$\Lambda_b \rightarrow plv$ on the lattice

MATTHEW WINGATE

DAMTP, UNIVERSITY OF CAMBRIDGE

STEFAN MEINEL
UNIVERSITY OF ARIZONA

CKM 2014

WGII: VUB & VCB

$\Lambda_b \rightarrow plv$ on the lattice

MATTHEW WINGATE*

DAMTP, UNIVERSITY OF CAMBRIDGE

STEFAN MEINEL
UNIVERSITY OF ARIZONA

CKM 2014
WGII: V_{UB} & V_{CB}

Outline

- Motivation
- Background
- **Published results** (m_b → ∞ limit)
- $ightharpoonup ext{Preliminary results (physical } m_b)$

Motivation

- **!** [Reminder: Λ_b is the isospin=0, beauty*=1 baryon]
- $\Lambda_b \rightarrow p \ l^- v$ is being measured at the LHC
- Test for new physics in b to $u: B \to \pi l \nu$ and $B_s \to K l \nu$ only expose the vector part of (V±A)
- ❖ Λ_b form factors are "simple" lattice quantities, in constrast to $B \rightarrow \rho l \nu, B_s \rightarrow K^* l \nu$
- ❖ $\Lambda_b \rightarrow p$ form factor calculation done in parallel with those for the rare $b \rightarrow s$ decay $\Lambda_b \rightarrow \Lambda l^+ l^-$

^{*} beauty = -bottomness

Beautiful baryons on the lattice

- Unquenched LQCD b baryon mass splittings
- LQCD predicted smaller Ω_b mass than originally determined by DØ, later confirmed by CDF & LHCb
- * LQCD calculations of $\Sigma_b^* \Sigma_b \pi$ and $\Sigma_b^{(*)} \Lambda_b \pi$ couplings (Detmold, Lin, Meinel, 2011-12)

from Lin, Cohen, Mathur, Orginos, PRD80 (2009)

LHCb-CONF-2011-60

$\Lambda_b \rightarrow p$ form factors

In general

$$raket{p|ar{u}\gamma^{\mu}b|\Lambda_b} = ar{u}_p \left[f_1^V \gamma^{\mu} - f_2^V rac{i\sigma^{\mu
u}q_{
u}}{m_{\Lambda_b}} + f_3^V rac{q^{\mu}}{m_{\Lambda_b}}
ight] u_{\Lambda_b}$$

$$\langle p|ar{u}\gamma^{\mu}\gamma_{5}b|\Lambda_{b}
angle \ = \ ar{u}_{p}\left[f_{1}^{A}\gamma^{\mu}-f_{2}^{A}rac{i\sigma^{\mu
u}q_{
u}}{m_{\Lambda_{b}}}+f_{3}^{A}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]\gamma_{5}u_{\Lambda_{b}}$$

In the $m_b \rightarrow \infty$ limit

$$\langle p(k',s')|ar{u}\Gamma Q|\Lambda_Q(v,s)
angle \ = \ ar{u}_p(k',s')\left[F_1(k'\cdot v) + \psi F_2(k'\cdot v) \right]\Gamma u_{\Lambda_b}(v,s)$$

$\Lambda_b \rightarrow \Lambda$ form factors

In general

$$egin{aligned} \langle \Lambda | ar{s} \gamma^{\mu} b | \Lambda_b
angle &= ar{u}_{\Lambda} \left[f_{1}^{V} \gamma^{\mu} - f_{2}^{V} rac{i \sigma^{\mu
u} q_{
u}}{m_{\Lambda_b}} + f_{3}^{V} rac{q^{\mu}}{m_{\Lambda_b}}
ight] u_{\Lambda_b} \ &\langle \Lambda | ar{s} \gamma^{\mu} \gamma_5 b | \Lambda_b
angle &= ar{u}_{\Lambda} \left[f_{1}^{A} \gamma^{\mu} - f_{2}^{A} rac{i \sigma^{\mu
u} q_{
u}}{m_{\Lambda_b}} + f_{3}^{A} rac{q^{\mu}}{m_{\Lambda_b}}
ight] \gamma_5 u_{\Lambda_b} \ &\langle \Lambda | ar{s} i \sigma^{\mu
u} q_{
u} b | \Lambda_b
angle &= ar{u}_{\Lambda} \left[f_{1}^{TV} rac{\gamma^{\mu} q^2 - q^{\mu} \not q}{m_{\Lambda_b}} - f_{2}^{TV} rac{q^{\mu}}{m_{\Lambda_b}}
ight] u_{\Lambda_b} \ &\langle \Lambda | ar{s} i \sigma^{\mu
u} q_{
u} \gamma_5 b | \Lambda_b
angle &= ar{u}_{\Lambda} \left[f_{1}^{TA} rac{\gamma^{\mu} q^2 - q^{\mu} \not q}{m_{\Lambda_b}} - f_{2}^{TA} rac{q^{\mu}}{m_{\Lambda_b}}
ight] \gamma_5 u_{\Lambda_b} \end{aligned}$$

In the $m_b \rightarrow \infty$ limit

$$\langle \Lambda(k',s')|ar{s}\Gamma Q|\Lambda_Q(v,s)
angle \ = \ ar{u}_\Lambda(k',s')\left[F_1(k'\cdot v)+\psi F_2(k'\cdot v)\right]\Gamma u_{\Lambda_b}(v,s)$$

Lattice actions & parameters

RBC/UKQCD lattices (2+1 domain wall)
Static ($m_b = \infty$) heavy quarks

Set	β	$N_s^3 \times N_t \times N_5$	am_5	$am_s^{(sea)}$	$am_{u,d}^{(\text{sea})}$	a (fm)	$am_{u,d}^{(\mathrm{val})}$	$m_{\pi}^{(\text{val})} \text{ (MeV)}$	$m_N^{(\mathrm{val})}$ (MeV)	$N_{\rm meas}$
C14	2.13	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.001	245(4)	1090(21)	2672
C24	2.13	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.002	270(4)	1103(20)	2676
C54	2.13	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.005	336(5)	1160(19)	2782
F23	2.25	$32^3 \times 64 \times 16$	1.8	0.03	0.004	0.0849(12)	0.002	227(3)	1049(25)	1907
F43	2.25	$32^3 \times 64 \times 16$	1.8	0.03	0.004	0.0849(12)	0.004	295(4)	1094(18)	1917
F63	2.25	$32^3 \times 64 \times 16$	1.8	0.03	0.006	0.0848(17)	0.006	352(7)	1165(23)	2782

1-loop operator matching: T Ishikawa et al., JHEP 1105, 040 (2011)

Form factor shape

- ❖ In static limit, z-expansion is not applicable
- Instead, try monopole, dipole, etc. (Latter is a better fit to the data)
- Incorporate discretization and quark mass effects

$$F = rac{Y}{(X + E_p - m_p)^2} [1 + d(aE_p)^2]$$
 $X = X_0 + c[m_\pi^2 - (m_\pi^{
m phys})^2]$

In practice, c's & d's small, consistent with zero [except $c_{l,+} = 0.094(32)$ in the $\Lambda_b \rightarrow \Lambda$ calculation]

Form factors on each ensemble

$$F_{\pm} = F_1 \pm F_2$$

Form factors, physical limit

Decay rate $\Lambda \rightarrow p \mu \nu$

Outer error band includes estimate of terms beyond LO static approximation:

$$\sim \sqrt{rac{\Lambda_{
m QCD}^2}{m_b^2} + rac{|{
m k}'|^2}{m_b^2}}$$

Detmold, Lin, Meinel, Wingate, PRD88 (2013)

Comparison: A vs. p final states

$$F_{\pm} = F_1 \pm F_2$$

Error bands: statistical + 8% lattice systematic uncertainties

Differential b.f. $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

Note: C_9^{NP} < 0 would imply a decrease in the b.f.

S Meinel, Lattice 2013, update of Detmold, Lin, Meinel, Wingate, PRD87 (2013)

Beyond the static approximation

- S Meinel is extending the calculation beyond static action
- RBC/UKQCD lattice ensembles
- Relativistic heavy quark action: Fermilab method with nonperturbatively tuned coefficients. (RBC/UKQCD collab)
- * "Mostly nonperturbative" operator matching (Fermilab)
- Replace pole model with z-expansion
- Result: dramatic reduction of systematic uncertainties

$\Lambda_b \rightarrow p$ form factors

Status of S Meinel's ongoing calculation

S Meinel at FPCP 2014

Predicted precision

Conclusions

- First lattice calculations of Λ_b form factors
- $\Lambda_b \rightarrow p \ l^- \nu$: Novel method to determine $|V_{ub}|$
- $A_b \rightarrow A l^+ l^-$: complements $B \rightarrow K^{(*)} l^+ l^-$ and $B_s \rightarrow \varphi l^+ l^-$
- Look forward to experimental measurements

References

$$\Lambda_b \rightarrow p$$

W Detmold, C-J D Lin, S Meinel, M Wingate Phys. Rev. D 88, 014512 (2013) [arXiv:1306.0446]

$$\Lambda_b \rightarrow p$$
, etc.

S Meinel

Lattice 2013 [arXiv:1401.2685], FPCP 2014 slides

$$\Lambda_b \rightarrow \Lambda$$

W Detmold, C-J D Lin, S Meinel, M Wingate

Phys. Rev. D 87, 074502 (2013) [arXiv:1212.4827]