$SU(3)_F$ methods and CPV in D decays

Stefan Schacht

CKM 2014

Vienna, 09/09/2014

based on works with G. Hiller, M. Jung, S. Müller, U. Nierste

Can we distinguish new physics in *D* decays from the Standard Model?

Data from LHCb, CDF, Belle, BABAR, CLEO and FOCUS Red: Update in 2014

Observable	Measurement				
SCS CP asymmetries					
$\Delta a_{CP}^{\mathrm{dir}}(K^+K^-,\pi^+\pi^-)$	-0.00253 ± 0.00104				
$\Sigma a_{CP}^{\mathrm{dir}}(K^+K^-,\pi^+\pi^-)$	-0.0011 ± 0.0026				
$a_{CP}^{\mathrm{dir}}(D^0 \to K_S K_S)$	-0.23 ± 0.19				
$a_{CP}^{dir}(D^0 \to \pi^0 \pi^0)$	-0.0004 ± 0.0064				
$a_{CP}^{dir}(D^+ \to \pi^0 \pi^+)$	$+0.029 \pm 0.029$				
$a_{CP}^{\operatorname{dir}}(D^+ \to K_S K^+)$	$+0.0011 \pm 0.0017$				
$a_{CP}^{dir}(D_s \to K_S \pi^+)$	$+0.006 \pm 0.005$				
$a_{CP}^{\mathrm{dir}}(D_s \to K^+ \pi^0)$	$+0.266 \pm 0.228$				
Indirect CP violation					
a_{CP}^{ind}	0.00013 ± 0.00052				
$\delta_L \equiv 2\text{Re}(\varepsilon)/(1+ \varepsilon ^2)$	$(3.32 \pm 0.06) \cdot 10^{-3}$				
$K^+\pi^-$ strong phase difference					
$\delta_{K\pi}$ (11.7 ± 10.2)°					

Observable	Measurement			
SCS branching ratios				
$\mathcal{B}(D^0 \to K^+ K^-)$	$(3.96 \pm 0.08) \cdot 10^{-3}$			
$\mathcal{B}(D^0 \to \pi^+\pi^-)$	$(1.402 \pm 0.026) \cdot 10^{-3}$			
$\mathcal{B}(D^0 \to K_S K_S)$	$(0.17 \pm 0.04) \cdot 10^{-3}$			
$\mathcal{B}(D^0 \to \pi^0 \pi^0)$	$(0.820 \pm 0.035) \cdot 10^{-3}$			
$\mathcal{B}(D^+ \to \pi^0 \pi^+)$	$(1.19 \pm 0.06) \cdot 10^{-3}$			
$\mathcal{B}(D^+ \to K_S K^+)$	$(2.83 \pm 0.16) \cdot 10^{-3}$			
$\mathcal{B}(D_s \to K_S \pi^+)$	$(1.22 \pm 0.06) \cdot 10^{-3}$			
$\mathcal{B}(D_s \to K^+ \pi^0)$	$(0.63 \pm 0.21) \cdot 10^{-3}$			
CF branching ratios				
$\mathcal{B}(D^0 \to K^- \pi^+)$	$(3.88 \pm 0.05) \cdot 10^{-2}$			
$\mathcal{B}(D^0 \to K_S \pi^0)$	$(1.19 \pm 0.04) \cdot 10^{-2}$			
$\mathcal{B}(D^0 \to K_L \pi^0)$	$(1.00 \pm 0.07) \cdot 10^{-2}$			
$\mathcal{B}(D^+ \to K_S \pi^+)$	$(1.47 \pm 0.07) \cdot 10^{-2}$			
$\mathcal{B}(D^+ \to K_L \pi^+)$	$(1.46 \pm 0.05) \cdot 10^{-2}$			
DCS branching ratios				
$\mathcal{B}(D^0 \to K^+ \pi^-)$	$(1.35 \pm 0.02) \cdot 10^{-4}$			
$\mathcal{B}(D^+\to K^+\pi^0)$	$(1.83 \pm 0.26) \cdot 10^{-4}$			

Symmetry emergency kit: SU(3)_F

States

•
$$\left(D^0 = - |c\overline{u}\rangle, \quad D^+ = |c\overline{d}\rangle, \quad D_s = |c\overline{s}\rangle\right) = \overline{3}$$

• Pions and Kaons: $[(8) \otimes (8)]_S = (1) \oplus (8) \oplus (27)$

Operators

$$\mathcal{H}_{eff} \sim \underbrace{V_{ud}V_{cs}^{*}\left(\bar{u}d\right)\left(\bar{s}c\right)}_{CA} + \underbrace{V_{us}V_{cs}^{*}\left(\bar{u}s\right)\left(\bar{s}c\right) + V_{ud}V_{cd}^{*}\left(\bar{u}d\right)\left(\bar{d}c\right)}_{SCS} + \underbrace{V_{us}V_{cd}^{*}\left(\bar{u}s\right)\left(\bar{d}c\right)}_{DCS}$$

$$\mathcal{H}_{eff}^{SCS} \sim \underbrace{V_{us}V_{cs}^{*}\left(\mathbf{15}+\mathbf{\overline{6}}\right)}_{CKM \ leading} + \underbrace{V_{ub}V_{cb}^{*}\left(\mathbf{15}+\mathbf{3}\right)}_{CKM \ suppressed, \ CPV}$$

Data can be described by SU(3)-expansion with SU(3)-Xing $\leq 30\%$.

2014: no confirmation of penguin enhancement (yet?) Let's be prepared for future data

Strategies for insights into strong dynamics

- **Structural form of** Λ_{OCD}/m_c -expansion. [Hiller Jung StS 2014] Do not aim for quantitative description by QCDF.
- 2 $1/N_c$ + topologic SU(3)_F breaking.

[Müller Nierste StS 2014]

•Get to grips with $SU(3)_F$ breaking. Finally improve predictions for CP asymmetries.

Taming $SU(3)_F$ breaking

1

Structural form of $\Lambda_{\rm QCD}/m_c$ -expansion

[Beneke Buchalla Neubert Sachrajda 2001]

$$\langle P_1 P_2 | H_{\text{eff}} | D \rangle = \langle P_1 P_2 | \mathcal{T}_A + \mathcal{T}_B | D \rangle$$

• \mathcal{T}_A

- *I* : Leading contribution + vertex corrections.
- *II*: Hard spectator corrections.

Parameterized by $a_i = a_{i,I} + a_{i,II}$

• \mathcal{T}_B : Annihilation contributions Parameterized by b_i

Example:

$$\mathcal{A}^{\text{factor}}(D^0 \to \pi^+ \pi^-) = -\Sigma \left(a_1 f_\pi (m_D^2 - m_\pi^2) F_0^{D\pi} (m_\pi^2) + f_D f_\pi^2 \, \boldsymbol{b}_1^{\pi\pi} \right)$$
$$\mathcal{A}^{\text{factor}}(D^0 \to \pi^0 \pi^0) = -\frac{\Sigma}{\sqrt{2}} \left(a_2^{D\pi\pi} f_\pi (m_D^2 - m_\pi^2) F_0^{D\pi} (m_\pi^2) - f_D f_\pi^2 \, \boldsymbol{b}_1^{\pi\pi} \right)$$

• Assume no enhancement of $SU(3)_F$ -breaking penguin here.

Illustration only: $m_c \rightarrow \infty$ is not so bad, actually

Zero annihilation: $b_i \rightarrow 0$.

 $\lambda_{D_{(s)}}$: Parametrization of ignorance of $D_{(s)}$ distribution amplitude.

Dark: $\lambda_{D_{(s)}} \in [150, 400]$ MeV.Green: T-dominated.Light: $\lambda_{D_{(s)}} \in [100, 400]$ MeV.Blue: C-dominated.Red : $\lambda_{D_{(s)}} \to \infty$.Orange: N_C -leading contribution only.

Annihilation is important. Especially for *C*-dominated decays.

Heavy Quark Sum Rule

Illustration over.

• Do not calculate a_i , b_i .

Use parametric dependence of amplitudes on *a_i*, *b_i*.
 Eliminate them by linear combinations of amplitudes.

 a_1 dominated by leading flavor-universal term.

- \Rightarrow a_1 approx. universal.
- 10 unknowns for 17 decays:

$$a_1, a_2^{D_s KK}, a_2^{D\pi\pi}, a_2^{D_s K\pi}, b_1^{K\pi}, b_1^{KK}, b_1^{\pi\pi}, b_{1s}^{KK}, b_2^{K\pi}, b_{2s}^{KK}$$

▶7 sum rules \Rightarrow 1 heavy quark sum rule.

- Eliminate one $SU(3)_F$ -breaking matrix element from the fit.
- Do not touch $SU(3)_F$ -limit matrix elements.

A_{CP} -Correlations in Plain SU(3)_F

[Hiller Jung StS 2014] [preliminary result]

- All data 2014.
- SU(3)_F breaking $\leq 50\%$.
- Red: SM/Triplet model. $\mathcal{H}_{SM} \sim V_{us}V_{cs}^* \left(\mathbf{15} + \mathbf{\overline{6}}\right) + V_{ub}V_{cb}^* \left(\mathbf{3}\right)$
- Blue/Yellow: NP models.

Dynamical Input: One Heavy Quark Sum Rule

[Hiller Jung StS 2014] [preliminary result]

Plain SU(3)_{*F*} (\equiv last slide).

Including sum rule from universal a_1 .

Remove one solution.

Taming $SU(3)_F$ breaking

2

Topologic approach: Flavor-flow diagrams

[Zeppenfeld 1981, Chau 1983, Gronau Hernandez London Rosner 1995, Buras Silvestrini 1998, Bhattacharya Gronau Rosner 2012, ...]

- The language of SU(3)_F-breaking matrix elements does not allow for a physical interpretation.
- Solution: Equivalent topologic parameterization.
- Important: Include $SU(3)_F$ -breaking in a meaningful way.

Topologic $SU(3)_F$ breaking

• Mass insertion formalism for difference of *s* and *d* quark mass.

[Gronau Hernandez London Rosner 1995]

• 3 diagrams for each T, C, E, A; $SU(3)_F$ -breaking penguin $P_d - P_s$.

[Brod Grossman Kagan Zupan 2012]

- Up to now: \Leftrightarrow SU(3)_F : Same rank. Same 6 sum rules.
- Dynamical input: Chance to constrain SU(3)_F breaking in each topology (!)

Equivalence to $SU(3)_F$

• Explicit Matching on $SU(3)_F$ (excerpt).

$SU(3)_F ME$	 E	$E_{1}^{(1)}$	$E_{2}^{(1)}$	$E_{3}^{(1)}$	P ^{break}
A_{27}^{15}	0	0	0	0	0
A_8^{15}	$-\frac{5}{2\sqrt{2}}$	$-\frac{5}{3\sqrt{2}}$	$-\frac{5}{6\sqrt{2}}$	0	0
$A_8^{ar 6}$	$\frac{\sqrt{5}}{2}$	0	$\frac{\sqrt{5}}{2}$	0	0
B_{1}^{3}	0	$\frac{32\sqrt{\frac{35}{421}}}{3}$	$\frac{32\sqrt{\frac{35}{421}}}{3}$	$-\frac{16\sqrt{\frac{35}{421}}}{3}$	$\frac{32\sqrt{\frac{35}{421}}}{3}$
B_8^3	0	$-\frac{20\sqrt{\frac{7}{3937}}}{3}$	$-\frac{20\sqrt{\frac{7}{3937}}}{3}$	$\frac{40\sqrt{\frac{7}{3937}}}{3}$	$\frac{160\sqrt{\frac{7}{3937}}}{3}$
$B_8^{ar{6}_1}$	0	$20\sqrt{\frac{7}{2869}}$	$-20\sqrt{\frac{7}{2869}}$	0	0
$B_8^{15_1}$	0	$460\sqrt{\frac{7}{1330969}}$	$20\sqrt{\frac{133}{70051}}$	$-840\sqrt{\frac{7}{1330969}}$	0
$B_8^{15_2}$	0	$-20\sqrt{\frac{6}{871}}$	$10\sqrt{\frac{6}{871}}$	$10\sqrt{\frac{6}{871}}$	0
$B_{27}^{15_1}$	0	0	0	0	0
$B_{27}^{15_2}$	0	0	0	0	0
$B_{27}^{\overline{24}_1}$	0	0	0	0	0

Theoretical Input in the Language of Topologies

- Corrections to *T* and *A* diagrams $1/N_C^2$ suppressed. \Rightarrow Factorization good approximation.
- Topologic measures of $SU(3)_F$ breaking:

 $\mathcal{T} = C, E, P_{\text{break}}$ and $\mathcal{R}_X^{\mathcal{T}}(d)$ part of amplitude of decay *d* stemming from corresponding SU(3)_{*F*}-breaking parameter(s) only.

2
$$\delta_X^{\prime,\text{topo}} \equiv \max_d \left| \sum_{\mathcal{T}} A_X^{\mathcal{T}}(d) / \mathcal{A}(d) \right|$$

overall amount of $SU(3)_F$ breaking introduced by all linear corrections to the topologies *C*, *E* and *P*_{break}.

$$\begin{array}{l} \textcircled{3} \quad \delta_X^{C_i/C} \equiv |C_i/C| \\ \textcircled{4} \quad \delta_X^{E_i/E} \equiv |E_i/E| \end{array} \end{array}$$

Fit the Topologies

[Müller Nierste StS 2014] [preliminary results]

- $SU(3)_F$ -breaking measures $\leq 50\% \Rightarrow$ reasonable $SU(3)_F$ expansion.
- $T_{i \to f}$ and $A_{i \to f}$ calculated in factorization.
- Perfect fit to branching ratios: $\chi^2 \sim 0$.

Interpret $SU(3)_F$ breaking in the topologic approach

How large is the $SU(3)_F$ -X penguin compared to the full amplitude?

[Müller Nierste StS 2014] [preliminary result]

Implications for CP asymmetries \Rightarrow Stay tuned.

Conclusion

• Charm physics remains suspense-packed.

• Correlations can already be obtained in plain $SU(3)_F$.

- Only little theoretical input on SU(3)_F breaking helps to disentangle NP/SM with future data.
 - $1/N_c$ and/or $1/m_c$ counting.
 - Heavy quark sum rules.
 - Topologic $SU(3)_F$ breaking.
- Future key observables:

$$\begin{array}{ll} A_{CP}(D^0 \to K_S K_S), & A_{CP}(D_s \to K^+ \pi^0), & A_{CP}(D^+ \to \pi^+ \pi^0) \\ A_{CP}(D^0 \to \pi^0 \pi^0), & A_{CP}(D^0 \to K^+ K^-), & A_{CP}(D^0 \to \pi^+ \pi^-) \end{array}$$