

## Results on Higgs boson parameters from the Tevatron



Gregorio Bernardi,

**LPNHE Paris** 

On behalf of CDF and Dzero

Higgs couplings workshop, September 14th, 2013

Thanks to all CDF & DZero colleagues





## **Outline**



- Historical perspectives/Indirect measurements
- Combinations of Standard Model searches
- Higgs Couplings
- Low mass (H→bb) Higgs searches
- D0 spin and parity constraints in bb channels
- Prospects



All final individual channels and combinations from CDF and D0 are published.



## **Higgs: Historical perspective and current Status**



- Tevatron Run II (2002 2011, 2 TeV):
  - First post-LEP 95%CL exclusion (july 2008)
  - First evidence of a Higgs-like particle decaying to a pair of b-quarks (July 2012)
- LHC (2011 2012, 7 8 TeV):
  - Excluded wide mass range (111 122 GeV and 127 600 GeV)
  - Discovered a new Higgs-like boson mainly through γγ and ZZ decays (July 2012)







- LHC ("full 2011-2012 dataset"):
  - Since July 2012 progress in each channel, Higgs observation confirmed in bosonic channel
  - ATLAS:  $m_H = 125.5 \pm 0.2$  (stat)  $\pm 0.6$  (sys) GeV, CMS:  $m_H = 125.7 \pm 0.3$  (stat)  $\pm 0.3$  (sys) GeV
  - H $\rightarrow$ bb, with ~23-25 fb<sup>-1</sup> : compatible with 0 @ Atlas, and ~2.1  $\sigma$  excess @ CMS
  - strong indications (2.9  $\sigma$ )of fermionic decays at LHC from CMS H $\rightarrow \tau\tau$  (full stat) but low ATLAS signal (1.1 $\sigma$  /1.7 $\sigma$  expected, 18fb<sup>-1</sup>)
    - → While it is a Higgs boson, the fermionic decays are not yet firmly established.



## **Indirect measurement, W-mass**



If we use the measured mass of the Higgs-like boson to constrain the W boson mass based on SM, we get:

$$m_W = 80.359 \pm 0.011 \text{ GeV}$$

Comparing with the current world average directly measured value:  $m_W = 80.385 \pm 0.015 \text{ GeV}$ 



 With a world average around 10 MeV dominated by the Tevatron, and no changes in central values, test direct and indirect Higgs mass values.

- Significant anomaly could be detected if central value would slightly move < apart, while reducing uncertainties.
  - Currently we have good agreement !!!

test SM consistency with m<sub>W</sub> m<sub>top</sub> m<sub>Higgs</sub> at > 2 sigma level



## **Higgs Production and Decay at the Tevatron**





#### "High" mass (m<sub>H</sub> > 135 GeV) dominant decay:



#### Low mass ( $m_H < 135 \text{ GeV}$ ) dominant decay:



use associated production modes to get better S/B

These are the main search channels, but there has been an extensive program of measurements in all channels to extend the sensitivity to a SM Higgs



Gregorio Bernardi / LPNHE-Paris



## **Final Higgs combination from Tevatron**



All papers now published

All SM channels searched

Full luminosity used in almost all channels

| Channel                                                                                                                                |                               | Luminosity (fb <sup>-1</sup> ) | $m_H$ range $({ m GeV}/c^2)$ |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|------------------------------|
| $WH \rightarrow \ell \nu b \bar{b}$ 2-jet channels $4 \times (5 b$ -tag categories)                                                    |                               | 9.45                           | 90-150                       |
| $WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $3 \times (2 b$ -tag categories)                                                    |                               | 9.45                           | 90 - 150                     |
| $ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (3 b-tag categories)                                                                          |                               | 9.45                           | 90 - 150                     |
| $ZH \rightarrow \ell^+\ell^-b\bar{b}$ 2-jet channels $2\times(4\ b\text{-tag categories})$                                             | $H 	o b ar{b}$                | 9.45                           | 90 - 150                     |
| $ZH \rightarrow \ell^+\ell^-b\bar{b}$ 3-jet channels $2\times(4\ b\text{-tag categories})$                                             |                               | 9.45                           | 90 - 150                     |
| $WH + ZH \rightarrow jjb\bar{b}$ (2 b-tag categories)                                                                                  |                               | 9.45                           | 100 - 150                    |
| $t\bar{t}H \to W^+bW^-\bar{b}b\bar{b}$ (4 jets,5 jets, $\geq$ 6 jets)×(5 b-tag categories)                                             |                               | 9.45                           | 100-150                      |
| $H \to W^+W^-  2\times (0 \text{ jets}) + 2\times (1 \text{ jet}) + 1\times (\geq 2 \text{ jets}) + 1\times (\text{low-}m_{\ell\ell})$ |                               | 9.7                            | 110-200                      |
| $H  ightarrow W^+W^-  (e	ext{-}	au_{ m had}) + (\mu	ext{-}	au_{ m had})$                                                               |                               | 9.7                            | 130-200                      |
| $WH \rightarrow WW^+W^-$ (same-sign leptons)+(tri-leptons)                                                                             | $H 	o W^+ W^-$                | 9.7                            | 110-200                      |
| $WH \to WW^+W^-$ (tri-leptons with 1 $\tau_{\rm had}$ )                                                                                |                               | 9.7                            | 130-200                      |
| $ZH \to ZW^+W^-$ (tri-leptons with 1 jet, $\geq 2$ jets)                                                                               |                               | 9.7                            | 110-200                      |
| $H \to \tau^+ \tau^-  (1 \text{ jet}) + (\geq 2 \text{ jets})$                                                                         | $H 	o 	au^+	au^-$             | 6.0                            | 100-150                      |
| $H \to \gamma \gamma$ 1×(0 jet)+1×( $\geq$ 1 jet)+3×(all jets)                                                                         | $H \rightarrow \gamma \gamma$ | 10.0                           | 100-150                      |
| H 	o ZZ (four leptons)                                                                                                                 | H 	o ZZ                       | 9.7                            | 120-200                      |

| Channel                                                                                    |                               | Luminosity $(fb^{-1})$ | $m_H { m range} \ ({ m GeV}/c^2)$ |
|--------------------------------------------------------------------------------------------|-------------------------------|------------------------|-----------------------------------|
| $WH \rightarrow \ell \nu b \bar{b}$ (4 b-tag categories)×(2 jets, 3 jets)                  |                               | 9.7                    | 90–150                            |
| $ZH  ightarrow  u ar{ u} b ar{b} \hspace{0.5cm} (2 \hspace{0.5cm} b	ext{-tag categories})$ | H 	o b ar b                   | 9.5                    | 100 – 150                         |
| $ZH \rightarrow \ell^+\ell^-b\bar{b}$ (2 b-tag categories)×(4 lepton categories)           |                               | 9.7                    | 90 – 150                          |
| $H 	o W^+W^- 	o \ell^{\pm} \nu \ell^{\mp} \nu  \text{(0 jets,1 jet,$\geq 2 jets)}$         | $H 	o W^+W^-$                 | 9.7                    | 115-200                           |
| $H~+~X ightarrow W^+W^- ightarrow \mu^\mp u	au_{ m had}^\pm u$                             |                               | 7.3                    | 115 - 200                         |
| $H \to W^+W^- \to \ell \bar{\nu} jj$ (2 b-tag categories)×(2 jets, 3 jets)                 |                               | 9.7                    | 100-200                           |
| $VH	o e^\pm\mu^\pm + X$                                                                    |                               | 9.7                    | 100-200                           |
| $VH  ightarrow \ell\ell\ell + X$                                                           |                               | 9.7                    | 100-200                           |
| $VH  ightarrow \ell ar{ u} j j j j j  (\geq 4 	ext{ jets})$                                |                               | 9.7                    | 100-200                           |
| $VH 	o 	au_{ m had} 	au_{ m had} \mu + X$                                                  | $H \rightarrow \tau^+ \tau^-$ | 8.6                    | 100-150                           |
| $H{+}X{	o}\ell^{\pm}	au_{ m had}^{\mp}jj$                                                  | $H \rightarrow T \cdot T$     | 9.7                    | 105 - 150                         |
| $H 	o \gamma \gamma$                                                                       |                               | 9.6                    | 100-150                           |



#### **Full Tevatron combination**





#### LLR plot



#### Significant excess, ≥ 3 sigma for 120-125 GeV

• Expected exclusion:  $90 < m_H < 121$  GeV,  $140 < m_H < 184$  GeV Observed exclusion:  $90 < m_H < 107$  GeV,  $149 < m_H < 182$  GeV



## **History of Tevatron results: LLR of all searches**







## **Quantifying the signal: Best Fit Signal Rate**







- Maximum likelihood fit to data with signal rate as free parameter.
- Best-fit signal rate at m<sub>H</sub>=125 GeV:

$$\left( \sigma_{fit} / \sigma_{SM} = 1.44 \pm 0.59 \right)$$

Consistent with SM Higgs.
Reasonably consistent across channels.



Tevatron Run II, L<sub>int</sub> ≤ 10 fb<sup>-1</sup>



## **Probing Higgs Boson Couplings**



- Several production and decay mechanisms contribute to signal rates per channel
  - → interpretation is difficult
- A better option: measure deviations of couplings from the SM prediction (arXiv:1209.0040). Basic assumptions:
  - there is only one underlying state at  $m_H \sim 125$  GeV, with negligible width,
  - it is a CP-even scalar (only allow for modification of coupling strengths, leaving the Lorentz structure of the interaction untouched).

Additional assumption made in this study:

- no additional invisible or undetected Higgs decay modes
- Under these assumptions all production cross sections and branching ratios can be expressed in terms of a few common multiplicative factors to the SM Higgs couplings. Examples:

$$\sigma(gg \to H)BR(H \to WW) = \sigma_{SM}(gg \to H)BR_{SM}(H \to WW) \frac{\kappa_g^2 \kappa_W^2}{\kappa_H^2} \qquad \Gamma_{b\bar{b}}, \Gamma_{c\bar{c}}, \Gamma_{\tau\tau} \propto \kappa_f^2$$

$$\sigma(WH)BR(H \to bb) = \sigma_{SM}(WH)BR_{SM}(H \to bb) \frac{\kappa_W^2 \kappa_b^2}{\kappa_H^2} \qquad \Gamma_{WW} \propto R^2 \kappa_V^2, R = \kappa_W / \kappa_Z$$

$$\Gamma_{ZZ} \propto \kappa_V^2$$



## **Probing Higgs Boson Couplings**



- When both  $\kappa_W$  and  $\kappa_7$  vary independently  $\rightarrow$ 
  - κ<sub>f</sub> integrated over
  - Best fit:  $(\kappa_W, \kappa_7) = (1.25, \pm 0.90)$
- The point  $(\kappa_W, \kappa_Z) = (0, 0)$  corresponds to NO Higgs boson production or decay in the most sensitive search modes at the Tevatron and is not included within the 95% C.L. region due to the significant excess of events in the SM Higgs boson searches @ 125 GeV



Probe SU(2)<sub>V</sub> custodial symmetry by measuring the ratio  $\lambda_{WZ} = \kappa_W / \kappa_Z$ 

Measure 
$$\theta_{WZ} = tan^{-1}(\kappa_Z/\kappa_W) = tan^{-1}(1/\lambda_{WZ})$$

$$\theta_{WZ} = 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$$





## **Properties - couplings**



- Measure simultaneously  $\kappa_V$  and  $\kappa_f$  (assuming now  $\lambda_{WZ}$ =1).
- Asymmetry is from the excesses in the H  $\rightarrow \gamma \gamma$
- Two minima:  $(\kappa_{V'}, \kappa_f) = (1.05, -2.40)$  and  $(\kappa_{V'}, \kappa_f) = (1.05, 2.30)$
- Good agreement with SM predictions, in agreement with ATLAS/CMS.





## **Low Mass Higgs Channels**





# .

## ZH→IIbb: II+bb

Low background Fully constrained Small Signal



#### WH→lvbb: MET+l+bb

Large production cross section Higher backgrounds than in ZH→llbb



#### ZH→vvbb: MET+bb

signal 3x larger than ZH→llbb (+ contributions from WH) difficult backgrounds



## **Low Mass Higgs Searches**



Increase lepton reconstruction and selection efficiencies

Understand background



#### Specific to low mass analyses:

#### **B-tagging**





Reduce the background by tagging b-quark jets

#### Major step forward with MVA taggers

75% eff. for 10% mistag 42% eff. For 0.9% mistag

## Optimize dijet mass resolution

→ needs precise calibration and resolution for gluon and quark jets separately







## From Dijet mass to Multi Variate Analysis



- To improve S/B → utilize full kinematic event information
- Multi Variate Analyses
  - Neural Networks
  - Boosted Decision Trees

Or use Matrix Element Calculations to determine probability for an event to be signal or background like

- Approaches validated in Single Top observation @ Tevatron
- Combine these approaches
- Visible gain obtained (~25% in sensitivity)



**Final Discriminant** 



## **Benchmarks: Dibosons to Heavy Flavor**



CDF- D0 combination on the same dataset/techniques as for H→bb, i.e. WZ, ZZ with Z→bb, same 3 final states, same b-tagging categorizations

→ cross-section: 3.0 +/- 0.9 pb (NLO: 4.4 +/- 0.3 pb)



→ Since there is a light Higgs, we should see it also in H→bb if it's SM-like!



## **Combined Log-Likelihood Ratio for H→bb**





Shape consistent with LLR expected in presence of 125 GeV Higgs, prefers slightly stronger strength than SM



## **Combined Cross section \* BR measurement**





$$(\sigma_{WH}+\sigma_{ZH}) imes \mathcal{B}(H o bar{b})$$
 = 0.19  $\pm$  0.09 (stat  $+$  syst) pb SM Higgs @ 125 GeV:  $0.12\pm0.01$  pb

```
Tevatron: \sigma(VH) = 1.6 \pm 0.7 \text{ (stat.} + \text{syst.)} \times \text{SM}
CMS: \sigma(VH) = 1.0 \pm 0.5 \text{ (stat.} + \text{syst.)} \times \text{SM}
ATLAS: \sigma(VH) = 0.2 \pm 0.6 \text{ (stat.} + \text{syst.)} \times \text{SM}
```

## Spin@ D0

## **Starting from VH→Vbb Results**



- 3 Analyses: WH->lvbb, ZH->llbb, ZH->vvbb
- Same inputs as for final Tevatron and D0 Higgs combination.
   → excess compatible with SM Higgs
- Best fit H->bb cross section: 1.23 \*\*-1.27\* SM





## **Higgs Spin and Parity: introduction**



SM predicts a spin J and parity P combination  $J^p = 0^+$ Other possibilities are  $2^+$  (graviton-like couplings) and  $0^-$  (pseudoscalar)

Spin 1 ruled out with observation of decay  $H \rightarrow \gamma \gamma$  (Landau-Yang Theorem)



- at ATLAS and CMS, all measurements are consistent with  $J^p = 0^+$
- Measurements use bosonic decay modes, take advantage of angular correlations and kinematics of Higgs decay products



## **Spin and Parity at the Tevatron**



- In associated production, production processes are different depending on J<sup>P</sup> assignment
  - For  $0^+$ , production is S-wave; cross section  $\sim \beta$  near threshold

$$\beta = 2 p / \sqrt{s}$$

- For  $0^-$ , production is P-wave; cross section  $\sim \beta^3$  near threshold
- For  $2^+$ , mostly D-wave contribution for graviton-like couplings; cross section  $\sim \beta^5$
- At the Tevatron we expect the kinematic differences to come from different behaviors at the production threshold

Details in
Ellis, Hwang, Sanz, You, JHEP **1211**, 134 (2012)
cf. also
Miller, Choi, Eberle, Muhlleitner, and Zerwas, PLB **505**, 149 (2001)

## **Testing Spin and Parity**



Visible mass of Vbb system very sensitive to J<sup>P</sup> assignment,

good separation from backgrounds for 2+ and 0- as well, much better than for SM Higgs!



plots from Ellis, Hwang, Sanz, You, JHEP 1211, 134 [2012]





## **Generating signals**



- Generate 2+ signal with MADGRAPH5; interfaced to PYTHIA for showering
  - Use RS graviton model, initial normalization to SM  $\sigma$  x Br
  - Note: no generic Spin-2 model
  - Only considering VH processes (no e.g. gg or VBF)
- MADGRAPH 0+ VH checked against PYTHIA VH; good agreement
- Observe similar separation to that predicted



#### **Visible Mass in VH Channels**





- Tightest b-tag sub-channel shown (upper edge bins combined due to statistics)
- Good separation between different signals
- Can we do better on the backgrounds?

#### **Additional Discrimination**



- Take advantage of known mass
  - vvbb, IIbb → use M<sub>bb</sub> to define High/Low Purity (HP/LP) regions
  - Ivbb → MVA output to make HP/LP regions
- Separate channels for statistical analysis





#### **Final Variables**





Tightest High Purity b-tag channel shown for each analysis

Large separation between **SM/0**<sup>+</sup> and **0**<sup>-</sup> or **2**<sup>+</sup>

## **Higgs Spin Results**



- Use  $CL_s$  to quantify model preference, log-likelihood ratio (LLR) as test statistic  $LLR = -2\log(L(H1)/L(H0))$ 
  - H1: 0<sup>-</sup> signal + Background or 2<sup>+</sup> signal + Background
  - H0: 0<sup>+</sup> signal + Background
- Compute for 2 different signal scale factors μ on SM σ(VH) × Br(bb)
  - 1.00 (SM-like, shown) and 1.23 (D0 measured rate)



## **Higgs Spin Results**



- Use  $CL_s$  to quantify model preference, log-likelihood ratio (LLR) as test statistic  $LLR = -2\log(L(H1)/L(H0))$ 
  - H1: 0<sup>-</sup> signal + Background or 2<sup>+</sup> signal + Background
  - H0: 0<sup>+</sup> signal + Background
- Compute for 2 different signal scale factors  $\mu$  on SM  $\sigma$ (VH) × Br(bb)
  - 1.00 (SM-like) and 1.23 (D0 measured rate, shown)



## **Higgs Spin Results**



 $CL_s = CL_{H1}/CL_{H0}$  $CL_x = P(LLR \ge LLR^{obs}|x)$ 

Interpret 1-CL<sub>s</sub> as C.L. for exclusion of 0<sup>-</sup> or 2<sup>+</sup> in favor of 0<sup>+</sup>

We exclude 0<sup>-</sup> model at > 97.9% C.L.

Expected exclusion is 3.1 s.d. ( $\mu$ =1.0)

We exclude 2<sup>+</sup> model at > 99.2% C.L. Expected exclusion is 3.2 s.d. (μ=1.0)

|                                      | Results<br>0 | Result in s.d. 0 |        | Result in s.d. 2+ |  |  |  |
|--------------------------------------|--------------|------------------|--------|-------------------|--|--|--|
| 1 – CL <sub>s</sub> Exp.<br>(μ=1.00) | 0.998        | 3.1              | 0.9992 | 3.2               |  |  |  |
| 1 – CL <sub>s</sub> Obs.<br>(μ=1.00) | 0.979        | 2.3              |        | 2.4               |  |  |  |
| 1 – CL <sub>s</sub> Exp.<br>(μ=1.23) | 0.9997       | 3,5              | 0.9999 | 3.7               |  |  |  |
| 1 – CL <sub>s</sub> Obs.<br>(μ=1.23) | 0.995        | 2.5              | 0.999  | 3.0               |  |  |  |

Single Tevatron experiment has sensitivity competitive with LHC experiments (example: ATLAS WW/ZZ/ $\gamma\gamma$  combination expected exclusion for 0- & 2+: 2.3 $\sigma$  & 3.0 $\sigma$ )

http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/HIGGS/H138/

## **Signal Admixtures**



- Allow possibility of both a 0<sup>-</sup> (or 2<sup>+</sup>) and 0<sup>+</sup> signal in data
  - Vary 0<sup>-</sup> (or 2<sup>+</sup>) Fraction f<sub>x</sub> from 0 to 1
  - H1:  $\mu \times (\sigma \cdot Br(->bb))_{SM} \times [0^- \times f_x + 0^+ \times (1 f_x)] + Background$
  - H0:  $\mu \times (\sigma \cdot Br(->bb))_{SM} \times 0^+$  (i.e. pure  $0^+$ ) + Background
- Fix  $\mu$  to observed (1.23xSM) or expected (1.00xSM), compute LLR, CLs





## **Signal Admixtures**



- Allow possibility of both a 0<sup>-</sup> (or 2<sup>+</sup>) and 0<sup>+</sup> signal in data
  - Vary 0<sup>-</sup> (or 2<sup>+</sup>) Fraction f<sub>x</sub> from 0 to 1
  - H1:  $\mu \times (\sigma \cdot Br(->bb))_{SM} \times [0^- \times f_x + 0^+ \times (1 f_x)] + Background$
  - H0:  $\mu \times (\sigma \cdot Br(->bb))_{SM} \times 0^+$  (i.e. pure  $0^+$ ) + Background
- Fix μ to observed (1.23xSM) or expected (1.00xSM), compute LLR, CLs





Exclude  $f_{2+} > 0.57$  at 95% C.L.



## **Summary and Outlook**



- Latest Tevatron results based on full Run II dataset in all major search channels are all now published in PRD.
- Signal strengths in 4 decay channels (bb, $\tau\tau$ , $\gamma\gamma$ ,WW), and results on Higgs couplings to fermions, W, Z, are consistent with the SM.
- Published evidence for WH/ZH production with H→bb (7/2012), where H is consistent with a SM Higgs boson of 125 GeV, as the boson discovered by ATLAS & CMS is so far the only evidence in a single fermionic decay channel of the Higgs.
- The H→bb channel could be seen at >4 sigma level before the 2015-18 LHC Run, through combination of all H→bb results. Combining all fermionic channels may establish fermionic decay of the Higgs boson at 5 sigma level now, a milestone result!
- D0 spin and parity tests (first in bb final states) favor J<sup>P</sup>=0+; reject J<sup>P</sup>=0- and 2+ (graviton-like couplings) at >97.9% and 99.2% C.L, assuming SM strength. Higgs signal at D0 cannot contain (at 95%CL) more than 67% or 57% of 0- or 2+.
- Final publications on Higgs are approaching for Tevatron:
   → these results, and possibly combination with CDF which could reach 5 sigmas exclusion of JP 0<sup>-</sup> and 2<sup>+</sup> hypotheses.





