Single Top Quark Production and Measurements of V_{tb} in the ATLAS Experiment

Patrick Rieck on behalf of the ATLAS collaboration

Humboldt-Universität zu Berlin

CKM 2014 September 9th

Studienstiftung des deutschen Volkes

t-Channel Cross Sections at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV

V_{tb} Measurements

New Physics Searches in Single Top Topologies

Three production modes

- t-channel
- Wt associated production
- s-channel (interference with t-channel $O(\alpha_s^2)$)

Complex topology of top quark events

- Charged leptons
- Neutrinos / E_T
- b-jets and light jets

\Rightarrow Need to reconstruct many different objects

Typical Selection, t-channel

- ► Single *e* or *µ*-trigger
- Exactly one e or µ reconstructed
- 2 3 jets with 1 2 b-tags
- Large *E*_T

Need to understand large backgrounds

AOLDT A

X

- Background from jets misidentified as leptons or from non-promt leptons
- Hard to simulate, in particular due to high statistics demand
 Use data-driven techniques

Fitting Method

- Find model for the *E*_T shape of a variable in fake lepton events, e.g. jet-electron: select a jet likely to fake an electron (high EM fraction)
- Fitting fake lepton template together with other MC samples ⇒ normalization

Matrix Method

 Estimation of fake leptons from tight and loose lepton selection in data using efficiencies P(Tight|Loose) for real and for fake leptons

[[]arXiv:1406.7844v1, subm. to PRD]

- Usually insufficient reduction of backgrounds by using a cut-and-count approach
- Build final discriminant separating signal and background
- Different methods with similar separation, but different speed and different impact of systematics
- So far in ATLAS: choice of one fast method (NN or BDT)

t-channel single top production

- Largest single top cross section
- Sensitive to:
 - V_{tq} due to weak top quark production
 - ► W-t-b coupling structure
 - Parton density functions u/d, b
 - FCNCs (see dedicated talk later on)

ATLAS t-channel measurements at $\sqrt{s} = 7$ TeV

- ► Comprehensive measurements using 4.59 fb⁻¹: $\sigma(tq)$, $\sigma(\bar{t}q)$, $\sigma(tq+\bar{t}q)$, $R_t = \sigma(tq)/\sigma(\bar{t}q)$, $|V_{tb}|$ and differential cross sections [arXiv:1406.7844v1, subm. to PRD]
- Cuts:
 - 1 electron or muon, p_T > 30 GeV
 - ► , *E*_T> 30 GeV
 - *m*^W_T > 30 GeV[∗]
 - 2 or 3 jets, $p_T > 30 \text{ GeV}$, $|\eta| < 4.5$ (*t*-channel forward scattering)
 - 1 or 2 b-tags (see next slide)

*OLDT

Σ

- Training of 2 Neural Networks 2-jet and 3-jet channel (I[±] combined)
- Choosing best separating variables as input, check variable modeling in control region similar to 2-jet selection but loosened b-tagging
 - > 2-jet channel: 13 variables $|\eta(j)|$, $m(lvb)^*$, m(jb) most important
 - ▶ 3-jet channel: 11 variables $\Delta y(j_1, j_2)$, $m(j_2j_3)$, $m(l\nu b)$ most important
- Observation of *t*-channel single top production at $\sqrt{s}=7$ TeV

[ATLAS-CONF-2011-088]

*Neutrino reconstruction using W mass constraint

Signal Extraction

- Max. likelihood fit of t-channel signal strength(s) to the NN discriminant in all 1-tag channels, event counting in 3-jet-2-tag channel
- Profiling of most bkg. normalizations and of b-tagging efficiency
- Other nuisance parameters integrated out of the likelihood function (hybrid approach)

Cross Sections

$\sigma(tq+\bar{t}q)$	=	$68 \pm 2(stat.) \pm 8(syst.)pb$
$\sigma(tq)$	=	$46 \pm 1(stat.) \pm 6(syst.)pb$
$\sigma(\overline{t}q)$	=	$23 \pm 1(stat.) \pm 3(syst.)pb$
R_t	=	2.04 ± 0.13 (stat.) ± 0.12 (syst.)

 All measurements in agreement with the standard model predictions.

Source	$\frac{\Delta R_t}{R_t}$ [%]	$\frac{\Delta\sigma(tq+\bar{t}q)}{\sigma(tq+\bar{t}q)} \ [\%]$
data stat. MC stat.	6.2 3.6	2.7 1.9
JES η intercalib. <i>b</i> -tagging ε $\not \in T$ Leptons PDF $tq \mu_R \& \mu_F$ others	<2 <2 <2 2.5 <2 2.5 <2 <2 each	7.3 3.9 2.6 2.8 3.2 2.6 <2 each
Total	8.7	12.4

t-Channel Measurements at \sqrt{s} =7 TeV

Total Cross Sections and top/anti-top Ratio

t-Channel Fiducial Cross Section, $\sqrt{s} = 8 \text{ TeV}_{\ell}$ 80 Analysis Approach

- Measurement of inclusive and fiducial *t*-channel cross section using $\mathcal{L}=20.3$ fb⁻¹
- Similar to 7 TeV analysis, but requiring exactly 2 jets
- Signal discrimination using a neural network
- Input variable modeling checked in control regions (W+jets: loosened b-tagging, tt: 2 b-jets)

ž

t-Channel Fiducial Cross Section, $\sqrt{s} = 8 \text{ TeV}$

- ► Referring to a fiducial volume within the detector acceptance ⇒ reduction of modeling uncertainties
- Definition of fiducial volume:
 - W.r.t. stable particles ($\tau > 30 \text{ ps}$)
 - e/μ and neutrino ($\not\!\!\!E_T$) from W decay
 - Particle level jets
 - B-hadron matching as b-tagging
 - Kinematic cuts similar to detector level cuts

 $\sigma_{\text{fid}} = \frac{\mathsf{P}\left(\mathsf{fiducial}\,|\, \textbf{selected}\right)}{\mathsf{P}\left(\mathsf{selected}\,|\,\mathsf{fiducial}\right)} \cdot \frac{\hat{\nu}}{\mathcal{L}}$

Max. likelihood fit to NN output to estimate ν̂

 $\sigma_{\text{fid}} = 3.37 \pm 0.05 (\text{stat.}) \pm 0.47 (\text{syst.}) \pm 0.09 (\text{lumi}) \text{pb}$

Source	$rac{\Delta\sigma_{\mathrm{fid}}}{\sigma_{\mathrm{fid}}}$ [%]
data stat.	1.5
JES η intercalib. JES physics modelling <i>b</i> -tagging ε	7.9 3.0 3.5
∉ _T modelling t-channel generator others	3.0 7.9 < 3 each
Total	14

t-Channel Fiducial Cross Section, $\sqrt{s} = 8 \text{ TeV}$

- Agreement between NLO generators, large scale uncertainty for LO generator
- Determine inclusive cross section by extrapolating to the full phase space

$$\sigma = \frac{1}{\varepsilon_{\rm fid}} \sigma_{\rm fid}$$

- Smaller uncertainty of fiducial compared to inclusive cross section: 14% vs. 17%
- Inclusive cross sections using acceptances from NLO generators in agreement with fixed order QCD calculation

Powheg(2→3)+Pythia8

Powheg(2→2)+Pythia6 AcerMC+Pythia6 u=172.5 GeV

40 50 60 70 80 90 100 σ, [pb]

AcerMC+Pvthia6 u=60 GeV

80

V_{tb} Measurements

0 #

- t-channel much more sensitive to V_{td} and V_{ts} than s-channel due to initial state d and s-quark-contributions
- Combined V_{td}, V_{ts}, V_{tb} extraction needs σ_{t-channel} and R_i
- Tevatron results for R_b from tt measurements:*

D0	CDF single lepton	CDF di-lepton
0.90 ± 0.04	0.94 ± 0.09	0.87 ± 0.07

*PRL107.121802, PRD87.111101, PRL112.221801

- Current practice is to assume
 - 1. $|V_{tb}| \gg |V_{td}|, |V_{ts}| \Leftrightarrow R_b = 1$

2.
$$\bar{b}\gamma_{\mu}\frac{1}{2}(1-\gamma_5)W^{\mu}t + h.c.$$

 $\Rightarrow |V_{tb}|^2 = \frac{\sigma^{\text{measured}}}{\sigma^{\text{SM}}}$

ò

- ► For lower limits: use gaussian distribution of $|V_{tb}|^2$ according to $\sigma^{\text{measured}}/\sigma^{\text{SM}}$ truncated to [0, 1] as p.d.f.
- ► Determine |V_{tb}| in t-channel at √s=7 TeV and √s=8 TeV and in Wt associated production at √s=8 TeV [ATLAS-CONF-2013-100]

	<i>t</i> -channel \sqrt{s} =7 TeV	<i>t</i> -channel \sqrt{s} =8 TeV	Wt $\sqrt{s} = 8 \text{ TeV}$
V _{tb}	1.02 ± 0.07	0.97 ^{+0.08} 0.09	1.10 ± 0.12
95% CL lower limit	0.88	0.78	0.72

ATLAS-CONF-2013-050

Proposed by several new physics models (extra-dimensional excitations of the W-boson, technicolour, little Higgs)

Effective model:

W' Search

Motivation

$$\mathcal{L} = \frac{V'_{ij}}{2\sqrt{2}} \overline{f}_i \gamma_\mu \left(\mathbf{g}'_{\mathsf{L}_{ij}} (1 - \gamma^5) + \mathbf{g}'_{\mathsf{R}_{ij}} (1 + \gamma^5) \right) W'^\mu f_j + h.c.$$

$$\mathbf{g}'_{\mathsf{L},\mathsf{R}} = \mathsf{left}/\mathsf{right}\mathsf{-handed\ couplings}, \quad V' = \begin{cases} V_{\mathsf{CKM}} \text{ for quarks} \\ \delta_{ij} \text{ for leptons} \end{cases}$$

0

Allowed decays:

Decay	hadronic	leptonic
$W'_{L} \ W'_{R}, m(v_{R}) < m(W') \ W'_{R}, m(v_{R}) > m(W')$	 	\checkmark + SM interference \checkmark

- Motivation for $W' \rightarrow tb$ search
 - Direct leptonic searches have lower sensitivity to a leptophobic W'
 - Many models with large 3rd generation couplings
 - → disfavours all-hadronic searches

- Analysis of $\sqrt{s} = 8 \text{ TeV}$ data, $\mathcal{L} = 14.3 \text{ fb}^{-1}$
- Signal modelling by MadGraph+Pythia, scaled to NLO
 - ► Two scenarios $W'_L : g'_L = g_{SM}, g'_R = 0$ $W'_R : g'_R = g_{SM}, g'_I = 0$
 - ► s-channel interference neglected
- ▶ Backgrounds modeled by MC, W+jets and multijets normalized to data
- Single lepton events, 2-3 jets, at least one b-tag
- Boosted Decision Trees, trained for specific W'_{L/R} mass points

ATLAS-CONF-2013-050

W' Search

Mass Limits

 $\begin{bmatrix} \text{dd} \\ 10 \end{bmatrix} \text{ B(W} \rightarrow \text{M}) \text{ B(W} \rightarrow \text{M}) = \begin{bmatrix} \text{dd} \\ 10 \end{bmatrix} \text{ B(W} \rightarrow \text{M}) = \begin{bmatrix} \text{dd} \\ 10 \end{bmatrix} \text{ B(W} \rightarrow \text{dd})$

10

500

0.8

ž

 $m(W_{1}') > 1.74 \,\text{TeV} @95\% \,\text{CL}_{S}$

Single Top Measurements at ATLAS

Standard Model Physics

- ► Evidence for associated Wt production in di-lepton events at √s=8 TeV (4.2σ) [ATLAS-CONF-2013-100]
- ► s-channel search at \sqrt{s} =7 TeV, most challenging channel, current limit ≈ 6 · $\sigma_{s-channel}^{SM}$

New Physics

- Search for CP-Violation in t-quark decays [ATLAS-CONF-2013-032]
- b* search, probe coupling of excited quarks to 3rd generation quarks
 [PLB 721 (2013)]
- ► FCNC in top quark production, qg → t, see dedicated talk by O. Arslan this afternoon [ATLAS-CONF-2013-063], [PLB712 (2012) 351]

Conclusion

- Performing various single top measurements
- *t*-channel cross section at $\sqrt{s} = 7 \text{ TeV}$: $|V_{tb}| = 1.02 \pm 0.07$
- Started to exploit new physics potential in single top topologies

Backup

- B(t→Wb) is close to 1: Necessity of b-tagging to reduce backgrounds like W/Z+jets and multijets
 - Gather secondary vertex information (d₀ significance, vertex mass etc.)
 - Combination in neural network, trained to separate *b*-jets

Maximum Likelihood Fit

OF UNIDARY CONTRACTOR

Likelihood Function

$$L(\beta^{S}, \beta_{j}^{B}) = \prod_{k \in \{\text{bins}\}} \frac{\mu_{k}^{n_{k}} e^{-\mu_{k}}}{n_{k}!} \cdot \sum_{j \in \{\text{Profiled NPs}\}} \text{Gauß}\left(\beta_{j}^{B}|1, \Delta_{j}\right)$$
$$\mu_{k} = \mu_{k}^{S} + \sum_{j} \mu_{jk}^{B}, \quad \mu_{k}^{S} = \beta^{S} \cdot \nu^{S} \cdot \alpha_{k}^{S}, \quad \mu_{jk}^{B} = \beta_{j}^{B} \cdot \nu_{j} \cdot \alpha_{jk}$$

Procedure

- In pseudo-experiments generate all nuisance parameters according to priors (not matter if present in the likelihood function above or not)
- For eacht pseudo-experiment fit L w.r.t. β^S, {β^B_j} and possibly other NPs (e.g. *b*-tagging efficiency)
- Determine the uncertainty of signal strength from the spread of fitted β^S

Measurement	V _{tb}	95%CL lower limit
<i>t</i> -channel \sqrt{s} =7 TeV	1.02 ± 0.01 (stat.) ± 0.06 (syst.) ± 0.02 (theory) $^{+0.01}_{-0.00}$ (m _t)	0.88
<i>t</i> -channel $\sqrt{s} = 8$ TeV <i>Wt</i> $\sqrt{s} = 8$ TeV	$\begin{array}{l} 0.97^{+0.06}_{-0.07}(\text{exp.})\pm0.06(\text{gen.+PDF+theory})\\ 1.10\pm0.12(\text{exp})\pm0.03(\text{theory}) \end{array}$	0.78 0.72

- More I⁺ than I⁻ t-channel events due to higher u-quark luminosity compared to d-quarks in pp collisions *
- Using 3-jet-2-tag control region in order to in-situ constrain b-tagging efficiency when fitting

 $^{^*\}Sigma = \text{Observed Event Yield}$

- Using high purity region NN_{output} > 0.8 in 2-jet channels ⇒ S/B ≈ 2 for I⁺, S/B ≈ 1 for I⁻
- Normalization of samples according to cross section fit results
- Unfolding of observed distributions to the parton level

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X_j} = \frac{1}{\Delta X_j} \cdot \frac{\sum_i M_{ij}^{-1} \cdot (\mathrm{Data}_i - \mathrm{Bkg}_i)}{\mathcal{L} \cdot \varepsilon_j}$$

- √S = 8TeV. Ldt = 20.3 fb <u></u> <u></u> <u></u> <u></u> 1000 RDT Respons $\Delta \sigma_{Wt}$ [%] Source data stat. JES Flavour tagging 84 Wt generator + PS < 8 each

Wt Measurement at $\sqrt{s} = 8 \text{ TeV}$

Wt process

- Associated production of a top guark and a W boson
- Interference with $t\bar{t}$ production $O(\alpha_{\rm S})$, but small within detector acceptance

ATLAS measurement [ATLAS-CONF-2013-100]

- Using $\sqrt{s} = 8$ TeV, $\mathcal{L} = 20.3$ fb⁻¹
- Event selection:
 - One electron and one muon
 - One or two jets, one or two b-tags
 - Missing transverse momentum
- Boosted decision trees (1-jet and 2-jet)
- Max. likelihood fit, partial profiling

 $\sigma_{Wt} = 27.2 \pm 2.8(\text{stat.}) \pm 5.4(\text{syst.})\text{pb}$

- Significance of 4.2σ (4.0σ expected)
- Agreement with standard model prediction