Semileptonic b-hadron decays at LHCb

Basem Khanji On behalf of the LHCb collaboration

INFN-CERN

10-September-2014

CKM2014, 8-12 September 2014, Vienna (Austria)

B. Khanji, LHCb (Milano-Bicocca, INFN-CERN)

Semileptonic b-hadron decays at LHCb

LHCb experiment

2 Semileptonic @ LHCb

Summary

LHCb

LHCb ГНСр

- LHCb experiment:
 - Indirect search for New Physics: probe effects of new particles in loops
 - Single-arm forward spectrometer
 - Unique η coverage (2 < η < 5)
- LHCb physics:
 - Designed to search for CP violation & Rare decays in Beauty & Charm
 - $\sigma(b\bar{b}) = (288 \pm 4 \pm 48) \,\mu \mathrm{b}^{-1}$ @7 TeV Eur. Phys. J. C71 (2011) 1645
 - $\sigma(b\bar{b}) = (298 \pm 3 \pm 36) \,\mu \mathrm{b}^{-1} @8 \,\mathrm{TeV}$
 - J. High Energy Phys. 06 (2013) 064
 - $\sigma(c\bar{c}) = (1419 \pm 12 \pm 116 \pm 65) \,\mu b^{-1} @7 \,\mathrm{TeV}$ Nucl. Phys. B871 (2013)
- LHCb luminosity:
 - Run I: 37 pb⁻¹(2010), 1 fb⁻¹(2011), 2 fb⁻¹(2012)
 - data taking eff. > 90%

LHCb experiment

LHCb detector

- VELO : 20 μm for high p_T tracks
- Tracking system : $\delta(p)/p = (0.4 0.6)\%$, reversible magnet polarity
- RICH system ϵ : ϵ (K ID) \sim 95%, 5% $\pi \rightarrow$ K mis-id probability
- Calorimeter : Energy measurement, identify π^0 , γ
- Muon detector $: \epsilon(\mu | \text{ID}) \sim$ 97%, $(1-3)\%, \pi \rightarrow \mu$ mis-id probability
- Trigger : $40 \text{ MHz} \rightarrow 5 \text{ kHz}$, efficiency(μ trigger) $\sim 90\%$

Smoking guns from Semileptonics

• D0: Semileptonic asymmetries $a_{\rm sl}^{\rm s}, a_{\rm sl}^{\rm d}$ 3. σ from SM

(Phys. Rev. D89 (2014) 012002)

• BaBar: Combined semitaunic $\mathcal{R}(D^*)$ & $\mathcal{R}(D)$ using $B^0 \rightarrow D\tau\nu$ 3. σ from SM prediction

(Phys. Rev. D88 (2013) 7, 072012)

- V_{ub} puzzle
 - $V_{\rm ub}({\rm incl}) = (4.41 \pm 0.15) \times 10^{-3}$ (Phys. Rev. Lett. 104, 011802 (2010))
 - $V_{\rm ub}({\rm excl}) = (3.28 \pm 0.29) \times 10^{-3}$

Semileptonic program at LHCb

LHCD THCD

- b-hadron cross sections, production fractions & production asymmetries
- Measuring the mixing frequencies $\Delta m_{
 m d}$ and $\Delta m_{
 m s}$
- Semileptonic asymmetries a_{sl}^s and a_{sl}^d in the neutral B_s^0 and B^0 systems
 - a^d_{sl} measurement at LHCb: Lucia Grillo talk https://indico.cern.ch/event/253826/session/7/contribution/80
- Branching fraction in semileptonic channels $B^0 \to D^{*-} \tau^+ \nu$ and $B^0 \to D^- \tau^+ \nu$
- Measurement of CKM elements $V_{
 m ub}/V_{
 m cb}$

Observation of $\Delta m_{\rm s}$ and measuring $\Delta m_{\rm d}$

Eur. Phys. J. C (2013) 73:2655

Measuring $\Delta m_{ m d}$ & $\Delta m_{ m s}$

• Flavour oscillation through electroweak interaction in neutral B mesons

 $N_{\pm}(t) \propto e^{rac{-t}{ au}} (\cosh(\Delta\Gamma_{
m q} t/2) \pm q \cos(\Delta m_{
m q} t))$

- Tagged time-dependent analysis in $B^0_{(s)} \rightarrow D^-_{(s)} \mu^+ \nu$ decays
 - $\textbf{\textit{q}}:$ mixing state of $\mathrm{B}_{\mathrm{q}} \rightarrow$ determine B_{q} flavour at production
 - *t*: proper time of $B_q \rightarrow \text{determine } t = \frac{\text{Decay length} \times \text{mass}}{\text{momentum}}$ correctly

Flavour tagging

- Determine the flavour of B_{q} at production in LHCb

(Eur. Phys. J. C72 (2012) 2022)

- Opposite B: μ, e from semileptonics, K from cascade, inclusive secondary vertex form B decay products
- Fragmentation: π or K associated to signal B
- Tag Decision (q_i = ±1,0): NNet output
- Flavour tagging is Not perfect
 - Mistag probability: ω

$$N_{\pm}(t) \propto e^{rac{-t}{\tau}} (\cosh(\Delta\Gamma_{\mathrm{q}}t/2) + q(1-2\omega)\cos(\Delta m_{\mathrm{q}}t))$$

Determination of ${\rm B}$ decay time

- Wrong B momentum due to missing particle → wrong t
- Correct *t* using k-factor method
 - k(m_B): p_{rec}/p_{true} as a function of B mass from simulation
 - Apply correction function on data
- Time-dependent resolution function

$\Delta m_{ m d}$ measurement

- Binned fit in Time, KK π invariant mass and flavour tag, $1\,{
 m fb}^{-1}$ of 2011 data
- $\Delta m_{\rm d} = (0.503 \pm 0.011({
 m stat}) \pm 0.013({
 m syst})) \, {
 m ps}^{-1}$
 - PDG world average $\Delta m_{
 m d} = (0.510\pm0.003)\,{
 m ps}^{-1}$
 - World best by LHCb $\Delta m_{
 m d} = (0.5156 \pm 0.0051 \pm 0.0033)\,{
 m ps^{-1}}$ (Phys. Lett. B719'(2013) 318-325)

- ${\rm B^+}
 ightarrow {\rm D^-} \mu^+ \nu$ background: dominant systematic source
- Update using Cabibbo-favored modes ${\rm D}^+ \to {\rm K}^-\pi^+\pi^+$ & ${\rm D}^{*-} \to {\rm D}^0({\rm K}^-\pi^+)\pi^-$

$\Delta m_{ m s}$ observation

- Binned fit in Time, KK π invariant mass and flavour tag, $1\,{
 m fb}^{-1}$ of 2011 data
- $\Delta m_{\rm s} = (17.93 \pm 0.22({\rm stat}) \pm 0.15({\rm syst})) \,{\rm ps}^{-1}$
 - PDG world average $\Delta m_{
 m s} = (17.768 \pm 0.023)\,{
 m ps}^{-1}$
 - World best by LHCb $\Delta m_{
 m s} = (17.769 \pm 0.023 \pm 0.006) \, {
 m ps}^{-1}$ (New J. Phys. 15 (2013) 053021)

• Parametrization of the time-dependent resolution: dominant systematic source

$$a_{\rm sl}^{\rm s}$$
 & $a_{\rm sl}^{\rm d}$

Semileptonic asymmetries in the neutral B_q system: a_{sl}^q

Phy. Lett B 728 (2014) 607-615

B. Khanji, LHCb (Milano-Bicocca, INFN-CERN) Semileptonic b-hadron decays at LHCb

Semileptonic asymmetries in the neutral B_{q} system

LHCb ГНСр

- Flavour specific Asymmetry in neutral B_{q} semileptonic decays:

$$\boldsymbol{a}_{\mathrm{sl}}^{\mathrm{q}} = \frac{\Gamma(\overline{\mathrm{B}_{\mathrm{q}}}(t) \to f) - \Gamma(\mathrm{B}_{\mathrm{q}}(t) \to \overline{f})}{\Gamma(\overline{\mathrm{B}_{\mathrm{q}}}(t) \to f) + \Gamma(\mathrm{B}_{\mathrm{q}}(t) \to \overline{f})} \simeq \frac{\Delta\Gamma_{\mathrm{q}}}{\Delta m_{\mathrm{q}}} \tan \phi_{\mathrm{M}}^{\mathrm{q}}$$

- $\overline{\mathrm{B}_{\mathrm{q}}}(t)
 ightarrow f$ reachable via mixing, $\phi_{\mathrm{M}}^{\mathrm{q}}$: CP violating phase
- Small & known in Standard Model

•
$$a_{\rm sl}^{\rm s} = (1.9 \pm 0.3) \times 10^{-5}$$
 (arXiv:1102.4274)

- $a_{
 m sl}^{
 m d} = (-4.1\pm0.6) imes10^{-4}$ (arXiv:1102.4274)
- \Rightarrow Probe for New Physics

Measured semileptonic asymmetry at LHCb

- Measure $a_{\rm sl}^{\rm s}$ in semileptonic ${\rm B}_{\rm s}^{0} \,{\rightarrow}\, {\rm D}_{\rm s}^{-} \,\mu^{+} \nu$
- LHC is pp collider \rightarrow account for particle-antiparticle production asymmetry

$$A_{\text{meas}} = \frac{\Gamma(D_{\text{s}}^{-}\mu^{+}) - \Gamma(D_{\text{s}}^{+}\mu^{-})}{\Gamma(D_{\text{s}}^{-}\mu^{+}) + \Gamma(D_{\text{s}}^{+}\mu^{-})} = \frac{a_{\text{sl}}^{\text{s}}}{2} + (a_{\text{p}} - \frac{a_{\text{sl}}^{\text{s}}}{2}) \frac{\int_{0}^{\infty} e^{-\Gamma_{\text{s}}t} \cos(\Delta m_{\text{s}}t) dt}{\int_{0}^{\infty} e^{-\Gamma_{\text{s}}t} \cosh(\frac{\Delta \Gamma_{\text{s}}t}{2}) dt} \sim \frac{a_{\text{sl}}^{\text{s}}}{2}$$

- Large $\Delta m_{
 m s}$ ightarrow integral ratio (\sim 0.2%), a_{
 m p} \sim ${\cal O}(1\%)$
- But $A_{\rm meas}$ is spoiled by other asymmetries
 - Magnet bends Oppositely charged particles in different detector halves
 - Charge induced asymmetries, solution: reverse the magnet polarity!
 - Tracking asymmetries: different cross section with detector material \rightarrow data-driven techniques
 - Background asymmetry \rightarrow data-driven techniques

$$A_{\text{meas}} = \frac{N(D_s^-\mu^+) - N(D_s^+\mu^-) \times \frac{\epsilon^C(\mu^+)}{\epsilon^C(\mu^-)}}{N(D_s^-\mu^+) + N(D_s^+\mu^-) \times \frac{\epsilon^C(\mu^+)}{\epsilon^C(\mu^-)}} - A_{\text{Tracking}} - A_{\text{Bkg}}$$

10

10

10

Semileptonic b-hadron decays at LHCb

1800

1800

Candidates / (3 MeV)

Measured semileptonic asymmetry at LHCb

- Estimate the yield for D⁻_s μ⁺, D⁺_s μ⁻ in opposite magnet polarities separately
 - Binned fit into KKπ invariant mass
- Estimate Trigger and PID asymmetries for each polarity sample from data
 - Use $b \to J/\psi(\mu\mu) X$ calibration sample binned in p, px, py
- Calculate asymmetry for each magnet polarity:
 - $A^{C}_{\mu}(Up) = (+0.49 \pm 0.38)\%$
 - $A^{C}_{\mu}(Down) = (-0.41 \pm 0.32)\%$
- Average the two asymmetries:
 - $A^{C}_{\mu} = (+0.04 \pm 0.25)\%$

Measured semileptonic asymmetry at LHCb

- Final state $D_s^-(\to \phi(\to K^-K^+)\pi^-)\mu^+$: benefits from asymmetries cancellation
 - ${\rm K^+K^-}$, $\pi^\pm\mu^\mp$ charge asymmetry in track reconstruction
 - Kinematic asymmetries around ϕ mass
- But cancellation is imperfect:
 - Small residual $A_{track}^{\pi\mu}$: estimated from $D^{*-} \rightarrow D^0 \pi^+$
- $A_{\text{Tracking}} = (+0.02 \pm 0.13)\%$
- Background: Prompt charm, $D_s + \text{ fake } \mu \text{, semileptonic charm in}$ $B \to DD_s$
- 2-D binned fit to D_s mass & $\log(IP)$
- $A_{Bkg} = (+0.05 \pm 0.05)\%$

Experimental status of: $a_{sl}^{s} \& a_{sl}^{d}$

- $a_{\rm sl}^{\rm s} = (+0.06 \pm 0.5 ({\rm stat.}) \pm 0.36 ({\rm syst.}))\%$ with $1 \, {\rm fb}^{-1}$
- $a_{\rm sl}^{\rm d} = (-0.04 \pm 0.19 ({\rm stat.}) \pm 0.30 ({\rm syst.}))\%$ with $3\,{\rm fb}^{-1}$ (Preliminary!)
 - https://indico.cern.ch/event/253826/session/7/contribution/80
- Good agreement with SM
- Both measurements are most precise to date
- Results from LHCb + B-factories + D0:

Present quests

- Measurement of $\mathcal{R}(D^{*-}) = B^0 \rightarrow D^{*-} \tau^+ \nu / B^0 \rightarrow D^{*-} \mu^+ \nu$ branching ratio
 - Theoretically clean but experimentally challenging: missing neutrinos
 - $\tau \to \pi \pi \pi \nu$:
 - Rich statistics but high background levels
 - Rely on relative position of au and D vertex
 - $\tau \rightarrow \mu \nu \nu$:
 - Low statistics but low background
 - Rely on μD topology & τ flight

- Extract yields using Multi-dimensional fit:
 - Visible & corrected(Phys. Rev. D66 (2002) 079905) mass in bins of q^2 and isolation

Present quests

- $V_{\rm ub}$ at LHCb: investigating $\Lambda_{\rm b} \to {\rm p} \mu \nu, \, {\rm B}_{\rm s}^0 \to {\rm K}^{-(*-)} \mu \nu$
 - Measuring $V_{\rm ub}/V_{\rm cb}$
- Use normalization modes: $\Lambda_b\to\Lambda_c\mu\nu,~B^0_s\to D^-_s(K^-K^0_S)\mu\nu$

$$\frac{\mathcal{B}(\Lambda_{\rm b} \to {\rm p}\mu\nu)}{\mathcal{B}(\Lambda_{\rm b} \to \Lambda_{\rm c}\mu\nu)} = \frac{|V_{\rm ub}|^2}{|V_{\rm cb}|^2} \times \frac{G(\Lambda_{\rm b} \to {\rm p}\mu\nu)}{G(\Lambda_{\rm b} \to \Lambda_{\rm c}\mu\nu)}$$

- Form factor are precisely predicted by lattice
- Use MVA to distinguish between signal and normalization modes
- Yields: binned Fit to corrected mass

- Thriving semileptonic program at LHCb experiment albeit challenging
- Provided measurements for $\Delta m_{
 m d}$ and $\Delta m_{
 m s}$ in neutral ${
 m B}_{
 m q}$ systems using $1\,{
 m fb}^{-1}$
- Provided the most precise measurements for $a_{\rm sl}^{\rm d}$ using $3\,{\rm fb}^{-1}$ and $a_{\rm sl}^{\rm s}$ using $1\,{\rm fb}^{-1}$
 - Measurements are in agreement with Standard Model
- More results to come from LHCb
 - Update $a_{
 m sl}^{
 m s}$ and $\Delta m_{
 m d}$ measurements using $3\,{
 m fb}^{-1}$
 - Measurements of $V_{\rm ub}/V_{\rm cb}$, ${\cal R}({\rm D}^{*-})$ & $\Lambda_{\rm b}$ form factors