Vector Boson Scattering

Guillelmo Gómez-Ceballos (on behalf of the ATLAS & CMS collaborations)

Massachusetts Institute of Technology

Higgs Couplings 2013

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Introduction
- Vector boson cross sections & anomalous triple gauge couplings
- Anomalous quartic gauge couplings
- Vector boson scattering & projections

Introduction

Electroweak di(tri)boson measurements:

- test of the electroweak sector of the Standard Model (SM) at the TeV scale
- sensitive to Anomalous Triple (Quartic) Gauge Couplings (aTGC/aQGC)
- background to Higgs analyses
- ► WW/WZ/ZZ (VV) scattering → (massive, weak) Vector Boson Scattering (VBS):
 - measurable key process linked with Electro-Weak Symmetry Breaking (EWSB)
 - general final state: diboson plus at least two jets
- VBS at the LHC is the key process to experimentally probe the SM nature of EWSB:
 - complementary to direct Higgs boson measurements

Unitarity Violation (I)

$$\sigma_{V_L V_L
ightarrow V_L V_L} \propto igg[-s-t - rac{s^2}{s-m_{
m H}^2} - rac{t^2}{t-m_{
m H}^2} igg]$$

VV scattering a key component

Unitarity Violation (II)

from arXiv:0806.4145

- ▶ Without a "light" SM Higgs boson ($m_{\rm H} \leq 1 \, {
 m TeV}$) VBS would violate unitarity
- ► Higgs boson contribution cancels increase for large √s for SM-HWW coupling

Anomalous Triple Gauge Couplings (aTGCs)

▶ WWV $(V = Z/\gamma)$ couplings \longleftrightarrow WW and *WZ* (also $W\gamma$)

 $\frac{\mathcal{L}_{\text{WWV}}}{g_{\text{WWV}}} = ig_1^{\text{V}}(W_{\mu\nu}^+ W^{\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{\mu\nu}) + i\kappa_V W_{\mu}^+ W_{\nu} V^{\mu\nu} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^+ W_{\nu}^{\mu} V^{\nu\lambda}$ 5 parameters: Δg_1^{Z} (= $g_1^{\text{Z}} - 1$), $\Delta \kappa_Z$ (= $\kappa_Z - 1$), $\Delta \kappa_{\gamma}$ (= $\kappa_{\gamma} - 1$), λ_Z , λ_{γ}

► ZZV (V = Z/
$$\gamma$$
) couplings \longleftrightarrow ZZ (also $Z\gamma$)

$$\mathcal{L}_{ZZV} = -\frac{e}{M_Z^2} \left(f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta \right)$$
A non-metric f_Z^V f_2^V f_3^V

4 parameters: f_4^Z , f_4^γ , f_5^Z , f_5^γ

- Also 4 parameters for $Z\gamma Z$ and $Z\gamma\gamma$ vertices: h_3^{γ} , h_3^Z , h_4^{γ} , h_4^Z
- Parameters in red (aTGCs) are zero in the SM

ZZ Cross Section & aTGCs

WZ Cross Section & aTGCs

- Stringent aTGCs limits, analyses at $\sqrt{s} = 8$ TeV in progress
- Agreement at level of 2 standard deviations on $\sigma_{\rm WZ}$ in CMS

WW Cross Section & aTGCs

▶ $\sigma_{\rm WW}/\sigma_{\rm WW}^{SM} \sim$ 1.1, consistent ratios among ATLAS & CMS, but within 1.0-1.5 σ level to SM expectation

◆□→ ◆□→ ◆注→ ◆注→ □注 □

Not consistent with aTGCs

Summary of Inclusive Cross Section Measurements at LHC

10

- No significant deviation from the SM expectation observed so far
- Diboson measurements in jet multiplicity bins not performed yet
- ATLAS/CMS combinations not performed yet
- Several analyses still to be done at \sqrt{s} = 8 TeV

-

・ロン ・回 と ・ヨン ・ヨン

aTGCs Limits

VV Scattering at the LHC

Characterized by VVjj final state:

Higgs exchange and Higgs production via VBF

- ► Sensitivity to QGC → setting exclusion limits on aQGCs
- Additional non-VV scattering contributions to the final state:
 - QCD = O($\alpha_{EW}^4 \alpha_S^2$)
 - $EW = O(\alpha_{EW}^{6})$: not gauge & gauge invariantly separable

VV Scattering Event Topology

Diboson final states:

- fully leptonic:
 - $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$: best σ_{EW}/σ_{QCD} ratio
 - $W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\nu\ell^{\mp}\nu$: relatively large top background
 - $W^{\pm}Z \rightarrow 3\ell\nu$: clean channel with three leptons
 - ▶ $ZZ \rightarrow 4\ell$: very clean, limited number of events
 - ▶ $ZZ \rightarrow 2\ell 2\nu$: more difficult analysis to perform, but relatively large branching ratio
- ▶ semi-leptonic: $ZW/Z \rightarrow \ell \ell j j$ & $WW/Z \rightarrow \ell \nu j j$
 - more difficult due to larger backgrounds
 - high m_{VV} generates boosted jets which can be merged
- VBS topology:
 - two very energetic forward-backward tagging jets
 - ▶ large m_{jj} and $\Delta \eta_{jj}$
 - little hadronic activity between the two tagging jets in fully leptonic final states

VBF $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ as An Example

 m_{ii} and $\Delta \eta_{ii}$ after WW $(e\mu) + 2$ jets selection

- \blacktriangleright Clear separation between VBF $H \rightarrow WW$ and backgrounds
- Helps discriminating VBF Higgs against $gg \rightarrow H + jets$
 - equivalent to discrimination case between the VVjj EWK component and the VVij QCD component ・ロン ・回 とくほと くほど

Extension of the SM Lagrangian by introduction additional dimension-8 operators for QGCs (with no effect on TGCs)

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + ... ext{ with } c_i^{VV} = c_{i,SM}^{VV} + g^2 \Delta c_i^{VV}$$

Model implemented in VBFNLO, similar implementations in WHIZARD and CALCHEP

- contains light SM Higgs boson
- operators:
 - ► coefficients in dimention-6 (see, e.g. hep-ph/9908254): $C_{\phi W}/\Lambda^2$ (VBFNLO), a_0^W/Λ^2 , a_C^W/Λ^2 (CALCHEP)...
 - coefficients in dimension-8 (see, e.g. hep-ph/0606118): $f_{S,0}/\Lambda^4$, $f_{T,1}/\Lambda^4$...

・ロト ・回 ト ・ヨト ・ヨト ・ヨー ・ つへで

• Λ is the scale of new physics, e.g. 1-2 TeV

Limits on aQGCs with $\gamma\gamma \rightarrow WW$

- Study of exclusive $pp \rightarrow pWWp \rightarrow ppe\mu 2\nu$ events
- ► One eµ pair with no other tracks associated to their primary vertex, with large p^{eµ}_T and m_{eµ}

• Limits are set from number of events with $p_{\rm T}^{e\mu} > 100 \text{ GeV}$

Limits on aQGCs with ${\rm WW}\gamma$ & ${\rm WZ}\gamma$

- ► Select events with one muon or electron, two jets from a W/Z boson, large E^{miss}_T and a high p_T photon
- Setting limits using $p_{\rm T}^{\gamma}$ as discriminant variable
- ▶ Comparable limits with respect to $\gamma\gamma \rightarrow WW$ analysis

VBS with ZZ Events at $\sqrt{s} = 14$ TeV

Analysis with upgraded ATLAS detector

- Select events with four high $p_{\rm T}$ leptons and $m_{jj} > 1~{
 m TeV}$
- Expected significance on $C_{\phi W}/\Lambda^2$ for different luminosity scenarios ・ロト ・回 ト ・ヨト ・ヨト ・ヨー ・ つへで

VBS with WZ Events at $\sqrt{s} = 14$ TeV (I)

• Select events with three high $p_{\rm T}$ leptons, large $E_{\rm T}^{\rm miss}$ and m_{jj}

◆□→ ◆□→ ◆注→ ◆注→ □注 □

• Search for new Physics using $m_T^{3\ell\nu}$

VBS with WZ Events at $\sqrt{s} = 14$ TeV (II)

Expected significance on f_{T1}/Λ^4 for different luminosity scenarios

CMS estimate

Significance	3σ	5σ
SM EWK scattering discovery	$75 { m ~fb}^{-1}$	$185 { m ~fb}^{-1}$
$rac{f_{T1}}{\Lambda^4}$ at 300 ${ m fb}^{-1}$	$0.8 \ { m TeV^{-4}}$	$1.0 \ { m TeV^{-4}}$
$rac{f_{T1}^{-}}{\Lambda^4}$ at 3000 ${ m fb}^{-1}$	0.45 TeV^{-4}	0.55 TeV ⁴

うくで

20

VBS with $W^{\pm}W^{\pm} \rightarrow \ell^{\pm} \nu \ell^{\pm} \nu$ Events at $\sqrt{s} = 14~{ m TeV}$

Analysis with upgraded ATLAS detector

- Select same-sign lepton pairs events with $m_{jj} > 1 \text{ TeV}$
- Expected significance on f_{S0}/Λ⁴ for different luminosity scenarios

Summary

- Improvements on VV measurements:
 - no significant deviations from the SM
 - should keep an eye on WW and WZ cross section measurements
 - limits set on aTGCs and aQGCs
- VV scattering at LHC at high energy looks promising:
 - will be possible to experimentally probe the SM nature of EWSB
 - improved performance for VBS anomalous resonances with high luminosity
- Common future effort on the subject among ATLAS, CMS and theorists within the "High mass and BSM LHC HXSWG"
 - $\blacktriangleright\,$ SM-like high mass Higgs in the WW and ZZ channels
 - see https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsBSM

Back-Up

References

- ATLAS JHEP03(2013)128: ZZ cross section at $\sqrt{s} = 7$ TeV
- CMS-PAS-SMP-13-005: ZZ cross section at $\sqrt{s} = 8$ TeV
- ▶ ATLAS Eur. Phys. J. C (2012) 72:2173: WZ cross section at $\sqrt{s} = 7$ TeV
- ► CMS-PAS-SMP-12-006: ZZ cross sections at $\sqrt{s} = 7$ TeV & $\sqrt{s} = 8$ TeV
- ► ATLAS Physics Letters B 712 (2012) 289-308: WW cross section at $\sqrt{s} = 7$ TeV
- CMS-PAS-SMP-12-005: WW cross section at $\sqrt{s} = 7$ TeV
- CMS-FSQ-12-010: exclusive two-photon production of WW at $\sqrt{s} = 7 \text{ TeV}$
- CMS-PAS-SMP-13-009: WW γ and WZ γ study at $\sqrt{s} = 8$ TeV
- ▶ CMS-HIG-13-022: VBF H → WW search at $\sqrt{s} = 7$ TeV & $\sqrt{s} = 8$ TeV
- ► ATL-PHYS-PUB-2013-006: VBS and triboson production projections at $\sqrt{s} = 14$ TeV
- ► CMS-FTR-13-006: VBS projections at $\sqrt{s} = 14$ TeV

VBS as probe for EWSB

VBS spectrum $\sigma_{VV \to V}$ vs. m_{VV} is a fundamental probe to test the nature of the Higgs boson

Search for possible discrepancies in m_{VV} spectrum

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$ZZ\gamma\gamma$ Events at High Energy

Analysis with upgraded ATLAS detector

- \blacktriangleright Select $Z \rightarrow \ell \ell$ events with two high energetic photons
- Expected significance on higher dimension operators for different luminosity scenarios