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Summary

Introduction
1 Physical motivation
2 Lattice QCD for b-physics
3 Ratio method

Semileptonic form factors
1 B(s) → D(s) - based on Eur.Phys.J. C74 (2014)
2 B(s) → D∗(s) - fresh new for this conference



B(s) → D(∗)
(s) semileptonic decaysMotivation
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Tree-level (TL) process. Large B(SM) ⇠ (1 � 2)%.
Eg. TL decays are also sensitive to the charged Higgs (2HDM)

Hadronic uncertainty better controlled (or can be!)
Mantra "FCNC processes are highly sensitive to NP" actually incorrect.
TL processes are equally good in the post-CKM era.
CKM triangles constructed from TL and loop-induced processes are equal.
B-decays with ⌧ in the final state offer possibilities to study NP effects not
present in processes with light leptons.
Popular NP test via

R(D) =
B(B ! D⌧⌫⌧ )

B(B ! D`⌫`)
, R(D⇤) =

B(B ! D⇤⌧⌫⌧ )

B(B ! D⇤`⌫`)
(` = e, µ)

in order to cancel/reduce theoretical uncertainties in Vcb/FF.

D. Bečirević (LPT Orsay) @EPS HEP 2013 Looking for NP through semileptonic decays 3 / 15

Popular test of New Physics

R(D) =
B(B → Dτντ )

B(B → D`ν)
, R(D∗) =

B(B → D∗τντ )

B(B → D∗`ν)
, (` = e, µ)

Ratios useful to cancel/reduce theoretical uncertainties in Vcb/f.f

BaBar (’12)

R(D) = 0.440± 0.058± 0.042, R(D)SM = 0.31± 0.02

R(D∗) = 0.332± 0.024± 0.018, R(D∗)SM = 0.252± 0.003

Larger than the SM expectations! New Physics?
Need form factors f B→D

+, 0,T to check SM and constraint the NP contribution
Would be nice to check also the unmeasured Bs → Ds`ν process (easier on the lattice)
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Goal of this research

Form factors relevant for B(s) → D(s)

Embeds the non-perturbative dynamics entering dΓ(B(s) → D(s)`ν`)/dq2

Convenient parameterization (HQET motivated) in terms of G (ω) [ω = vB · vD rel.velocity]
1

√mB(s)mD(s)

〈D(s) (k) |Vµ|Bs(p)〉 ∝ G (ω) + corr .

G can be expressed in terms of the standard form factors f+(q2) and f−(q2)

G (1) = 1 up to radiative and 1/mh corrections, important to compute G (1) on the lattice

Other form factors
Scalar form factor f0: necessary in the SM in the case of heavy lepton and to check on a
non-zero contribution from the diagram mediated by a charged Higgs boson
Tensor form factor fT : leptoquark scenarios, NP with vector bosons allowing tensor couplings
Need to move away from zero recoil ω = 1 [i.e. q2

max = (mB(s) −mD(s))
2]

Results of our study
Central result: form factor for unmeasured Bs → Ds`ν close to zero recoil, easier on the lattice
Error for B → D form factor large: no impact on Vcb with current lattice statistics
New results at this conference: Bs → D∗s axial and tensor form factors at zero recoil
Results by Fermilab collaboration much more precise but subjects to different systematic errors
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Approaching b physics

1/L MD(∼ 2GeV) 1/aMπ(∼ 135MeV) MB(∼ 5GeV)

MB/Mπ ∼ 50 → L/a� 50 → Npoints � 504 → too many points!

Moreover: technical problems in going to too-small lattice spacings (breaking of ergodicity?)

Effective theories
Nonrelativistic QCD (expansion in quark velocity and in 1/amb): HPQCD coll.
Heavy Quark Effective Theory (continuum expansion in ΛQCD/mb ): ALPHA coll.
Propagating Heavy Quarks (reinterpretation in therms of 1/mb expansion): FNAL-MILC coll.

Separation of scales, Special actions
Use of step scaling function to separate various scales (a, mb, L): ALPHA coll.
Special actions have been designed to deal with b quarks (HISQ, ...): HPQCD coll.

This Work: Extrapolate results from the charm to the bottom region
Scaling laws often known in effective theories
Use exact information coming from the static limit
Results become more reliable as lattice spacings get smaller
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Ratio method [cfr. R.Frezzotti et al., JHEP 1004 (2010)]

Consider a series of masses m(0) = mc , m(1) = λmc , . . . m(n) = λnmc

Define: σi = G(1, λmh,mc)
G(1,mh,mc)

ratio of form factors at consecutive masses
Form factor decomposes as: G(1, mb, mc) = σnσn−1...σ1σ0��

���
��:

1 (charge conservation)
G (1, mc , mc)

HQET imposes that in the static h-quark: limmh→∞ σ(mh) = 1

Reconstructing the form factor at physical b

Compute σ
(
m(n)

h , λ; ml , a
)
, extrapolate to the continuum & physical ml

Fit σ (mh) enforcing limmh→∞ σ(mh) = 1 constraint
Reconstruct G(1, mb, mc) = σnσn−1...σ1σ0

Advantages of the ratio approach: double constraint
Elastic case constraint

Requires only to interpolate ratios σ(mh)

Chiral and continuum extrapolation of σ are very smooth
HQET constraint

σ (mh) is highly constrained despite deteriorated precision at higher masses
Allows to extrapolate to the continuum at fixed heavy quark mass, as not to mix scales

Remark: it is the first time ratio methods are applied to three point functions

Home message: we study the scaling toward the static limit taking advantage of all symmetries
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Lattice setup

Desired features
Continuum: Several lattice spacings to take continuum limit
Renormalization: Non perturbative

b-quark: Work directly with a relativistic b quark at physical mass
Unquenching: Include 2 physical light, strange and charm dynamical quarks

What we currently have...
Wilson regularization of QCD with twisted mass term (tmQCD)
Continuum: 4 different lattice spacings (a ∈ [0.054; 0.100] fm)
Renormalization: Non perturbative (RI-MOM), good for non-vector currents

b-quark: Limited to work up to ∼ 2.5mphys
c due to cut-off effects and noise

Unquenching: Only 2 dynamical light quarks (Mπ ∈ [280; 500] MeV)

QCD gauge field configurations produced by ETM collaboration

Salient features (why are we different from next speaker?)

Consider smart ratios to interpolate relativistic data to mphys
b between mc and mh →∞

Possible to determine fully non-perturbatively form factors different from vector one
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Form factor computation

〈H2(~p2)|Vµ |H1(~p1)〉 = pµf H1→H2
+

(
q2)+ qµ

M2
H1
−MH2

2
q2 f H1→H2

0
(
q2)

p = p1 + p2

q = p1 − p2

Three point correlation functions

C (3)
µ (t) = 〈∑~x ,~y O†H2

(~x , T ) e−i~p2~xVµ (~y , t) OH1 (0)〉
at intermediate times:

0�t�T' ZH1ZH2 exp[(EH1 − EH2)t]〈H1|Vµ|H2〉
4EH1EH2

O†
H1

OH2

Tt0

Vµ
~p2~p1

Two points correlation functions: used to remove the sources

C (2)(t) =
∑

~x〈OH(~x , t) O†H(~0, 0)〉
at large times:

t→∞' ZH
2 exp (−EHt)

2EH

O†
H OH

Tt0
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Correlation functions (two point ones)
Choose a lattice discretization of QCD, in Euclidean space

a4SQCD
lat = ψ̄nDn,mψm + Sgauge

lat −→
a→0

SQCD
cont = ψ̄

(
/D + m

)
ψ + 1

4GµνGµν

Sample numerically (with Monte Carlo methods) the configuration space:

1
Z

ˆ
D
[
ψ, ψ̄, A

]
O e−SQCD

lat achieved as :
1

Nconfs

∑

i∈{confs}

Oi , with p[i ∈ {confs}] = e−SQCD
lat

Compute full quark propagator

Compute propagator solving discrete Dirac equation: Dn,m · Sm, l = δn, l

0 0

x x

Propagator S embeds all non perturbative QCD dynamics in the scales ∼ [1/L, 1/a]

Combine 2 propagators with suitable Dirac structures

0

x

0

x

0 x

〈
ψ̄(0)Γ1ψ(0) · ψ̄(x)Γ2ψ(x)

〉
→ Fully non-perturbative correlation function
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4GµνGµν

Sample numerically (with Monte Carlo methods) the configuration space:

1
Z

ˆ
D
[
ψ, ψ̄, A

]
O e−SQCD

lat achieved as :
1

Nconfs

∑

i∈{confs}

Oi , with p[i ∈ {confs}] = e−SQCD
lat

Compute full quark propagator

Compute propagator solving discrete Dirac equation: Dn,m · Sm, l = δn, l

0 0

x x

Propagator S embeds all non perturbative QCD dynamics in the scales ∼ [1/L, 1/a]

Combine 2 propagators with suitable Dirac structures

0

x

0

x

0 x

〈
ψ̄(0)Γ1ψ(0) · ψ̄(x)Γ2ψ(x)

〉
→ Fully non-perturbative correlation function



Example of determination of 〈Ds |V0 |Hs(∼ 2mc)〉
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Chiral and continuum limit extrapolation for ratios
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tistical errors they do not have any significant e↵ect
on our final results.

We then computed the ratios of the form fac-
tors G(1) obtained at each two successive heavy va-
lence quarks as indicated in eq. (21). Importantly, a
strong cancellation of statistical errors leads to very
accurate ⌃k’s. The values of all ⌃k’s are presented
in tab. II. In fig. 2 we illustrate the situation for
two values of k. From these plots we can see that
our lattice data exhibit very little or no dependence
on the light sea quark mass, nor on the lattice spac-
ing. Note also that for larger heavy quark masses
the errors on ⌃k are larger, and therefore the corre-
sponding continuum value �k will have larger error
as well.
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FIG. 2: Values of ⌃0 and ⌃3 as obtained on all of
the lattices used in this work is shown as a function
of the light sea quark mass (divided by the physical
strange quark mass). Di↵erent symbols are used to dis-
tinguish the lattice data obtained at di↵erent lattice
spacings: � for � = 3.80, ⇤⇤⇤ for � = 3.90 (243),
⌅ for � = 3.90 (323), • for � = 4.05, and BBB for
� = 4.20. The result of continuum extrapolation is
also indicated at the point corresponding to the physi-
cal µud/µs ⌘ mud/ms = 0.037(1) [19].

The extrapolation of ⌃k(1) to the continuum

limit is performed by using the following form

⌃k(1) = ↵k + �k
msea

ms
+ �k

✓
a

a�=3.9

◆2

, (28)

and then identify

�k(1) =
X

a!0
msea!mud

⌃k(1) , (29)

where mud stands for the average of the physical
up and down quark masses computed on the same
lattices [19]. As anticipated from fig. 2 the values
of �k and �k, as obtained from the fit of our data
to eq. (28), are consistent with zero. The result-
ing �k(1) = �(1, �k+1mc) ⌘ �(1, mh) are given in
tab. III. Since our data do not exhibit a depen-
dence on the sea quark mass we also attempted
extrapolating ⌃k(1) ! �k(1) by imposing �k = 0
in eq. (28). Results for the first few �k(1) re-
main practically indistinguishable from those ob-
tained by letting �k as a free fit parameter. For
higher masses, however, the results of two contin-
uum extrapolations remain compatible but the er-
ror bars in the case of a free �k are considerably
larger. The problem of larger errors for large quark
masses is circumvented by the interpolation for-
mula (23). Clearly the data with larger error bars
become practically irrelevant in the fit. We stress
again that instead of extrapolating G(1, mh, mc) in
inverse heavy quark mass to the physically interest-
ing point [G(1, mb, mc)] one interpolates �(1, mh)
to �(1, mb) since lim

mh!1
�(mh) = 1. In practice we

identify �k(1) = �(1, �k+1mc), and then fit our re-
sults to

�(1, mh) = 1 +
s1

mh
+

s2

m2
h

, (30)

which is illustrated in fig. 3. We then proceed as in
eq. (24) and obtain

G(1) = 1.073(17) (�k = 0) ,

G(1) = 1.052(46) (�k 6= 0) . (31)

The first (more accurate) result agrees with the
only existing unquenched lattice QCD result, ob-
tained for the light non-strange spectator quark [8].
To calculate our results in eq. (31) no renormaliza-
tion constant was actually needed. This is conve-
nient but not particularly beneficiary for our com-
putation since the vector current renormalization
constants have been computed non-perturbatively
in ref. [23] to a very good accuracy (cf. values listed
in tab. I). Therefore, we were able to perform sev-
eral checks and instead of starting from the elastic

msea/ms
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constants have been computed non-perturbatively
in ref. [23] to a very good accuracy (cf. values listed
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Chiral continuum extrapolation
Fit ansatz: Σk (1) = αk + βk

msea
ms

+ γka2

Very smooth continuum extrapolation
Negligible dependance in msea (perfectly fitted if βk = 0)
(expected since msea dependance occurs only through loop effects)
Chiral logarithms cancel between numerator and denominator of the ratios



Interpolation to b quark mass
7

form factor G(1, mc, mc) = 1, we could have started
from a k < n to compute G(1, �k+1mc, mc) in the
continuum limit, and then applied �k+1 . . . �n to
reach the b-quark mass. For example, by using
k = 3,

G(1, mb, mc) = �8�7�6�5�4 G(1, �4mc, mc)

= 1.059(47), (32)

in the case with �k 6= 0. This results is obvi-
ously completely consistent with the number given
in eq. (31). To get the above result we also
needed to perform a continuum extrapolation of
G(1, �4mc, mc) by using the expression analogous
to the one shown in eq. (28). We checked and
observed that our lattice data for the form factor
are also independent on the light sea quark when
the valence quark masses are fixed, a behavior very
similar to what is shown in fig. 2. Furthermore
we checked that, after adding the cubic term in
1/mh to eq. (30), the resulting G(1) = 1.047(61),
remains fully consistent with our main result given
in eq. (31). Although th finite volume e↵ects are
not expected to a↵ect the quantities computed in
this paper, they could appear when the dynami-
cal (sea) quark mass is lowered. In order to check
for that e↵ect we can compare our results obtained
on the ensembles VI and VII which di↵er by the
volume. The situation shown in fig. 2 is a generic
illustration of the situation we see with all the other
quantities: the form factors are completely insen-
sitive to a change of the lattice volume. All these
checks suggest that our result (31) obtained by us-
ing �k as a free parameter, remains stable and we
take it for our final result, namely

G(1) = 1.052(46). (33)

Finally, we repeated the whole computation for
the non-strange case, i.e. by keeping the sea and
valence light quarks degenerate in mass. We ob-
tained G(1) = 1.079(29) and G(1) = 1.033(95), cor-
responding to �k = 0 and �k 6= 0 respectively. This
latter number is not helpful in reducing the error
bar of |Vcb| extracted from B ! Dµ⌫ decays. It
shows, however, that the method employed in this
work can be used to get a percent precision of G(1)
even in the non-strange case provided the statistical
quality of the data is substantially improved. Note
also that our G(1) in eq. (33) agrees with the result
obtained by the expansion around the BPS limit in
ref. [24].

We end this discussion with a comment concern-
ing the non-zero recoil situation (w 6= 1). The ana-
lysis is essentially the same as in the zero-recoil
case described above. From the correlation func-
tions (18) and by using the projector P+

µ (5) we get
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1êmh @GeV-1D
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FIG. 3: We show our data for �k(1) = �(1, mh) with
mh = �k+1mc, and show the result of the fit in 1/mh

to the form given in eq. (30) as a function of the inverse
heavy quark mass with mh = �k+1mc. Filled sym-
bols correspond to �(1, mh) extrapolated to the con-
tinuum limit by using eq. (28) with all parameters free,
whereas the empty symbols refer to the results obtained
by imposing �k = 0. The gray vertical line indicates to
point corresponding to the inverse of the physical b-
quark mass.

the form factor f+(q2) which is proportional to the
desired G(w, �kmc, mc), cf. eqs. (8,9). The obser-
vations made in the analysis of G(1) concerning the
independence on the light sea quark mass and on
the lattice spacing remain true after switching from
w = 1 to w 6= 1. The values are given in tab. IV,
where we again report our results both in the case
in which the parameter �k in the continuum ex-
trapolation (28) is left free and in the case in which
�k = 0 is imposed. The net e↵ect in the latter case
is that the resulting error is considerably smaller.
Using the parameterization of ref. [5], which takes
into account the relation between the curvature and
the slope of G(w), namely

G(w)

G(1)
= 1 � 8⇢2z + (51⇢2 � 10)z2

� (252⇢2 � 84)z3 , (34)

with z = (
p

w + 1�
p

2)/(
p

w + 1+
p

2), one could
attempt to extract the slope ⇢2 from our data.
Knowing that the window of w’s we consider here is
very short (27), a clean determination of ⇢2 would
require very accurate values of G(w). In our case we
only obtain ⇢2 = 1.2(8), or in the case where we dis-
miss the dependence on the sea quark mass (when
the errors on G(w) are smaller) we get ⇢2 = 1.1(3),
both being consistent with the experimentally es-
tablished ⇢2 = 1.19(4)(4) [25]. The same result for

Bs → Ds vector form factor
Final Results: GBs→Ds (1) = 1.052(46). If no chiral extrapolation included: 1.073(17)
M.Atoui, V.Morénas, D.Bečirevic, FS, Eur.Phys.J. C74 (2014)
De Divitiis et al. (Phys.Lett.B ’07): GB→D (1) = 1.026(17) 3 Step scaling method 7 Quenched
MILC+Fermilab: 1.074(24), Preliminary results at Lattice ’04

Other form factors (first computation of fT ) near zero recoil

f0
(
q2
0
)
/f+

(
q2
0
)

= 0.77(2), fT
(
q2
0
)
/f+

(
q2
0
)

= 1.08(7) at q2
0 = 11.5GeV2



The case of Bs → D∗s `ν (new results)

Non-perturbative quantities [hadronic matrix elements]
Possible currents inducing this process: Tµν = c̄σµνb, A = c̄γµγ5b, V = c̄γµb
In total 7 form factors: Axial (A1, A2, A3), Tensor (T1, T2, T3) and Vector (V )
At zero recoil only A1 and T2 contribute

Form factors determination
In Standard Model only A1 contributes at zero recoil ω = 1 [or q2 = (mB(s) −mD∗

(s)
)2]

In Bs → D∗s case we consider F (1) form factor related to A1

We lack elastic constraint, need to compute Fmc (1)

Ratio of Tensor/Axial form factor
Same external fields that couple to Bs and D∗s
Determine T2/A1 directly from ratio of correlators, together with ZT (µ) /ZA

T2

A1
=

ZT

ZA

CT
3pts (t)

CA
3pts (t)

Allow high precision determination of T2/A1
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Interpolation of Bs → D∗s to b quark mass
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Bs → D∗s axial form factor

PRELIMINARY Result: FBs→D∗
s (1) = 0.953(35)

Very recently Fermilab + MILC reported: FB→D∗
(1) = 0.906(4)(12), PRD 89 114504 (2014)

(see next talk for more info!)



Tensor to axial form factor ratio
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Considerations
In HQET static limit the matrix element of Tensor and Axial currents are equal
1/M2

h corrections to the relation could be large in the charm region
It turns out they are instead VERY small!!!
TBs→D∗

s
2 /ABs→D∗

s
1 (ω = 1;µ = 2GeV) = 1.073(5) (PRELIMINARY!)



Conclusions & future perspectives

Bs → Ds near zero recoil
First unquenched determination of GBs→Ds (1) = 1.052(46): compatible with previous results
Determination of fT/f+ and f0/f+ important to constraint BSM low energy couplings
So far statistics does not allow to study B → D at the precision needed to have impact on Vcb

Bs → D∗s at zero recoil

Determination of FBs→D∗
s (1) = 0.953(35)

The first computation of the ratio T2/A1 at zero recoil: very close to 1 (at µ = 2 GeV)

important to constraint new physics models from Bs → D∗
s `ν

reveal the smallness of 1/M2
h -corrections to the static limit

provided the QCD renormalization scale is µ ∼ 2GeV

Non-strange decay

Bs → D(∗)
s `ν decays still to be measured

Invitation to experimentalists to measure these processes
Strategy presented here can also be used to study the non-strange case
Commitment to improve statistics and get a more accurate valued of B → D(∗)`ν` form factors

Stay tuned!
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