B o D and $B_s o D_s^{(*)}$ semileptonic decays on the lattice

Francesco Sanfilippo

In collaboration with M.Atoui, V.Morénas, D.Bečirevic

Summary

Introduction

- Physical motivation
- Lattice QCD for b-physics
- Ratio method

Semileptonic form factors

- $oldsymbol{0}$ $B_{(s)} o D_{(s)}$ based on Eur.Phys.J. C74 (2014)
- $② \ B_{(s)} \to D_{(s)}^* \ \text{- fresh new for this conference}$

$B_{(s)} ightarrow \overline{D_{(s)}^{(*)}}$ semileptonic decays

$\overline{|B_{(s)}|} ightarrow D_{(s)}^{(*)}$ semileptonic decays

Popular test of New Physics

$$R(D) = rac{\mathcal{B}(B o D au
u_ au)}{\mathcal{B}(B o D\ell
u)}, \qquad R(D^*) = rac{\mathcal{B}(B o D^* au
u_ au)}{\mathcal{B}(B o D^*\ell
u)}, \; (\ell = e, \, \mu)$$

Ratios useful to cancel/reduce theoretical uncertainties in $V_{cb}/f.f$

$B_{(s)} o D_{(s)}^{(*)}$ semileptonic decays

Popular test of New Physics

$$R(D) = rac{\mathcal{B}(B o D au
u_ au)}{\mathcal{B}(B o D\ell
u)}, \qquad R(D^*) = rac{\mathcal{B}(B o D^* au
u_ au)}{\mathcal{B}(B o D^*\ell
u)}, \; (\ell = e, \, \mu)$$

Ratios useful to cancel/reduce theoretical uncertainties in $V_{cb}/f.f$

BaBar ('12)

$$R(D) = 0.440 \pm 0.058 \pm 0.042,$$
 $R(D)^{SM} = 0.31 \pm 0.02$ $R(D^*) = 0.332 \pm 0.024 \pm 0.018,$ $R(D^*)^{SM} = 0.252 \pm 0.003$

- Larger than the SM expectations! New Physics?
- Need form factors $f_{+,0,T}^{B\to D}$ to check SM and constraint the NP contribution
- Would be nice to check also the unmeasured $B_s \to D_s \ell \nu$ process (easier on the lattice)

Goal of this research

Form factors relevant for $B_{(s)} \to D_{(s)}$

Embeds the non-perturbative dynamics entering $d\Gamma(B_{(s)} \to D_{(s)}\ell\nu_\ell)/dq^2$

ullet Convenient parameterization (HQET motivated) in terms of $\mathcal{G}\left(\omega\right)$ [$\omega=v_B\cdot v_D$ rel.velocity]

$$\frac{1}{\sqrt{m_{B_{(s)}}m_{D_{(s)}}}}\langle D_{(s)}\left(k\right)|V_{\mu}|B_{s}(p)\rangle \propto \mathcal{G}\left(\omega\right) + corr.$$

- ullet G can be expressed in terms of the standard form factors $f_+(q^2)$ and $f_-(q^2)$
- ullet $\mathcal{G}\left(1\right)=1$ up to radiative and $1/m_h$ corrections, **important** to compute $\mathcal{G}\left(1\right)$ on the lattice

Goal of this research

Form factors relevant for $B_{(s)} o D_{(s)}$

Embeds the non-perturbative dynamics entering $d\Gamma(B_{(s)} \to D_{(s)}\ell\nu_\ell)/dq^2$

• Convenient parameterization (HQET motivated) in terms of $\mathcal{G}\left(\omega\right)$ [$\omega=v_B\cdot v_D$ rel.velocity]

$$rac{1}{\sqrt{m_{B_{(s)}}m_{D_{(s)}}}}\langle D_{(s)}\left(k
ight)|V_{\mu}|B_{s}(p)
angle \propto \mathcal{G}\left(\omega
ight)+corr.$$

- ullet ${\cal G}$ can be expressed in terms of the standard form factors $f_+(q^2)$ and $f_-(q^2)$
- $\mathcal{G}\left(1\right)=1$ up to radiative and $1/m_{h}$ corrections, **important** to compute $\mathcal{G}\left(1\right)$ on the lattice

Other form factors

- Scalar form factor f_0 : necessary in the SM in the case of **heavy lepton** and to check on a non-zero contribution from the diagram mediated by a **charged Higgs** boson
- Tensor form factor f_T : leptoquark scenarios, NP with vector bosons allowing tensor couplings
- ullet Need to move away from zero recoil $\omega=1$ [i.e. $q^2_{max}=(m_{B_{(s)}}-m_{D_{(s)}})^2$]

Goal of this research

Form factors relevant for $B_{(s)} \to D_{(s)}$

Embeds the non-perturbative dynamics entering $d\Gamma(B_{(s)} \to D_{(s)}\ell\nu_\ell)/dq^2$

ullet Convenient parameterization (HQET motivated) in terms of $\mathcal{G}\left(\omega\right)$ [$\omega=v_B\cdot v_D$ rel.velocity]

$$\frac{1}{\sqrt{m_{B_{(s)}}m_{D_{(s)}}}}\langle D_{(s)}\left(k\right)|V_{\mu}|B_{s}(p)\rangle \propto \mathcal{G}\left(\omega\right) + corr.$$

- ullet ${\cal G}$ can be expressed in terms of the standard form factors $f_+(q^2)$ and $f_-(q^2)$
- ullet $\mathcal{G}\left(1
 ight)=1$ up to radiative and $1/m_{h}$ corrections, **important** to compute $\mathcal{G}\left(1
 ight)$ on the lattice

Other form factors

- Scalar form factor f_0 : necessary in the SM in the case of **heavy lepton** and to check on a non-zero contribution from the diagram mediated by a **charged Higgs** boson
- Tensor form factor f_T : leptoquark scenarios, NP with vector bosons allowing tensor couplings
- Need to move away from zero recoil $\omega=1$ [i.e. $q_{max}^2=(m_{B_{(s)}}-m_{D_{(s)}})^2$]

Results of our study

- Central result: form factor for unmeasured $B_s \to D_s \ell \nu$ close to zero recoil, easier on the lattice
- Error for $B \to D$ form factor large: no impact on V_{cb} with current lattice statistics
- ullet New results at this conference: $B_s o D_s^*$ axial and tensor form factors at zero recoil
- Results by Fermilab collaboration much more precise but subjects to different systematic errors

Effective theories

- ullet Nonrelativistic QCD (expansion in quark velocity and in $1/am_b$): HPQCD coll.
- ullet Heavy Quark Effective Theory (continuum expansion in $oldsymbol{\Lambda}_{QCD}/m_b$): ALPHA coll.
- ullet Propagating Heavy Quarks (reinterpretation in therms of $1/m_b$ expansion): FNAL-MILC coll.

$$1/L$$
 $M_{\pi}(\sim 135 \mathrm{MeV})$ $M_{D}(\sim 2 \mathrm{GeV})$ $M_{B}(\sim 5 \mathrm{GeV})$ $1/a$

 $M_B/M_\pi \sim 50 \rightarrow L/a \gg 50 \rightarrow N_{points} \gg 50^4 \rightarrow \text{too many points!}$

Moreover: technical problems in going to too-small lattice spacings (breaking of ergodicity?)

Effective theories

- Nonrelativistic QCD (expansion in quark velocity and in $1/am_b$): HPQCD coll.
- Heavy Quark Effective Theory (continuum expansion in Λ_{QCD}/m_b): ALPHA coll.
- ullet Propagating Heavy Quarks (reinterpretation in therms of $1/m_b$ expansion): FNAL-MILC coll.

Separation of scales, Special actions

- Use of step scaling function to separate various scales (a, m_b, L) : ALPHA coll.
- **Special actions** have been designed to deal with b quarks (HISQ, ...): HPQCD coll.

$$1/L$$
 $M_{\pi}(\sim 135 \mathrm{MeV})$ $M_{D}(\sim 2 \mathrm{GeV})$ $M_{B}(\sim 5 \mathrm{GeV})$ $1/a$

 $M_B/M_\pi \sim 50 \quad \rightarrow \quad L/a \gg 50 \quad \rightarrow \quad N_{points} \gg 50^4 \quad \rightarrow \quad {\rm too\, many\, points!}$

Moreover: technical problems in going to too-small lattice spacings (breaking of ergodicity?)

Effective theories

- Nonrelativistic QCD (expansion in quark velocity and in $1/am_b$): HPQCD coll.
- ullet Heavy Quark Effective Theory (continuum expansion in $oldsymbol{\Lambda}_{QCD}/m_b$): ALPHA coll.
- Propagating Heavy Quarks (reinterpretation in therms of $1/m_b$ expansion): FNAL-MILC coll.

Separation of scales, Special actions

- Use of step scaling function to separate various scales (a, m_b , L): ALPHA coll.
- Special actions have been designed to deal with b quarks (HISQ, ...): HPQCD coll.

This Work: Extrapolate results from the charm to the bottom region

- Scaling laws often known in effective theories
 - Use exact information coming from the static limit
 - Results become more reliable as lattice spacings get smaller

Consider a series of masses $m^{(0)} = m_c$, $m^{(1)} = \lambda m_c$, ... $m^{(n)} = \lambda^n m_c$

- Define: $\sigma_i = \frac{\mathcal{G}(1, \lambda m_h, m_c)}{\mathcal{G}(1, m_h, m_c)}$ ratio of form factors at consecutive masses
- Form factor decomposes as: $\mathcal{G}(1, m_b, m_c) = \sigma_n \sigma_{n-1} ... \sigma_1 \sigma_0 \mathcal{G}(1, m_c, m_c)$
- ullet HQET imposes that in the static h-quark: $\lim_{m_h o\infty}\sigma(m_h)=1$

[cfr. R.Frezzotti et al., JHEP 1004 (2010)]

- Define: $\sigma_i = \frac{\mathcal{G}(1, \lambda m_h, m_c)}{\mathcal{G}(1, m_h, m_c)}$ ratio of form factors at consecutive masses Form factor decomposes as: $\mathcal{G}(1, m_b, m_c) = \sigma_n \sigma_{n-1} ... \sigma_1 \sigma_0 \mathcal{G}(1, m_c, m_c)$
- ullet HQET imposes that in the static h-quark: $\lim_{m_h o\infty}\sigma(m_h)=1$

Reconstructing the form factor at physical b

- Compute $\sigma\left(m_h^{(n)}, \lambda; m_l, a\right)$, extrapolate to the continuum & physical m_l
- Fit $\sigma(m_h)$ enforcing $\lim_{m_h\to\infty}\sigma(m_h)=1$ constraint
- Reconstruct $\mathcal{G}(1, m_b, m_c) = \sigma_n \sigma_{n-1} ... \sigma_1 \sigma_0$

- Define: $\sigma_i = \frac{\mathcal{G}(1, \lambda m_h, m_c)}{\mathcal{G}(1, m_h, m_c)}$ ratio of form factors at consecutive masses Form factor decomposes as: $\mathcal{G}(1, m_b, m_c) = \sigma_n \sigma_{n-1} ... \sigma_1 \sigma_0 \mathcal{G}(1, m_c, m_c)$
- ullet HQET imposes that in the static h-quark: $\lim_{m_h o\infty}\sigma(m_h)=1$

Reconstructing the form factor at physical b

- Compute $\sigma\left(m_h^{(n)}, \lambda; m_l, a\right)$, extrapolate to the continuum & physical m_l
- Fit $\sigma(m_h)$ enforcing $\lim_{m_h \to \infty} \sigma(m_h) = 1$ constraint
- Reconstruct $\mathcal{G}(1, m_h, m_c) = \sigma_n \sigma_{n-1} ... \sigma_1 \sigma_0$

Advantages of the ratio approach: double constraint

Elastic case constraint

- Requires only to interpolate ratios $\sigma(m_h)$
- Chiral and continuum extrapolation of σ are very smooth

HQET constraint

- $\sigma(m_h)$ is highly constrained despite deteriorated precision at higher masses
- Allows to extrapolate to the continuum at fixed heavy quark mass, as not to mix scales

Remark: it is the first time ratio methods are applied to three point functions

- Define: $\sigma_i = \frac{\mathcal{G}(1, \lambda m_h, m_c)}{\mathcal{G}(1, m_h, m_c)}$ ratio of form factors at consecutive masses Form factor decomposes as: $\mathcal{G}(1, m_b, m_c) = \sigma_n \sigma_{n-1} ... \sigma_1 \sigma_0 \mathcal{G}(1, m_c, m_c)$
- ullet HQET imposes that in the static h-quark: $\lim_{m_h o\infty}\sigma(m_h)=1$

Reconstructing the form factor at physical b

- Compute $\sigma\left(m_h^{(n)}, \lambda; m_l, a\right)$, extrapolate to the continuum & physical m_l
- Fit $\sigma(m_h)$ enforcing $\lim_{m_h \to \infty} \sigma(m_h) = 1$ constraint
- Reconstruct $\mathcal{G}(1, m_h, m_c) = \sigma_n \sigma_{n-1} ... \sigma_1 \sigma_0$

Advantages of the ratio approach: double constraint

Elastic case constraint

- Requires only to interpolate ratios $\sigma(m_h)$
- Chiral and continuum extrapolation of σ are very smooth

HQET constraint

- $\sigma(m_h)$ is highly constrained despite deteriorated precision at higher masses
- Allows to extrapolate to the continuum at fixed heavy quark mass, as not to mix scales

Remark: it is the first time ratio methods are applied to three point functions

Home message: we study the scaling toward the static limit taking advantage of all symmetries

Lattice setup

Desired features

Continuum: Several lattice spacings to take continuum limit

Renormalization: Non perturbative

b-quark: Work directly with a relativistic b quark at physical mass

Unquenching: Include 2 physical light, strange and charm dynamical quarks

Lattice setup

Desired features

Continuum: Several lattice spacings to take continuum limit

Renormalization: Non perturbative

b-quark: Work directly with a relativistic b quark at physical mass

Unquenching: Include 2 physical light, strange and charm dynamical quarks

What we currently have...

Wilson regularization of QCD with twisted mass term (tmQCD)

Continuum: 4 different lattice spacings ($a \in [0.054; 0.100] \text{ fm}$)

Renormalization: Non perturbative (RI-MOM), good for non-vector currents

b-quark: Limited to work up to $\sim 2.5 m_c^{phys}$ due to cut-off effects and noise

Unquenching: Only 2 dynamical light quarks ($M_{\pi} \in [280; 500] \text{ MeV}$)

QCD gauge field configurations produced by ETM collaboration

Lattice setup

Desired features

Continuum: Several lattice spacings to take continuum limit

Renormalization: Non perturbative

b-quark: Work directly with a relativistic b quark at physical mass

Unquenching: Include 2 physical light, strange and charm dynamical quarks

What we currently have...

Wilson regularization of QCD with twisted mass term (tmQCD)

Continuum: 4 different lattice spacings ($a \in [0.054; 0.100] \text{ fm}$)

Renormalization: Non perturbative (RI-MOM), good for non-vector currents

b-quark: Limited to work up to $\sim 2.5 m_c^{phys}$ due to cut-off effects and noise

Unquenching: Only 2 dynamical light quarks ($M_{\pi} \in [280; 500] \text{ MeV}$)

QCD gauge field configurations produced by ETM collaboration

Salient features (why are we different from next speaker?)

- ullet Consider smart ratios to **interpolate** relativistic data to m_h^{phys} between m_c and $m_h o\infty$
- Possible to determine fully non-perturbatively form factors different from vector one

Form factor computation

$$\langle H_2(\vec{p}_2)| \ V_{\mu} \ | H_1(\vec{p}_1) \rangle = p_{\mu} f_{+}^{H_1 \to H_2} \left(q^2 \right) + q_{\mu} \frac{M_{H_1}^2 - M_{H_2}^2}{q^2} f_0^{H_1 \to H_2} \left(q^2 \right) \qquad \begin{cases} p = p_1 + p_2 \\ q = p_1 - p_2 \end{cases}$$

Form factor computation

$$\langle H_2(\vec{p}_2)|\ V_\mu\ |H_1(\vec{p}_1)
angle = p_\mu f_+^{H_1 o H_2}\left(m{q^2}
ight) + q_\mu rac{M_{H_1}^2 - M_{H_2}^2}{q^2} f_0^{H_1 o H_2}\left(m{q^2}
ight) \qquad egin{cases} p = p_1 + p_2 \ q = p_1 - p_2 \end{cases}$$

Three point correlation functions

$$C_{\mu}^{(3)}(t) = \langle \sum_{\vec{x},\vec{y}} O_{H_2}^{\dagger}(\vec{x}, T) e^{-i\vec{p}_2\vec{x}} V_{\mu}(\vec{y}, t) O_{H_1}(0) \rangle$$
 at intermediate times:

$$0 \ll \underset{\simeq}{t} \ll T \frac{Z_{H_1} Z_{H_2} \exp[(E_{H_1} - E_{H_2})t] \langle H_1 | V_{\mu} | H_2 \rangle}{4E_{H_1} E_{H_2}}$$

Form factor computation

$$\langle H_2(\vec{p}_2)|\ V_\mu\ |H_1(\vec{p}_1)
angle = p_\mu f_+^{H_1
ightarrow H_2}\left(m{q^2}
ight) + q_\mu rac{M_{H_1}^2 - M_{H_2}^2}{q^2} f_0^{H_1
ightarrow H_2}\left(m{q^2}
ight) \qquad egin{dcases} p = p_1 + p_2 \ q = p_1 - p_2 \end{cases}$$

Three point correlation functions

$$C_{\mu}^{(3)}(t) = \langle \sum_{\vec{x},\vec{y}} O_{H_2}^{\dagger}(\vec{x}, T) e^{-i\vec{p}_2\vec{x}} V_{\mu}(\vec{y}, t) O_{H_1}(0) \rangle$$
 at intermediate times:

$$0 \ll \underset{\simeq}{t} \ll T \frac{Z_{H_1} Z_{H_2} \exp[(E_{H_1} - E_{H_2})t] \langle H_1 | V_{\mu} | H_2 \rangle}{4 E_{H_1} E_{H_2}}$$

Two points correlation functions: used to remove the sources

$$C^{(2)}(t) = \sum_{\vec{x}} \langle O_H(\vec{x},t) O_H^{\dagger}(\vec{0},0) \rangle$$

at large times:

$$\stackrel{t\to\infty}{\simeq} \frac{Z_H^2 \exp\left(-E_H t\right)}{2E_H}$$

Correlation functions (two point ones)

Choose a lattice discretization of QCD, in Euclidean space

$$a^4 \mathcal{S}_{lat}^{QCD} = ar{\psi}_{\mathsf{n}} D_{\mathsf{n},\,\mathsf{m}} \psi_{\mathsf{m}} + \mathcal{S}_{lat}^{\mathsf{gauge}} \ \stackrel{\longrightarrow}{\underset{a o 0}{\longrightarrow}} \ \mathcal{S}_{cont}^{QCD} = ar{\psi} \left(
ot \!\!\!/ + m
ight) \psi + rac{1}{4} G_{\mu
u} G_{\mu
u}$$

Sample numerically (with Monte Carlo methods) the configuration space:

$$\frac{1}{\mathcal{Z}} \int D\left[\psi, \, \bar{\psi}, \, A\right] \, O \, e^{-S_{lat}^{QCD}} \, \text{achieved as} : \frac{1}{N_{confs}} \sum_{i \in \{confs\}} O_i, \, \text{with } p[i \in \{confs\}] = e^{-S_{lat}^{QCD}}$$

Correlation functions (two point ones)

Choose a lattice discretization of QCD, in Euclidean space

$$a^4 \mathcal{S}_{lat}^{QCD} = ar{\psi}_{n} D_{n,\,m} \psi_{m} + \mathcal{S}_{lat}^{gauge} \ \underset{a
ightarrow 0}{\longrightarrow} \ \mathcal{S}_{cont}^{QCD} = ar{\psi} \left(\not\!\!D + m
ight) \psi + rac{1}{4} \mathcal{G}_{\mu
u} \mathcal{G}_{\mu
u}$$

Sample numerically (with Monte Carlo methods) the configuration space:

$$\frac{1}{\mathcal{Z}} \int D\left[\psi, \, \bar{\psi}, \, A\right] \, O \, e^{-S_{lat}^{QCD}} \, \text{achieved as} : \frac{1}{N_{confs}} \sum_{i \in \{confs\}} O_i, \, \text{with } p[i \in \{confs\}] = e^{-S_{lat}^{QCD}}$$

Compute full quark propagator

• Compute propagator solving discrete Dirac equation: $D_{n, m} \cdot S_{m, l} = \delta_{n, l}$

ullet Propagator S embeds all non perturbative QCD dynamics in the scales $\sim [1/L,\,1/a]$

Correlation functions (two point ones)

Choose a lattice discretization of QCD, in Euclidean space

Sample numerically (with Monte Carlo methods) the configuration space:

$$\frac{1}{\mathcal{Z}} \int D\left[\psi, \, \bar{\psi}, \, A\right] \, O \, e^{-S_{lat}^{QCD}} \, \text{achieved as} : \frac{1}{N_{confs}} \sum_{i \in \{confs\}} O_i, \, \text{with} \, p[i \in \{confs\}] = e^{-S_{lat}^{QCD}}$$

Compute full quark propagator

• Compute propagator solving discrete Dirac equation: $D_{n, m} \cdot S_{m, l} = \delta_{n, l}$

ullet Propagator S embeds all non perturbative QCD dynamics in the scales $\sim [1/L,\,1/a]$

Combine 2 propagators with suitable Dirac structures

Example of determination of $\langle D_s | V_0 | H_s (\sim 2m_c) \rangle$

Chiral and continuum limit extrapolation for ratios

Chiral continuum extrapolation

- Fit ansatz: $\Sigma_k(1) = \alpha_k + \beta_k \frac{m_{\text{sea}}}{m_s} + \gamma_k a^2$
- Very smooth continuum extrapolation
- Negligible dependance in m_{sea} (perfectly fitted if $\beta_k = 0$) (expected since m_{sea} dependance occurs only through loop effects)
- Chiral logarithms cancel between numerator and denominator of the ratios

Interpolation to *b* quark mass

$B_s \to D_s$ vector form factor

- Final Results: $\mathcal{G}^{B_s \to D_s}(1) = 1.052(46)$. If no chiral extrapolation included: 1.073(17) M.Atoui, V.Morénas, D.Bečirevic, FS, Eur.Phys.J. C74 (2014)
- De Divitiis et al. (Phys.Lett.B '07): $\mathcal{G}^{B \to D}(1) = 1.026(17)$ \checkmark Step scaling method \checkmark Quenched
- MILC+Fermilab: 1.074(24), Preliminary results at Lattice '04

Other form factors (first computation of f_T) near zero recoil

$$f_0\left(q_0^2\right)/f_+\left(q_0^2\right) = 0.77(2), \qquad f_T\left(q_0^2\right)/f_+\left(q_0^2\right) = 1.08(7) \qquad {
m at} \ q_0^2 = 11.5 \, {
m GeV}^2$$

The case of $B_s \to D_s^* \ell \nu$ (new results)

Non-perturbative quantities [hadronic matrix elements]

- Possible currents inducing this process: $T_{\mu\nu}=\bar{c}\sigma_{\mu\nu}b$, $A=\bar{c}\gamma_{\mu}\gamma_{5}b$, $V=\bar{c}\gamma_{\mu}b$
- In total 7 form factors: Axial (A_1, A_2, A_3) , Tensor (T_1, T_2, T_3) and Vector (V)
- ullet At zero recoil only A_1 and T_2 contribute

The case of $B_s \to D_s^* \ell \nu$ (new results)

Non-perturbative quantities [hadronic matrix elements]

- Possible currents inducing this process: $T_{\mu\nu}=\bar{c}\sigma_{\mu\nu}b$, $A=\bar{c}\gamma_{\mu}\gamma_{5}b$, $V=\bar{c}\gamma_{\mu}b$
- In total 7 form factors: Axial (A_1, A_2, A_3) , Tensor (T_1, T_2, T_3) and Vector (V)
- At zero recoil only A_1 and T_2 contribute

Form factors determination

- In Standard Model only A_1 contributes at zero recoil $\omega=1$ [or $q^2=(m_{B_{(s)}}-m_{D_{(s)}^*})^2$]
- ullet In $B_s o D_s^*$ case we consider $\mathcal{F}\left(1
 ight)$ form factor related to A_1
- We lack elastic constraint, need to compute $\mathcal{F}_{m_c}(1)$

The case of $B_s \to D_s^* \ell \nu$ (new results)

Non-perturbative quantities [hadronic matrix elements]

- Possible currents inducing this process: $T_{\mu\nu}=\bar{c}\sigma_{\mu\nu}b$, $A=\bar{c}\gamma_{\mu}\gamma_{5}b$, $V=\bar{c}\gamma_{\mu}b$
- In total 7 form factors: Axial (A_1, A_2, A_3) , Tensor (T_1, T_2, T_3) and Vector (V)
- At zero recoil only A_1 and T_2 contribute

Form factors determination

- ullet In Standard Model only A_1 contributes at zero recoil $\omega=1$ [or $q^2=(m_{B_{(s)}}-m_{D_{(s)}^*})^2$]
- ullet In $B_s o D_s^*$ case we consider $\mathcal{F}\left(1
 ight)$ form factor related to A_1
- We lack elastic constraint, need to compute $\mathcal{F}_{m_c}\left(1\right)$

Ratio of Tensor/Axial form factor

- ullet Same external fields that couple to B_s and D_s^*
- Determine T_2/A_1 directly from ratio of correlators, together with $Z_T(\mu)/Z_A$

$$\frac{T_2}{A_1} = \frac{Z_T}{Z_A} \frac{C_{3pts}^T(t)}{C_{3pts}^A(t)}$$

• Allow **high precision** determination of T_2/A_1

Interpolation of $B_s \to D_s^*$ to b quark mass

$B_s \to D_s^*$ axial form factor

- PRELIMINARY Result: $\mathcal{F}^{B_s \to D_s^*}(1) = 0.953(35)$
- Very recently Fermilab + MILC reported: $\mathcal{F}^{B \to D^*}(1) = 0.906(4)(12)$, PRD 89 114504 (2014)

(see next talk for more info!)

Tensor to axial form factor ratio

Considerations

- In HQET static limit the matrix element of Tensor and Axial currents are equal
- $1/M_h^2$ corrections to the relation could be large in the charm region
- It turns out they are instead VERY small!!!
- $T_2^{B_s \to D_s^*}/A_1^{B_s \to D_s^*}$ ($\omega = 1$; $\mu = 2 \text{GeV}$) = 1.073(5) (PRELIMINARY!)

Conclusions & future perspectives

$B_s o D_s$ near zero recoil

- First unquenched determination of $\mathcal{G}^{B_s \to D_s}(1) = 1.052(46)$: compatible with previous results
- Determination of f_T/f_+ and f_0/f_+ important to constraint BSM low energy couplings
- ullet So far statistics does not allow to study B o D at the precision needed to have impact on V_{cb}

Conclusions & future perspectives

$B_s \to D_s$ near zero recoil

- First unquenched determination of $\mathcal{G}^{B_s \to D_s}(1) = 1.052(46)$: compatible with previous results
- ullet Determination of f_T/f_+ and f_0/f_+ important to constraint BSM low energy couplings
- ullet So far statistics does not allow to study B o D at the precision needed to have impact on V_{cb}

$B_s \to D_s^*$ at zero recoil

- Determination of $\mathcal{F}^{B_s \to D_s^*}(1) = 0.953(35)$
- The first computation of the ratio T_2/A_1 at zero recoil: very close to 1 (at $\mu=2$ GeV)
 - ullet important to constraint new physics models from $B_s o D_s^*\ell
 u$
 - ullet reveal the smallness of $1/M_h^2$ -corrections to the static limit provided the QCD renormalization scale is $\mu\sim 2\,{
 m GeV}$

Conclusions & future perspectives

$B_s \to D_s$ near zero recoil

- First unquenched determination of $\mathcal{G}^{B_s \to D_s}(1) = 1.052(46)$: compatible with previous results
- Determination of f_T/f_+ and f_0/f_+ important to constraint BSM low energy couplings
- ullet So far statistics does not allow to study B o D at the precision needed to have impact on V_{cb}

$B_s o D_s^*$ at zero recoil

- Determination of $\mathcal{F}^{B_s \to D_s^*}(1) = 0.953(35)$
- The first computation of the ratio T_2/A_1 at zero recoil: very close to 1 (at $\mu=2$ GeV)
 - important to constraint new physics models from $B_s o D_s^* \ell
 u$
 - reveal the smallness of $1/M_h^2$ -corrections to the static limit provided the QCD renormalization scale is $\mu \sim 2\,\mathrm{GeV}$

Non-strange decay

- $B_s \to D_s^{(*)} \ell \nu$ decays still to be measured
- Invitation to experimentalists to measure these processes
- Strategy presented here can also be used to study the non-strange case
- ullet Commitment to improve statistics and get a more accurate valued of $B o D^{(*)}\ell
 u_\ell$ form factors

Stay tuned!