right) v^2 \end{pmatrix}$$

Here $X_t = A_t - \mu \cot \beta$, the $O(g^2)$ parts are D-terms I will hereafter ignore, and the key point is that **the Higgs VEV appears in both diagonal and off-diagonal terms.**

For large soft masses: $\frac{1}{2} \frac{\partial \log \det M_{\tilde{t}}^2}{\partial v} \sim y_t m_t \frac{\tilde{m}_Q^2 + \tilde{m}_u^2 - X_t^2 \sin^2 \beta}{\tilde{m}_Q^2 \tilde{m}_u^2 - X_t^2 m_t^2 \sin^2 \beta}$

STOPS

Things to note:

$$\frac{1}{2} \frac{\partial \log \det M_{\tilde{t}}^2}{\partial v} \sim \underbrace{y_t m_t}_{\tilde{m}_Q^2 \tilde{m}_u^2} - X_t^2 \sin^2 \beta \\ \frac{1}{\tilde{m}_Q^2 \tilde{m}_u^2 - X_t^2 m_t^2 \sin^2 \beta}_{\tilde{m}_Q^2 \tilde{m}_u^2 - X_t^2 m_t^2 \sin^2 \beta}$$

Small numerator factor (for heavy stops): no longer nondecoupling

Minus sign: large mixing leads to opposite-sign couplings

Intuition: in the highly mixed case, larger VEV means more mixing, splitting light and heavy stops more. The light one contributes more, and is pushed lighter, so the overall sign reverses.

DANGER IN LOOPS

Fermions generically cause Higgs vacuum stability problems (Arkani-Hamed, Blum, D'Agnolo, Fan 1207.4482)

$$46\pi^{2}\frac{d\lambda}{dt} = \lambda \left(24\lambda - 9g_{2}^{2} - \frac{9g_{1}^{2}}{5} + 12y_{t}^{2} + 4\mathcal{N}\left(y_{n}^{2} + y_{n}^{c2} + y^{2} + y^{c2}\right)\right) - 2\mathcal{N}\left(y^{4} + y^{c4} + y_{n}^{4} + y_{n}^{c4}\right) - 6y_{t}^{4} + \frac{3}{8}\left(2g_{2}^{4} + \left(g_{2}^{2} + \frac{3g_{1}^{2}}{5}\right)^{2}\right).$$
(A.1)

DANGER IN LOOPS

Large deviations from scalars in loops are also dangerous:

Large trilinears (e.g. A-terms in SUSY theories) or large negative quartics both imply *tree-level* instabilities.

Can have rapid tunneling. MR 1208.1765; earlier: Kusenko, Langacker, Segre hep-ph/9602414

One lesson: even though changing sign of hGG amplitude could preserve the rate, theories that do it are usually ruled out. Large $h\gamma\gamma$ enhancements are *a priori* unlikely.

Higgs potential $-\mu^2 |H|^2 + \lambda |H|^4$: large quantum corrections to the mass² term. **Direct searches** constrain them:

$$\delta m_{H_u}^2 = -\frac{3}{8\pi^2} y_t^2 \left(m_{\tilde{t}_L}^2 + m_{\tilde{t}_R}^2 + |A_t|^2 \right) \log \frac{\Lambda}{\text{TeV}}.$$

Either the stop is light, or Higgs potential is finely-tuned.

Two stops (LH/RH), one sbottom (LH) should all be light!

THE DATA SO FAR

Azatov & Galloway, fit in 1212.1380 (updated post-Moriond)

Consistent with SM! Puts bounds on new physics.

STOP BOUNDS FROM HIGGS

A pair of stop masses is associated with a maximum X_t (property of 2x2 matrices: can't have equal eigenvalues if nonzero off-diagonal term).

Fitting data with light stops requires a minimum X_t . Part of parameter space is simply ruled out; more is tuned, even running from only 10 TeV.

Even without direct searches, know stop/Higgs tuned by factor ~ 5 or more. Impact of NⁿLO K-factors?

A "NO-HIDE" THEOREM?

Model builders can build increasingly byzantine constructions to hide natural physics from direct searches, but *anything enforcing naturalness must couple to the Higgs*.

Craig, Englert, McCullough 1305.5251:

RARE HIGGS DECAYS

One exciting result of the relatively small SM Higgs couplings is that the Higgs could have a large width into non-SM²⁰(e.g. "hidden valley"), even with small couplings. 10^{-8} Spin-Independent σ_{SI} in pb Xenon100 scalar 10⁻⁹ Most familiar: invisible Higgs. Complementary to direct fermion 10^{-10} DM detection. Righ 10⁻¹¹ ector Giardino, Kannike, Masina, 10⁻¹² Raidal, Strumia 303.3 1.0 0 10 20 30 40 60 70 50 Invisible Higgs BR DM mass in GeV

Many other possibilities: e.g. decays to dark photons, light pseudoscalars, exotic fermions... Search broadly!

See Stefania Gori's talk for more.

CONCLUSIONS

Higgs couplings provide a very interesting probe of new physics, complementary to direct searches. Directly probe naturalness.

Example: some light stops may not be excluded by direct searches if they decay in unusual ways, but they *are* excluded because they change *ggH* coupling.

Strongly-coupled models were already pushed by EWPT into a range where large deviations in Higgs properties are not expected. But Higgs offers a new set of EWPT observables.

The Higgs completes the SM; perhaps it will also be a window to beyond the SM.

HIGGS COUPLINGS FOR NATURAL MODELS

Two effects we've discussed impact the Higgs production and decay:

Mixing alters $b\overline{b}$ rate, thus changing all other smaller branching ratios. No signal: bad for λ SUSY.

Loops alter gg and **yy** couplings. No signal: bad for stops.

"Typically," in natural models, would like to have seen effects ~20%.

WHAT NEXT?

It's interesting that very conservative and general arguments already put most of our favorite models at *at least* ~20% tuning.

For composite Higgs, the S-parameter alone does approximately that.

For SUSY, absence of large stop loop corrections to Higgs properties also does approximately that.

In most specific models, combining constraints (e.g. direct searches) requires a much worse tuning!

STOP BOUNDS

GLUINO TO STOP BOUNDS

Great progress here. We have many complementary channels and the bounds are one of the biggest worries for natural SUSY.

But: Dirac gluino could be heavier and natural....

NATURAL HIDDEN SUSY?

This "split generations" scenario is increasingly constrained by stop & sbottom searches and has tension with flavor. But natural SUSY doesn't *require* splitting the squark generations if they're hidden.

Some ways to hide superpartners:

- decay through RPV
- decay through hidden valley (large multiplicity, less phase space for missing momentum)
- decay through lepton jets (special case of hidden valley)
 decay through stealth SUSY (another special case, with a nearly-supersymmetric hidden sector)

STOPS WITH R-PARITY VIOLATION

Some experimental results are already appearing, e.g. CMS 1306.6643 with LQD operator (muon/top/bottom)

WHICH RPV?

RPV is a huge space of models. The "MFV RPV" framework (Csaki, Grossman, Heidenreich 1111.1239) and the "Bilinear RPV" case (only *LH* operators; Graham, Kaplan, Rajendran, Saraswat 1204.6038) seem like two of the most reasonable to me. Long lifetimes evade some bounds?

Multi-jet resonances (possibly top+jets) as a signal of naturalness?

RPV STOPS

STOPS IN STEALTH SUSY

Unlike the minimal "stealthy stop" scenario, $\tilde{t} \rightarrow t \tilde{\chi}^0$ with the stop mass just above the top mass, here we mean a cascade through a stealthy "hidden sector."

Inside the hidden sector, a near-degeneracy of *R*odd and *R*-even particles (due to approximate SUSY) leads to small missing momentum.

STOPS IN STEALTH SUSY

In stealth SUSY models, the signal of stops might be tops + extra jets (possibly with weak bosons). Also 1 st, 2nd gen squarks: many-jet events, possibly with weak bosons.