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QCD sum rule results
for heavy-light meson decay constants

and
comparison with Lattice QCD

- importance of accurate determinations of heavy-light meson leptonic decay constants

- lattice averages for fD, fDs, fB and fBs produced by the Flavor Lattice Averaging Group (FLAG)

- PS and V heavy-meson decay constants from Borel QCD sum rules for heavy-light currents

* excellent agreement in the charm sector, while moderate tensions occur in the beauty sector

work done in collaboration with W. Lucha (HEPHY) and D. Melikhov (HEPHY and Moscow)



Leptonic decay constants of PS heavy-mesons are important hadronic quantities relevant for the extraction of CKM matrix 
elements from experimental data on:

   * the weak decay of PS heavy-mesons to a lepton-neutrino pair via flavor changing transitions

           e.g.:    c → d or c → s transitions in the case of the decay of charmed D and Ds mesons

                      b → u transition in the case of the decay of the B meson

   * the rare leptonic decays of neutral PS heavy-mesons to a charged lepton pair via FCNC interactions, e.g.

***** evidence for Bs → µ+µ−  decay recently seen at LHCb (at the 3.5σ  level) [PRL 110 (2013)]
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Motivations

Leptonic decay constants of V heavy-mesons are relevant in the heavy-quark phenomenology, e.g. for the contributions 
of the vector poles coupled to the weak current mediating the semileptonic decays of PS heavy-light mesons



Flavor Lattice Averaging Group

“ ... The scope of the Flavor Lattice Averaging Group (FLAG) is to review the current status of lattice results for a 
variety of physical quantities in low-energy physics ... “

Initially set up in November 2007 [thanks to the initiative of the Bern group in the framework of FlaviaNet], FLAG 
has published the first review in EPJC 71 (2011) limited to lattice results related to pion and kaon physics: 

 - light-quark masses (u-, d- and s-flavors),

 - the form factor f+(0) arising in semileptonic K → π transitions at zero momentum transfer and the decay constant 

   ratio fK/fπ, relevant for the determinations of the CKM matrix elements Vus and Vud

- some of the low-energy constants of SU(2)L ⊗SU(2)R and SU(3)L ⊗SU(3)R Chiral Perturbation Theory

- the BK parameter of neutral kaon mixing (in the SM)

In the second review [arXiv:1310.8555], besides the update of the above quantities, new ones have been addressed: 

   - the D(s)- and B(s)-meson decay constants

   - the D- and B-meson semileptonic form factors describing the decays

     to light flavors and the B-meson decays to charmed mesons

  - neutral B(s)-meson mixing matrix elements (in the SM)

  - the QCD coupling αs

determination of the CKM matrix
and UTA}



Quality criteria and color coding

theories such as Heavy-Quark Effective Theory (HQET). The pion-mass dependence can be
parameterized with Chiral Perturbation Theory (χPT), which takes into account the Nambu-
Goldstone nature of the lowest excitations that occur in the presence of light quarks; similarly
one can use Heavy-Light Meson Chiral Perturbation Theory (HMχPT) to extrapolate quan-
tities involving mesons composed of one heavy (b or c) and one light quark. One can combine
Symanzik’s effective theory with χPT to simultaneously extrapolate to the physical pion mass
and continuum; in this case, the form of the effective theory depends on the discretization.
See Appendix A.4 for a brief description of the different variants in use and some useful
references.

2 Quality criteria

The essential characteristics of our approach to the problem of rating and averaging lattice
quantities reported by different collaborations have been outlined in our first publication [1].
Our aim is to help the reader assess the reliability of a particular lattice result without neces-
sarily studying the original article in depth. This is a delicate issue, which may make things
appear simpler than they are. However, it safeguards against the common practice of using
lattice results and drawing physics conclusions from them, without a critical assessment of the
quality of the various calculations. We believe that despite the risks, it is important to pro-
vide some compact information about the quality of a calculation. However, the importance
of the accompanying detailed discussion of the results presented in the bulk of the present
review cannot be underestimated.

2.1 Systematic errors and colour-coding

In Ref. [1], we identified a number of sources of systematic errors, for which a systematic
improvement is possible, and assigned one of three coloured symbols to each calculation:
green star, amber disc or red square. The appearance of a red tag, even in a single source
of systematic error of a given lattice result, disqualified it from the global averaging. Since
results with green and amber tags entered the averages, and since this policy has been retained
in the present edition, we have decided to substitute the amber disc by a green unfilled circle.
Thus the new colour coding is as follows:
! the systematic error has been estimated in a satisfactory manner and convincingly shown
to be under control;
◦ a reasonable attempt at estimating the systematic error has been made, although this
could be improved;
! no or a clearly unsatisfactory attempt at estimating the systematic error has been made.
We stress once more that only results without a red tag in the systematic errors are averaged
in order to provide a given FLAG estimate.

The precise criteria used in determining the colour coding is unavoidably time-dependent;
as lattice calculations become more accurate the standards against which they are measured
become tighter. For quantities related to the light-quark sector, which have been dealt with
in the first edition of the FLAG review [1], some of the quality criteria have remained the
same, while others have been tightened up. We will compare them to those of Ref. [1],
case-by-case, below. For the newly introduced physical quantities, related to heavy quark
physics, the adoption of new criteria was necessary. This is due to the fact that, in most
cases, the discretization of the heavy quark action follows a very different approach to that
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***** only published results without a red tag in the systematic errors can be averaged ***** 

Sources of systematic errors in lattice calculations:

    - chiral extrapolation in the light-quark mass
    - continuum limit
    - finite volume effects
    - renormalization and running

    - heavy-quark treatment (particularly relevant for the b-quark sector)

• Finite-volume:
! Mπ,minL ∼> 3.7 or 2 volumes at fixed parameters
◦ Mπ,minL ∼> 3
! otherwise
Here the boundary between green star and open circle is slightly relaxed compared to
that in Sec. 2.1.1 to account for the fact that heavy-quark quantities are less sensitive
to this systematic error than light-quark quantities. A ! rating requires an estimate of
the finite volume error either by analysing data on two or more physical volumes (with
all other parameters fixed) or by using finite volume chiral perturbation theory. In the
case of staggered sea quarks, Mπ,min refers to the lightest (taste Goldstone) pion mass.

2.2 Averages and estimates

For many observables there are enough independent lattice calculations of good quality that it
makes sense to average them and propose such an average as the best current lattice number.
In order to decide whether this is true for a certain observable, we rely on the colour coding.
We restrict the averages to data for which the colour code does not contain any red tags.
In some cases, the averaging procedure nevertheless leads to a result which in our opinion
does not cover all uncertainties. This is related to the fact that procedures for estimating
errors and the resulting conclusions necessarily have an element of subjectivity, and would
vary between groups even with the same data set. In order to stay on the conservative
side, we may replace the average by an estimate (or a range), which we consider as a fair
assessment of the knowledge acquired on the lattice at present. This estimate is not obtained
with a prescribed mathematical procedure, but is based on a critical analysis of the available
information.

There are two other important criteria which also play a role in this respect, but which
cannot be colour coded, because a systematic improvement is not possible. These are: i)
the publication status, and ii) the number of flavours Nf . As far as the former criterion is
concerned, we adopt the following policy: we average only results which have been published
in peer reviewed journals, i.e. they have been endorsed by referee(s). The only exception
to this rule consists in obvious updates of previously published results, typically presented
in conference proceedings. Such updates, which supersede the corresponding results in the
published papers, are included in the averages. Nevertheless, all results are listed and their
publication status is identified by the following symbols:

• Publication status:
A published or plain update of published results
P preprint
C conference contribution

Note that updates of earlier results rely, at least partially, on the same gauge field configuration
ensembles. For this reason, we do not average updates with earlier results. In the present
edition, the publication status on November 30, 2013 is relevant. If the paper appeared in
print after that date this is accounted for in the bibliography, but does not affect the averages.

In this review we present results from simulations with Nf = 2, Nf = 2 + 1 and Nf =
2+1+1 (for r0ΛMS also with Nf = 0). We are not aware of an a priori way to quantitatively
estimate the difference between results produced in simulations with a different number of
dynamical quarks. We therefore average results at fixedNf separately; averages of calculations
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The FLAG-2 working group on fD(s) and fB(s) is composed by A. El-Khadra, Y. Aoki and M. Della Morte

details in arXiv:1310.8555

see also talk by N. Tantalo 

 FLAG-2 closing date: November 30th, 2013  

Color coding:
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fD fDs fDs/fD

ETM 13F [154] 2+1+1 C ◦ ◦ ◦ ! " 202(8) 242(8) 1.199(25)

FNAL/MILC 13∇ [328] 2+1+1 C ! ! ! ! " 212.3(0.3)(1.0) 248.7(0.2)(1.0) 1.1714(10)(25)

FNAL/MILC 12B [329] 2+1+1 C ! ! ! ! " 209.2(3.0)(3.6) 246.4(0.5)(3.6) 1.175(16)(11)

HPQCD 12A [330] 2+1 A ◦ ◦ ! ! " 208.3(1.0)(3.3) 246.0(0.7)(3.5) 1.187(4)(12)

FNAL/MILC 11 [331] 2+1 A ◦ ◦ ! ◦ " 218.9(11.3) 260.1(10.8) 1.188(25)

PACS-CS 11 [332] 2+1 A # ! # ◦ " 226(6)(1)(5) 257(2)(1)(5) 1.14(3)

HPQCD 10A [94] 2+1 A ! ◦ ! ! " 213(4)∗ 248.0(2.5)

HPQCD/UKQCD 07 [164] 2+1 A ! ◦ ! ! " 207(4) 241 (3) 1.164(11)

FNAL/MILC 05 [333] 2+1 A ◦ ◦ ! ◦ " 201(3)(17) 249(3)(16) 1.24(1)(7)

ETM 13B! [334] 2 P ! ◦ ! ! " 208(7) 250(7) 1.20(2)

ETM 11A [335] 2 A ! ◦ ! ! " 212(8) 248(6) 1.17(5)

ETM 09 [168] 2 A ◦ ◦ ! ! " 197(9) 244(8) 1.24(3)

∇ Update of FNAL/MILC 12B.
∗ This result is obtained by using the central value for fDs/fD from HPQCD/UKQCD 07 and increasing the
error to account for the effects from the change in the physical value of r1.
! Update of ETM 11A and ETM 09.

Table 20: Decay constants of the D and Ds mesons (in MeV) and their ratio.

tree-level improved Symanzik gauge action. In this setup the decay constants can be ex-
tracted from an absolutely normalized current and they are automatically O(a) improved.
In ETM 09 three lattice spacings between 0.1 and 0.07 fm are considered with pion masses
down to 270 MeV. Heavy meson χPT formulae plus terms linear in a2 have been used for the
continuum/chiral extrapolations, which have been performed in two different ways in order to

estimate sytematic effects. In the first approach fDs

√
mDs and

fDs
√
mDs

fD
√
mD

are fitted, whereas

in the second case the ratios
fDs

√
mDs

fK
and

fDs
√
mDs

fK
× fπ

fD
√
mD

are analysed. As expected,

the pion-mass dependence of fDs

√
mDs turns out to be very mild. In addition the double

ratio
fDs

√
mDs

fK
× fπ

fD
√
mD

shows little dependence on the pion mass as well as on the lattice

spacing. Cutoff effects on the contrary are rather large on the decay constants, with the
difference between the physical-mass result at the finest lattice spacing and in the continuum
being approximately 5%. ETM 11A contains an update of the results in ETM 09 obtained by
enlarging the statistics on some of the ensembles and by including a finer lattice resolution
with a ≈ 0.054 fm, which implies a reduction of cutoff effects by a factor two. Moreover
in ETM 11A the continuum extrapolations are performed after interpolating the results at
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Figure 13: Decay constants of the D and Ds mesons [values in Table 20 and Eqs. (93), (94)].
The significance of the colours is explained in section 2. The black squares and grey bands
indicate our averages. Errors in FNAL/MILC 13 are smaller than the symbols.

different lattice spacings to fixed values of the heavy-quark mass. In the case of the SU(3)
breaking ratio fDs/fD, the uncertainty associated with the chiral extrapolation is estimated
by comparing fits either following heavy meson χPT or assuming a simple linear dependence
on the light-quark mass. These results have been further updated in ETM 13B [334] by using
optimized smearing interpolating fields in order to suppress excited states contributions and
by changing the chiral extrapolation. The ensembles used are the same as in ETM 11A. Val-
ues at the physical point are obtained by first extrapolating fDs

√
mDs linearly in m2

l and in
a2 and then by extrapolating the double ratio (fDs/fD)/(fK/fπ) using HMχPT. The value
of fK/fπ is taken from the Nf = 2 + 1 average in [1], in order to avoid correlations with
estimates obtained by the ETM collaboration.

As results from just one collaboration exist in the literature, the Nf = 2 averages are
simply given by the values in ETM 13B, which read

Nf = 2 : fD = (208 ± 7) MeV, fDs = (250 ± 7) MeV,
fDs

fD
= 1.20 ± 0.02 . (93)

The ALPHA Collaboration presented preliminary results on fD(s)
with two dynamical

flavours at the Lattice 2013 Conference [336]. The proceedings however appeared after the
deadline for consideration in this review and therefore are not discussed here.

Several collaborations have produced results with Nf = 2 + 1 dynamical flavours. The
most precise determinations come from a sequence of publications by HPQCD/UKQCD [94,
164, 330]. In all cases configurations generated by MILC with Asqtad rooted staggered
quarks in the sea and a one-loop tadpole improved Symanzik gauge action have been analysed
(see [15] and references therein). The main differences are in the ensembles utilized and in
the absolute scale setting. The relative scale is always set through r1 derived from the static
quark-antiquark potential.

In HPQCD/UKQCD 07 [164] three lattice spacings, a ≈ 0.15, 0.12 and 0.09 fm, with
RMS pion masses between 542 and 329 MeV, have been considered. This gives rather large
values for the charm-quark mass in lattice units, 0.43 < amc < 0.85, and indeed lattice
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Nf fD (MeV) fDs (MeV) fDs / fD

2 208 ± 7 250 ± 7 1.20 ± 0.02

2+1 209.2 ± 3.3 248.6 ± 2.7 1.187 ± 0.012

2+1+1 -- -- --

* few percent accuracy   →   competitive with experimental errors
* dependence on Nf well within the errors 

of light flavours. Moreover, the two Working Groups dedicated to heavy flavours have opted
for a somewhat different rating of the extrapolation of lattice results to the continuum limit.
Finally, the strong coupling being in a class of its own, as far as methods for its computation
are concerned, led to the introduction of dedicated rating criteria for it.

Of course any colour coding has to be treated with caution; we repeat that the criteria
are subjective and evolving. Sometimes a single source of systematic error dominates the
systematic uncertainty and it is more important to reduce this uncertainty than to aim for
green stars for other sources of error. In spite of these caveats we hope that our attempt to
introduce quality measures for lattice results will prove to be a useful guide. In addition we
would like to stress that the agreement of lattice results obtained using different actions and
procedures evident in many of the tables presented below provides further validation.

For a coherent assessment of the present situation, the quality of the data plays a key role,
but the colour coding cannot be carried over to the figures. On the other hand, simply showing
all data on equal footing would give the misleading impression that the overall consistency of
the information available on the lattice is questionable. As a way out, the figures do indicate
the quality in a rudimentary way:
! results included in the average;
" results that are not included in the average but pass all quality criteria;
" all other results.
The reason for not including a given result in the average is not always the same: the paper
may fail one of the quality criteria, may not be published, be superseded by other results or
not offer a complete error budget. Symbols other than squares are used to distinguish results
with specific properties and are always explained in the caption.
There are separate criteria for light-flavour, heavy-flavour, and αs results. In the following
the criteria for the former two are discussed in detail, while the criteria for the αs results will
be exposed separately in sect. 9.2.

2.1.1 Light-quark physics

The colour code used in the tables is specified as follows:

• Chiral extrapolation:
# Mπ,min < 200 MeV
◦ 200 MeV ≤Mπ,min ≤ 400 MeV
! 400 MeV < Mπ,min

It is assumed that the chiral extrapolation is done with at least a three-point analysis;
otherwise this will be explicitly mentioned. Note that, compared to Ref. [1], chiral
extrapolations are now treated in a somewhat more stringent manner and the cutoff
between green star and green open circle (formerly amber disc), previously set at 250
MeV, is now lowered to 200 MeV.

• Continuum extrapolation:
# 3 or more lattice spacings, at least 2 points below 0.1 fm
◦ 2 or more lattice spacings, at least 1 point below 0.1 fm
! otherwise
It is assumed that the action is O(a)-improved (i.e. the discretization errors vanish
quadratically with the lattice spacing); otherwise this will be explicitly mentioned. More-
over, for non-improved actions an additional lattice spacing is required. This criterion
is the same as the one adopted in Ref. [1].

13PDG ’13 204.6 ± 5.0 257.5 ± 4.6 1.258 ± 0.038

Charm sector

Nf = number of 
dynamical 

flavors in the sea



Beauty sector
A number of different heavy-quark formulations are being used to obtain results for Bq

meson decay constants from numerical simulations withNf = 2, Nf = 2+1, and Nf = 2+1+1
sea quarks. They are summarized in Tables 24 and 25 and in Figure 16. Additional details
about the underlying simulations and systematic error estimates are given in Appendix B.6.1.
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fB+ fB0 fB fBs

ETM 13E [398] 2+1+1 C ◦ ◦ ◦ ◦ ! − − 196(9) 235(9)

HPQCD 13 [399] 2+1+1 A " " " ◦ ! 184(4) 188(4) 186(4) 224(5)

RBC/UKQCD 13A [400] 2+1 C ◦ ◦ " ◦ ! − − 191(6)!stat 233(5)!stat
HPQCD 12 [401] 2+1 A ◦ ◦ " ◦ ! − − 191(9) 228(10)

HPQCD 12 [401] 2+1 A ◦ ◦ " ◦ ! − − 189(4)" −
HPQCD 11A [365] 2+1 A " ◦ " " ! − − − 225(4)∇

FNAL/MILC 11 [331] 2+1 A ◦ ◦ " ◦ ! 197(9) − − 242(10)

HPQCD 09 [402] 2+1 A ◦ ◦ " ◦ ! − − 190(13)• 231(15)•

ALPHA 13 [403] 2 C " " " " ! − − 187(12)(2) 224(13)

ETM 13B, 13C [334, 404] 2 P† " ◦ " ◦ ! − − 189(8) 228(8)

ALPHA 12A [369] 2 C " " " " ! − − 193(9)(4) 219(12)

ETM 12B [392] 2 C " ◦ " ◦ ! − − 197(10) 234(6)

ALPHA 11 [364] 2 C " ◦ " " ! − − 174(11)(2) −
ETM 11A [335] 2 A ◦ ◦ " ◦ ! − − 195(12) 232(10)

ETM 09D [391] 2 A ◦ ◦ ◦ ◦ ! − − 194(16) 235(12)

!Statistical errors only.
"Obtained by combining fBs from HPQCD 11A with fBs/fB calculated in this work.
∇This result uses one ensemble per lattice spacing with light to strange sea-quark mass ratio m!/ms ≈ 0.2.
•This result uses an old determination of r1 = 0.321(5) fm from Ref. [379] that has since been superseded.
†Update of ETM 11A and 12B.

Table 24: Decay constants of the B, B+, B0 and Bs mesons (in MeV). Here fB stands
for the mean value of fB+ and fB0 , extrapolated (or interpolated) in the mass of the light
valence-quark to the physical value of mud.

The ETM collaboration has presented a series of calculations of the B-meson decay con-
stants based on simulations with Nf = 2 sea quarks [334, 335, 391, 392, 404]. Three lattice
spacings in the range a ≈ 0.067−0.098 fm are used in ETM 09D [391]. In ETM 11A, ETM 12B,
and ETM 13B, 13C [334, 335, 392, 404] additional ensembles at a ≈ 0.054 fm are included.
The valence and sea quarks are simulated with two different versions of the twisted-mass

112

Figure 16: Decay constants of the B and Bs mesons. The values are taken from Table 24 (the
fB entry for FNAL/MILC 11 represents fB+). The significance of the colours is explained in
section 2. The black squares and grey bands indicate our averages in Eqs. (110), (111) and
(112).

Wilson fermion action. In ETM 09D and ETM 11A the heavy-quark masses are in the charm
region and above while keeping amh<∼ 0.5. ETM 12B includes slightly heavier masses than
ETM 09D and ETM 11A, while ETM 13B, 13C includes masses as heavy as amh ∼ 0.85 at
the largest two lattice spacings. In ETM 11A two methods are used to obtain fB(s)

from their
heavy Wilson data: the ratio and the interpolation methods. In the interpolation method they
supplement their heavy Wilson data with a static limit calculation. In the ratio method (see
Appendix A.1.3) they construct ratios (called z(s)) from a combination of the decay constants
fh!(s) and the heavy-quark pole masses that are equal to unity in the static limit. Ratios of

pole-to-MS mass conversion factors are included at NLO in continuum perturbation theory.
ETM 09D, ETM 12B and ETM 13B, 13C use only the ratio method. Finally, ETM analyses
the SU(3) breaking ratio Φhs/Φh! (or the ratio of ratios, zs/z) and combines it with Φhs or
(zs) to obtain fB, instead of directly extracting it from their Φh! (or z) data. In ETM 11A,
ETM 12B, and ETM 13B, 13C the data are interpolated to a fixed set of reference masses
on all ensembles, and subsequently extrapolated to the continuum and to the physical light-
quark masses in a combined fit. The static limit calculation for the interpolation method in
ETM 11A is done at two intermediate lattice spacings, a ≈ 0.085, 0.067 fm. The results from
the interpolation method have larger (statistical and systematic) errors than those from the
ratio method, since statistical and systematic errors tend to cancel in the ratios. The observed
discretization effects (as measured by the percentage difference between the lattice data at the
smallest lattice spacing and the continuum extrapolated results) are smaller than what would
be expected from power-counting estimates. Over the range of heavy quark masses used in
their simulations ETM finds discretization errors <∼ 3% for Φhs and <∼ 1.5% for the ratio
zs. As a result, the dominant error on fBs is the statistical (combined with the chiral and
continuum extrapolation and heavy quark interpolation) uncertainty, whereas the dominant
error on the SU(3) breaking ratio is due to the chiral extrapolation.

The ALPHA collaboration calculates the B- and Bs-meson decay constants at the phys-
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fBs/fB+ fBs/fB0 fBs/fB

ETM 13E [398] 2+1+1 C ! ◦ ◦ ◦ " − − 1.201(25)

HPQCD 13 [399] 2+1+1 A ! ! ! ◦ " 1.217(8) 1.194(7) 1.205(7)

RBC/UKQCD 13A [400] 2+1 C ◦ ◦ ! ◦ " − − 1.20(2)!stat
HPQCD 12 [401] 2+1 A ◦ ◦ ! ◦ " − − 1.188(18)

FNAL/MILC 11 [331] 2+1 A ◦ ◦ ! ◦ " 1.229(26) − −
RBC/UKQCD 10C [405] 2+1 A # # ! ◦ " − − 1.15(12)

HPQCD 09 [402] 2+1 A ◦ ◦ ! ◦ " − − 1.226(26)

ALPHA 13 [403] 2 C ! ! ! ! " − − 1.195(61)(20)

ETM 13B, 13C [334, 404] 2 P† ! ◦ ! ◦ " − − 1.206(24)

ALPHA 12A [369] 2 C ! ! ! ! " − − 1.13(6)

ETM 12B [392] 2 C ! ◦ ! ◦ " − − 1.19(5)

ETM 11A [335] 2 A ◦ ◦ ! ◦ " − − 1.19(5)

!Statistical errors only.
†Update of ETM 11A and 12B.

Table 25: Ratios of decay constants of the B and Bs mesons (for details see Table 24).

ical b-quark mass using nonperturbative lattice HQET through O(1/mh) on ensembles with
Nf = 2 nonperturbatively O(a) improved Wilson quarks at three lattice spacings in the range
a ≈ 0.048−0.075 fm. The parameters of the HQET action and the static-current renormaliza-
tion are determined nonperturbatively in a separate matching calculation using small physical
volumes (L $ 0.4 fm) with Schrödinger functional boundary conditions together with a re-
cursive finite-size scaling procedure to obtain the nonperturbative parameters at the large
physical volumes used in the simulations. In ALPHA 11 [364] ensembles with pion masses
in the range mπ ≈ 440 − 270 MeV are used. ALPHA 12A [369] and ALPHA 13 [403] in-
clude an ensemble at a lighter sea-quark mass corresponding to mπ ≈ 190 MeV. ALPHA 11
presents results for fB only, while ALPHA 12A also presents a preliminary result for fBs , and
ALPHA 13 presents the collaboration’s final results for fB, fBs , and fBs/fB . The combined
statistical and extrapolation errors are of order 5 − 6% in these calculations, and are larger
than the chiral fit uncertainty. Truncation errors which are O(ΛQCD/mh)2 are not included
in this error budget. Simple power-counting would suggest that they are ≈ 1− 4%. However,
the results from both the ETM collaboration discussed above and the HPQCD collaboration
(from their heavy HISQ analysis) discussed below, as well as results obtained by ALPHA
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of light flavours. Moreover, the two Working Groups dedicated to heavy flavours have opted
for a somewhat different rating of the extrapolation of lattice results to the continuum limit.
Finally, the strong coupling being in a class of its own, as far as methods for its computation
are concerned, led to the introduction of dedicated rating criteria for it.

Of course any colour coding has to be treated with caution; we repeat that the criteria
are subjective and evolving. Sometimes a single source of systematic error dominates the
systematic uncertainty and it is more important to reduce this uncertainty than to aim for
green stars for other sources of error. In spite of these caveats we hope that our attempt to
introduce quality measures for lattice results will prove to be a useful guide. In addition we
would like to stress that the agreement of lattice results obtained using different actions and
procedures evident in many of the tables presented below provides further validation.

For a coherent assessment of the present situation, the quality of the data plays a key role,
but the colour coding cannot be carried over to the figures. On the other hand, simply showing
all data on equal footing would give the misleading impression that the overall consistency of
the information available on the lattice is questionable. As a way out, the figures do indicate
the quality in a rudimentary way:
! results included in the average;
" results that are not included in the average but pass all quality criteria;
" all other results.
The reason for not including a given result in the average is not always the same: the paper
may fail one of the quality criteria, may not be published, be superseded by other results or
not offer a complete error budget. Symbols other than squares are used to distinguish results
with specific properties and are always explained in the caption.
There are separate criteria for light-flavour, heavy-flavour, and αs results. In the following
the criteria for the former two are discussed in detail, while the criteria for the αs results will
be exposed separately in sect. 9.2.

2.1.1 Light-quark physics

The colour code used in the tables is specified as follows:

• Chiral extrapolation:
# Mπ,min < 200 MeV
◦ 200 MeV ≤Mπ,min ≤ 400 MeV
! 400 MeV < Mπ,min

It is assumed that the chiral extrapolation is done with at least a three-point analysis;
otherwise this will be explicitly mentioned. Note that, compared to Ref. [1], chiral
extrapolations are now treated in a somewhat more stringent manner and the cutoff
between green star and green open circle (formerly amber disc), previously set at 250
MeV, is now lowered to 200 MeV.

• Continuum extrapolation:
# 3 or more lattice spacings, at least 2 points below 0.1 fm
◦ 2 or more lattice spacings, at least 1 point below 0.1 fm
! otherwise
It is assumed that the action is O(a)-improved (i.e. the discretization errors vanish
quadratically with the lattice spacing); otherwise this will be explicitly mentioned. More-
over, for non-improved actions an additional lattice spacing is required. This criterion
is the same as the one adopted in Ref. [1].
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Nf fB (MeV) fBs (MeV) fBs / fB

2 189 ± 8 228 ± 8 1.206 ± 0.024

2+1 190.5 ± 4.2 227.7 ± 4.5 1.202 ± 0.022

2+1+1 186 ± 4 224 ± 5 1.205 ± 0.007

* accuracy at the few percent level
* dependence on Nf within the errors 

 FLAG-2 averages updated up to November 30th, 2013  

***** new results: see, e.g., LAT ’14 and this conference *****  

* Lattice calculations of heavy-light vector meson decay constant  

Nf (coll.) fD* (MeV) fDs* (MeV) fD* / fD fDs* / fDs Ref.

2 (ETM) 278 ± 16 311 ± 9 1.28 ± 0.06 1.26 ± 0.03 JHEP 02 (2012)

2 (ETM) 1.197 ± 0.024 arXiv:1407.1019

2+1 (HPQCD) 274 ± 6 1.10 ± 0.02 PRL 112 (2014)

charm sector  

Nf (coll.) fB* (MeV) fB* / fB Ref.

0 (MILC) 177 ± 18 PRD 65 (2001)

0 (UKQCD) 1.02 ± 0.06 NPB 619 (2001)

2 (ETM) 1.042 ± 0.014 arXiv:1407.1019

beauty sector  
1.01± 0.01−0.01

+0.04

Figure 23: Comparison of the results for |Vub| and |Vcb| obtained from lattice methods with
non-lattice determinations based on inclusive semileptonic B decays. In the left plot, the
results denoted by squares are from leptonic decays, while those denoted by triangles are
from semileptonic decays. The grey band indicates our Nf = 2 + 1 average.
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QCD Sum Rules

* two-point correlation functions for heavy-light currents:

i d 4x eip⋅x∫ 0 T j5 x( ) j5† 0( )⎡⎣ ⎤⎦ 0 =ΠPS p2( ) j5 x( ) ≡ mh +mq( )q x( )iγ 5h x( )

i d 4x eip⋅x∫ 0 T jν x( ) j ′ν
† 0( )⎡⎣ ⎤⎦ 0 = −gν ′ν + pν p ′ν

p2
⎛
⎝⎜

⎞
⎠⎟
ΠV p2( )

+ pν p ′ν

p2
ΠL

V p2( )

jν x( ) ≡ q x( )γ νh x( )

PS channel:

V channel:

- after Borelization:

ΠPS τ( ) = fPS
2 MPS

4 e−MPS
2 τ + ds e− sτ

sphys
PS

∞

∫ ρhadron
PS s( ) = ds ρpert

PS s,µ( )
mh+mq( )2

∞

∫ +Πpower
PS τ ,µ( )

ΠV τ( ) = fV
2MV

2e−MV
2τ + ds e− sτ

sphys
V

∞

∫ ρhadron
V s( ) = ds ρpert

V s,µ( )
mh+mq( )2

∞

∫ +Πpower
V τ ,µ( )

sphys
PS V( ) =  physical continuum threshold in the PS (V) channel

hadronic representation quark-gluon level (OPE)

µ =  subtraction point



quark-hadron duality    [SVZ ’79]

* power corrections (up to dimension-6):

Πpower
PS V( ) τ( ) =Π<qq>

PS V( ) τ( ) +Π<GG>
PS V( ) τ( ) +Π<qGq>

PS V( ) τ( ) +Π<qqqq>
PS V( ) τ( ) +O(d > 6)

* perturbative part (up to NNLO):

ρpert
PS V( ) τ( ) = ρLO

PS V( ) τ( ) + α s

π
ρNLO
PS V( ) τ( ) + α s

2

π 2 ρNNLO
PS V( ) τ( ) +O α s

3( )

− the correlator ΠPS V( ) τ( )is dominated by the ground-state at large τ , where however the truncated OPE does not converge

dse− sτ ρhadron
PS V( ) τ( )

sphys
PS V( )

∞

∫ = dse− sτ ρpert
PS V( ) τ ,µ( )

seff
PS V( ) τ ,µ( )

∞

∫

fPS
2 MPS

4 e−MPS
2 τ =Πdual

PS τ( ) = ds e− sτ

mh+mq( )2

seff
PS τ ,µ( )

∫ ρpert
PS s,µ( ) +Πpower

PS τ ,µ( )

fV
2MV

2e−MV
2τ =Πdual

V τ( ) = ds e− sτ

mh+mq( )2

seff
V τ ,µ( )

∫ ρpert
V s,µ( ) +Πpower

V τ ,µ( )

seff
PS V( )

τ ,µ( )  = effective threshold, which generally may depend on τ  and µ [LMS ’07]
an effective tool for eliminating 
the excited state contributions at 
intermediate values of τ

NLO:    Broadhurst ’81
             Generalis ’90
NNLO: Chetyrkin&Steinhauser ’01
             Khodjamirian et al. ’13



* choice of the Borel window: τmin ≤ τ ≤ τmax - τ > τmin: ground-state provides a sizable contribution (e.g., > 50%)

- τ < τmax: power corrections remain sufficiently small numerically

* in the given Borel window the effective threshold seff is chosen by requiring that the dual mass Mdual reproduces the 
   experimental meson mass MH:

Mdual
2 τ i( ) ≡ − d

dτ
logΠdual τ i , seff( )

τmin ≤ τ i ≤ τmax i = 1,...,N( )

− minimization of χ 2 = 1
N

Mdual
2 τ i( )−MH

2⎡⎣ ⎤⎦
i=1

N

∑
2

− extraction of fdual :  fdual
2 = 1

N
MH

−4eMH
2 τ i Πdual τ i , seff( )

i=1

N

∑

* strategies to determine seff: − polynomial Ansatz→  seff τ( ) = s j
n( )

j=0

n

∑ τ j constant threshold: n=0     (widely adopted in literature)
τ-dependent: linear (n=1), quadratic (n=2), ... [LMS ’07]

- seff(τi) = free parameter at each point τi in the Borel window [Khodjamirian et al. ’13]

... note that the calculation of Mdual requires the knowledge of the derivative of seff(τ)

in the given Borel window
smaller deviations from MH

mean
smaller contaminations from 

excited states

D-meson: 0.1≤ τ GeV −2( ) ≤ 0.5
W. Lucha et al. / Physics Letters B 701 (2011) 82–88 85

Fig. 2. Dual mass (a) and dual decay constant (b) of the D meson obtained using different Ansätze for the effective continuum threshold seff(τ ) (3.2) and fixing all thresholds
according to (3.3). Results for mc ≡ mc(mc) = 1.279 GeV, µ = mc , and central values of the other relevant parameters are presented. (c) Dual decay constant of the D meson
vs. mc for µ = mc and central values of the other OPE parameters. The integer n = 0,1,2,3 is the degree of the polynomial in our Ansatz (3.2) for seff(τ ): dotted line (red)
– n = 0; solid line (green) – n = 1; dashed line (blue) – n = 2; dash-dotted line (black) – n = 3. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this Letter.)

This gives us the coefficients s(n)
j of the effective continuum thresh-

old. As soon as the latter is fixed, it is straightforward to calculate
the decay constant.

The results presented below indicate that accounting for the τ -
dependence of the effective threshold yields a visible improvement
compared with the usual assumption of a τ -independent quantity
in the following respect: it leads to a much better stability of the
dual mass calculated for a dual correlator, which is tantamount to
a better isolation of the ground-state contribution.

Still, by trying different Ansätze for the effective continuum
threshold, one obtains different estimates for the decay constant.
We discuss the interpretation of these results in connection with
the systematic uncertainties of the method of sum rules.

3.3. Uncertainties in the extracted decay constant

Clearly, the extracted value of the decay constant is sensitive to
the precise values of the OPE parameters and to the prescription
for fixing the effective continuum threshold. The corresponding er-
rors in the resulting decay constants are called the OPE-related error
and the systematic error, respectively. Let us discuss these in turn.

3.3.1. OPE-related error
The value of the OPE-related error is obtained as follows: We

perform a bootstrap analysis [9] by allowing the OPE parameters
to vary over the ranges indicated in (2.1), using 1000 bootstrap
events. Gaussian distributions for all OPE parameters but µ are
employed. For µ we assume a uniform distribution in the cor-
responding range, which we choose to be 1 ! µ(GeV) ! 3 for
charmed mesons and 2 ! µ(GeV) ! 8 for beauty mesons. The re-
sulting distribution of the decay constant turns out to be close to
Gaussian shape. Therefore, the quoted OPE-related error is a Gaus-
sian error.

3.3.2. Systematic error
The systematic error of any hadron parameter determined by

the method of sum rules (i.e., the error related to the intrinsic lim-
ited accuracy of this method) represents the perhaps most subtle
point in the applications of this method. So far no way to arrive
at a rigorous – in the mathematical sense – systematic error has
been proposed. Therefore, in this respect we have to rely on our
experience obtained from the examples where the exact hadron
parameters may be calculated independently from the method of
dispersive sum rules and then compared with the results of the
sum-rule approach. Working with polynomial parameterizations in
the case of potential models, we have seen that the band of values
obtained from linear, quadratic, and cubic Ansätze for the effec-
tive threshold encompasses the true value of the decay constant

[7]. Moreover, we could show that the extraction procedures in
quantum mechanics and in QCD are even quantitatively rather sim-
ilar [8]. Therefore, we believe that the half-width of this band may
be regarded as realistic estimate for the systematic uncertainty of
the decay constant. Presently, we do not see other possibilities to
obtain a more reliable estimate for the systematic error.

3.4. Decay constant of the D meson

The τ -window for the charmed mesons, τ = (0.1–0.5) GeV−2,
is chosen according to the criteria formulated above. Fig. 2 shows
the application of our procedure of fixing the effective contin-
uum threshold and extracting the resulting f D . We would like to
point out that, in the window, the τ -dependent effective thresh-
olds reproduce the meson mass much better than the constant
one (Fig. 2(a)). This signals that the dual correlators corresponding
to the τ -dependent thresholds are less contaminated by excited
states.

The dependence of the extracted value of the D-meson decay
constant f D on the c-quark mass mc ≡ mc(mc) and the condensate
〈q̄q〉 ≡ 〈q̄q(2 GeV)〉 may be parameterized as

f dual
D

(
mc,µ = mc, 〈q̄q〉

)

=
[

206.2 − 13
(

mc − 1.279 GeV
0.1 GeV

)

+ 4
( |〈q̄q〉|1/3 − 0.267 GeV

0.01 GeV

)
± 5.1(syst)

]
MeV. (3.4)

This formula describes the band of values indicated by the two
short-dashed lines in Fig. 2(c), which delimit the results found
from the linear, quadratic, and cubic Ansätze for the effective con-
tinuum threshold. Fig. 3(a) depicts the result of the bootstrap
analysis of the OPE uncertainties. The distribution has a Gaus-
sian shape, and therefore the corresponding OPE uncertainty is the
Gaussian error. Adding the half-width of the band deduced from
our τ -dependent Ansätze for the effective continuum threshold of
degree n = 1,2,3 as the (intrinsic) systematic error, we obtain the
following result:

f D = (206.2 ± 7.3(OPE) ± 5.1(syst)) MeV. (3.5)

The main sources of the OPE uncertainty in the extracted f D are
its renormalization-scale dependence and the error of the quark
condensate.

For a τ -independent Ansatz for the effective continuum thresh-
old a bootstrap analysis entails the substantially lower range
f (n=0)

D = (181.3 ± 7.4(OPE)) MeV, which differs from our τ -depend-
ent result (3.5) by %10%, i.e., by almost three times the OPE

B-meson: 0.05 ≤ τ GeV −2( ) ≤ 0.18

uncertainty of the prediction. The ultimate efficiency and
reliability of this algorithm have already been established
for the decay constants ofD andDs mesons [27]. Here, we
apply this technique to the B and Bs mesons.

A. Decay constant of the B meson

Recall that the ! window for the BðsÞ mesons is fixed by
the above criteria to be equal to ! ¼ ð0:05–0:175Þ GeV$2.
Figure 2 shows the corresponding results for the effective
continuum threshold seffð!Þ and the extracted fB.
Obviously, in this window the !-dependent effective
thresholds reproduce the meson mass MB much better
than the constant one [Fig. 2(a)]. This signals that those
dual correlators that correspond to such !-dependent
thresholds are less contaminated by the excited states.

According to Fig. 2(d), the dependence of our QCD
sum-rule prediction for the B-meson decay constant fB
on mb and the quark condensate h !qqi % h !qqð2 GeVÞi, for
fixed values of the other OPE parameters, may be well
parametrized by

fdualB ðmb;"¼#¼mb;h !qqiÞ

¼
!
192:0$37

"
mb$4:247GeV

0:1GeV

#

þ4
"jh !qqij1=3$0:269GeV

0:01GeV

#
'3ðsystÞ

$
MeV; (3.4)

representing the range of results obtained for n ¼ 1, 2, 3
in the Ansatz (3.3) within the two short-dashed lines in
Fig. 2(d).
Note that our algorithm, relying on polynomial func-

tions, provides a clear and unambiguous prescription for
fixing the effective continuum thresholds. The ! depen-
dence of the latter is crucial for deriving the dual mass, the
definition of which involves a derivative with respect to !.
On the other hand, our decay-constant prediction may be
reproduced by the constant effective continuum threshold
seff ¼ ð33:1' 0:5Þ GeV. However, in order to obtain this
very range of values, one has to apply our algorithm, which
takes advantage of the freedom provided by the ! depen-
dence of the thresholds.
Performing the bootstrap analysis of the OPE uncertain-

ties and adding the half-width of the band deduced from
our !-dependent Ansätze for the effective continuum
threshold of degree n ¼ 1, 2, 3 as (intrinsic) systematic
error, we find

fB ¼ ð192:0' 14:3ðOPEÞ ' 3:0ðsystÞÞ MeV: (3.5)

The main contributions to the OPE uncertainty in
the extracted fB arise from the renormalization-scale de-
pendence and the errors in mb and the quark condensate.
Let us emphasize that for mb ¼ 4:05 GeV one gets
fB ¼ 265 MeV which is very far from the result reported
in [15]; cf. Table I.
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FIG. 2 (color online). Dual mass Mdualð!Þ (a), corresponding to !-dependent effective continuum threshold seffð!Þ according to our
Ansatz (3.2), determined by minimizing the expression (3.3) (b), and dual decay constant fdualð!Þ (c). Results for mb % !mbð !mbÞ ¼
4:25 GeV, " ¼ # ¼ mb, and central values of the other relevant parameters are shown. (d) Dual decay constant of the B meson vs mb

for" ¼ # ¼ mb and central values of all the other OPE parameters. The integer n ¼ 0, 1, 2, 3 is the degree of the seffð!Þ polynomial in
the Ansatz (3.2). Red dotted line: n ¼ 0; green solid line: n ¼ 1; blue dashed line: n ¼ 2; black dot-dashed line: n ¼ 3; red short-
dashed lines: delimiters of the range of results.
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Pole mass versus running mass

* the perturbative spectral density has been calculated in terms of the pole heavy-quark mass mhpole, but the expansion can be 
   reorganized in terms of the running MS mass mh(μ)

mh
pole = mh µ( ) 1+ α s µ( )

π
r1 +

α s µ( )
π

⎛
⎝⎜

⎞
⎠⎟

2

r2 +O α s
3( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

* both the truncated OPE and the hierarchy among the various orders are sensitive to the choice of the scheme [Jamin&Lange ’02]

accuracy (although the !3
s term is also known [25]).

Moreover, one should omit all terms of order !3
s and

higher, induced by the substitution Mb ! !mbð"Þ in the
results of [19]. Explicit expressions for the perturbative
spectral densities and power corrections may be found in
[16,19] and are not given here. Notice that two different
scales, # and ", naturally emerge when reorganizing the
perturbative expansion from the pole b-quark mass to the
running b-quark mass. One may set these scales equal to
each other; we, however, leave the scales independent from
each other and investigate the impact of particular choices
of the scales # and " on the extracted values of mb and the
decay constants fB and fBs

.
One caveat is in order here: the spectral density (2.6)

involves an implicit $ function restricting the integration
region in the correlator: for instance, for a massless light
quark, it reads $ðs#M2

bÞ. Switching from the pole to the
running mass, Mb ! !mbð"Þ, this $ function has to be
expanded in powers of !s, a step which induces ‘‘surface’’
terms %ðs#M2

bÞ and their derivatives. The spectral den-

sities &ðiÞðs;M2
bÞ, however, have zeros of second order at

this threshold s ¼ M2
b; consequently, to the Oð!2

sÞ accu-
racy considered, the surface terms do not contribute and
one merely has to perform the replacement $ðs#M2

bÞ !
$ðs# !m2

bð"ÞÞ. The surface terms enter the game at order!3
s

and higher.
In order to appreciate the amount of improvement

achieved by reorganizing the perturbative expansion in
terms of the running mass, Fig. 1 shows the perturbative
spectral densities and the estimates for fB arising from the

sum rule (2.5) for two choices of the b-quark mass: the pole
mass Mb and the running MS mass !mbð"Þ. All results are
given formb ¼ 4:163 GeV, corresponding to two-loop and

three-loop pole massesM2-loop
b ¼ 4:75 GeV andM3-loop

b ¼
4:89 GeV [25]. Since we work at Oð!2

sÞ accuracy, we use
for consistency the two-loop value of Mb to obtain the
results depicted in Fig. 1. For the other relevant OPE
parameters, we adopt the following values [1,26]:

mdð2GeVÞ¼ ð3:5%0:5ÞMeV;

msð2GeVÞ¼ ð95%5ÞMeV;

!sðMZÞ¼0:1184%0:0007;

h !qqið2GeVÞ¼#ðð269%17ÞMeVÞ3;
h!ssið2GeVÞ=h !qqið2GeVÞ¼0:8%0:3;

!
!s

'
GG

"
¼ð0:024%0:012ÞGeV4:

(2.8)

The sum-rule estimates shown in Fig. 1 are obtained for
# ¼ " ¼ mb and for a (-independent effective threshold
seff . Clearly, the choice of the heavy-quark mass (that is,
pole or running) used in the OPE makes a great difference
for the numerical values of the truncated heavy–light cor-
relators and of the resulting decay constants.
The above observations may be summarized as follows:
(1) When the dual correlator is calculated in terms of

the heavy-quark pole mass, its perturbative expan-
sion exhibits no sign of convergence; the contribu-
tions of the Oð1Þ, Oð!sÞ, and Oð!2

sÞ terms are of
nearly the same magnitude. Therefore, in this
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FIG. 1 (color online). OPE computed in terms of pole mass (left) and MS mass (right) of the b-quark. First row: spectral densities;
second row: corresponding sum-rule findings for fB. In both cases, a typical value of the effective continuum threshold is used:
s0 ¼ 35 GeV2. Bold solid lines labelled ‘‘Pert 3-loop’’ and ‘‘total,’’ respectively: total result; black solid lines: Oð1Þ contribution; red
dashed lines: Oð!sÞ contribution; blue dotted lines: Oð!2

sÞ contribution; green dash-dotted lines: power contributions.
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B-meson
mb

pole = 4.75GeV
mb mb( ) = 4.16GeV

84 W. Lucha et al. / Physics Letters B 701 (2011) 82–88

Fig. 1. OPE calculated in terms of the pole mass (left) and the MS mass (right) of the c quark. First line: spectral densities; second line: corresponding sum-rule estimates
for f D . A constant effective continuum threshold s0 is fixed in each case separately by requiring “maximal stability” of the extracted decay constant. As the result, s0 turns
out to be different in the two schemes. Bold line – total result, solid line (black) – O (1) contribution; dashed line (red) – O (αs) contribution; dotted line (blue) – O (α2

s )

contribution; dash-dotted line (green) – power contributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this Letter.)

far not sufficient to guarantee the reliability of the sum-rule ex-
traction of bound-state parameters. We have already observed this
feature in several examples in quantum mechanics [6].

Because of the obvious problems with the pole-mass OPE for
the correlator, we shall make use of the OPE in terms of the run-
ning MS mass for our extraction of the decay constants. Hereafter,
the quark masses mQ and m, and the strong coupling αs denote
the MS running quantities at the scale µ.

3. Extraction of the decay constant

In order to determine the heavy-meson decay constant f Q from
the OPE, we must execute the following two steps.

3.1. The Borel window

First, we must fix our working τ -window where, on the one
hand, the OPE gives a sufficiently accurate description of the ex-
act correlator (i.e., all higher-order radiative and power corrections
are small) and, on the other hand, the ground state gives a “siz-
able” contribution to the correlator. Since the radiative corrections
to the condensates increase rather fast with τ , it is preferable to
stay at the lowest possible values of τ . We shall therefore fix the
window by the following criteria [7,8]: (a) In the window, power
corrections Πpower(τ ) should not exceed 30% of the dual correlator
Πdual(τ , s0). This restricts the upper boundary of the τ -window.
The ground-state contribution to the correlator at this value of τ
comprises about 50% of the correlator. (b) The lower boundary of
the τ -window is fixed by the requirement that the ground-state
contribution does not fall below 10%.

3.2. The effective continuum threshold

Second, we must define a criterion how to determine seff(τ ).
The corresponding algorithm has been formulated in our recent
works [7,8] and was shown to provide a good extraction of the
ground-state parameters in quantum-mechanical potential models.

Let us introduce the dual invariant mass Mdual and the dual decay
constant fdual by the relations

M2
dual(τ ) ≡ − d

dτ
log Πdual

(
τ , seff(τ )

)
,

f 2
dual(τ ) ≡ M−4

Q eM2
Q τΠdual

(
τ , seff(τ )

)
. (3.1)

For a properly constructed Πdual(τ , seff(τ )), this dual mass should
coincide with the actual mass of the ground state. So, if the
ground-state mass is known, any deviation of the dual mass from
the actual mass of the ground state yields an indication of the con-
tamination of the dual correlator by excited states.

Assuming some particular functional form of the effective
threshold and requiring the least deviation of the dual mass (3.1)
from the actual mass in the τ -window entails a variational so-
lution for the effective threshold; as soon as the latter has been
fixed, (3.1) yields the decay constant. We do not need to de-
scribe the effective threshold in the whole range of values of τ ;
it is sufficient to parameterize the τ -dependence in the working
Borel window where a local Taylor-expansion may be assumed. We
therefore consider polynomials in τ , including also the standard
assumption for the effective threshold – a τ -independent constant.

Our algorithm for the extraction of f Q makes use of the knowl-
edge of the true P Q -meson mass M Q . This algorithm, developed
in our previous works and proven to work well for different corre-
lators in the potential model, is very simple: we consider the set
of τ -dependent Ansätze for the effective continuum threshold

s(n)
eff (τ ) =

n∑

j=0

s(n)
j τ j. (3.2)

We fix the parameters on the right-hand side of (3.2) as follows:
we compute the dual mass squared according to (3.1) for the τ -
dependent seff(τ ) in (3.2). We then evaluate M2

dual(τ ) at several
values of τ = τi (i = 1,2, . . . , N , where N can be taken arbitrary
large) chosen uniformly in the window. Finally, we minimize the
squared difference between M2

dual and the known value M2
B :

χ2 ≡ 1
N

N∑

i=1

[
M2

dual(τi) − M2
Q

]2
. (3.3)
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mc

pole = 1.68GeV
mc mc( ) = 1.28GeV
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Fig. 1: QCD sum-rule estimates for fD∗ extracted by expressing the OPE in terms of the c-quark pole mass (left) or MS mass
(right). The pole mass Mc = 1.682 GeV, used in the left plot, has been recalculated by the O(α2

s) relation (A.2) from the running
MS mass mc(mc) = 1.279 GeV, used in the right plot. For each case separately, a constant effective continuum threshold seff
is determined by requiring “maximal stability” of the obtained decay constant in the Borel window 0.1 ≤ τ (GeV−2) ≤ 0.5. As
a result, seff turns out to be different for the two schemes: seff = 5.23 GeV2 for the pole-mass scheme (left), seff = 5.52 GeV2

for the MS scheme (right). Bold lines — total results, solid lines (black) — O(1) contributions; dashed lines (red) — O(αs)
contributions; dotted lines (blue) — O(α2

s ) contributions; dot-dashed lines (green) — power contributions.

read [5, 6, 10, 11]

mc(mc) = (1.275± 0.025) GeV, m(2 GeV) = (3.42± 0.09) MeV, ms(2 GeV) = (93.8± 2.4) MeV,

αs(MZ) = 0.1184± 0.0020, (2.1)

〈q̄q〉(2 GeV) = −((267± 17) MeV)3, 〈s̄s〉(2 GeV)/〈q̄q〉(2 GeV) = 0.8± 0.3,
〈αs

π
GG

〉

= (0.024± 0.012) GeV4.

The pole mass, recomputed from the O(α2
s ) relation between mc and Mc, reads Mc = 1.682 GeV [6]. The sum-rule

estimates shown in Fig. 1 are obtained for a τ -independent effective threshold seff . Its values, different for pole-mass
OPE and MS-mass OPE, are found by requiring maximal stability of the extracted decay constant in the chosen
Borel window (as detailed in Sect. 3). Let us emphasize that, for the moment, a constant effective threshold and the
stability criterion for determining its numerical value are adopted only for illustration: As we have demonstrated in
many examples [7], using a constant effective threshold provides rather inaccurate estimates for the decay constant
and does not allow one to probe the systematic error of this extraction.
Nevertheless, the results of Fig. 1 illustrate some of the essential features of the extraction procedures. First, using

the pole-mass OPE, one observes no hierarchy of the perturbative contributions to the dual correlator – the O(1),
O(αs), and O(α2

s) contributions have the same size. Obviously, there is no reason to expect the unknown higher-order
perturbative corrections to be small; the pole-mass OPE truncated at order O(α2

s) and the corresponding ground-state
parameters suffer from large uncertainties. On the other hand, reorganizing the perturbative expansion in terms of the
MS mass of the heavy quark leads to a clear hierarchy and allows a reliable extraction of the ground-state parameters.
This is precisely the same feature that has been observed for the pseudoscalar correlator.
Second, there is a huge numerical difference between the decay constants obtained using the pole-mass OPE and

the running-mass OPE if one compares calculations obtained for the values of mc(mc) and its pole-mass O(α2
s)

counterpartner given above. However, comparing the results of the truncated pole-mass and running-mass OPE
requires some caution, as the perturbative expansion of the pole mass in terms of the running mass displays its
asymptotic nature already at lowest orders [12]: Mc = mc(mc)(1+1.33 a+10.32 a2+104.76 a3), with a = αs(mc)/π =
0.126. Assigning the uncertainty of the pole-mass value that corresponds to a specific running-mass value as, e.g., the
size of the last included term in the perturbative relation, in our case of the O(α2

s) term, amounts to a 15% uncertainty
in Mc. Due to a large sensitivity of the extracted decay constant to the precise value of the charm-quark mass, the
uncertainty of 15% in Mc leads to a 100% uncertainty in the dual pole-mass correlator. With such an uncertainty, the
results obtained from the pole-mass and the running-mass OPE in Fig. 1 are compatible with each other, but suggest
that the accuracy of the O(α2

s)-truncated pole-mass OPE is rather bad.
We therefore make use of the OPE in terms of the running MS mass for the analysis of fV . Accordingly, henceforth

the quark masses mQ and m, and the strong coupling αs denote the MS running quantities.

D*-meson
mc

pole = 1.68GeV
mc mc( ) = 1.28GeV
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3. OPE AND CHOICE OF SCHEME AND SCALE FOR HEAVY-QUARK MASS

We start with the OPE for the correlation function (2.1). The perturbative spectral density ρpert(s,M) was
calculated in [3] in terms of the pole mass of the heavy quark. A nice feature of the pole-mass OPE is that each
of the known perturbative contributions to the dual correlator are positive. Unfortunately, the pole-mass OPE does
not provide a visible hierarchy of the perturbative contributions thus posing doubts that the O(alpha2s)-truncated
pole-mass OPE can provide reliable estimates of the decay constants.
A known way to overcome this problem is to reorganize the perturbative expansion in terms of the running MS

mass mQ ≡ mQ(µ) (using the notations of [5]):

Mb = mb(µ)/(1 + a(µ)r(1)m + a2(µ)r(2)m ). (3.1)

The spectral densities in the M̄S-scheme are obtained by reexpanding the pole-mass spectral densities in powers of
a(µ) and omitting terms of order O(a3) and higher; starting from order O(a) they contain two parts: the “genuine”
part of Chetyrkin and the part induced by the lower perturbative orders due to expanding the pole mass through the
running mass.
In this way, because of the truncation of the perturbative series, one gets an explicit (unphysical) dependence of

the dual correlator and of the extracted decay constant on the scale µ. In principle, any scale should be equivalently
good. In practice, however, the heirarchy of the perturbative contributions to the dual correlator depends on the
precise choice of the scale. This opens a possibility of choosing the scale µ in such a way that the hierarchy of the
new perturbative expansion is improved.
Let us define the scale µ∗ according to Mb = mb(µ∗). Using the O(a2) relation between the running and the pole

mass one finds µ∗ ∼ 2.2− 2.3 GeV. The perturbative hierarchy of the MS expansion at this scale is nearly the same
as of the pole-mass expansion. For lower scales µ < µ∗, the hierarchy of the MS-expansion is worse than that of the
pole-mass expansion; for higher scales, the MS-expansion hierarchy improves compared to the pole one (Fig. 1 and
2).
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Fig. 1: QCD sum-rule estimates for B∗ meson using the pole-mass OPE and the running-mass OPE at different scales.
Obviously, the 0(α2

s)-truncated pole-mass OPE shows no hierarchy of the perturbative expansion and cannot be used. The
hierarchy of the running-mass OPE is also not automatic and depends strongly on the scale µ. For mb(mb) = 4.18 GeV, the
2-loop pole mass is Mb = 4.80 GeV. For each case separately, a constant effective continuum threshold seff is determined by
requiring “maximal stability” of the obtained decay constant in the Borel window 0.05 ≤ τ (GeV−2) ≤ 0.15. Bold lines (lila) —
total results, solid lines (black) — O(1) contributions; dashed lines (red) — O(αs) contributions; dotted lines (blue) — O(α2

s )
contributions; dot-dashed lines (green) — power contributions. (a) pole-mass OPE; (b) running mass for µ = 2.5 GeV; (c)
running mass for µ = 3 GeV; (d) running mass for µ = 4 GeV.
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Fig. 1: QCD sum-rule estimates for B∗ meson using the pole-mass OPE and the running-mass OPE at different scales.
Obviously, the 0(α2

s)-truncated pole-mass OPE shows no hierarchy of the perturbative expansion and cannot be used. The
hierarchy of the running-mass OPE is also not automatic and depends strongly on the scale µ. For mb(mb) = 4.18 GeV, the
2-loop pole mass is Mb = 4.80 GeV. For each case separately, a constant effective continuum threshold seff is determined by
requiring “maximal stability” of the obtained decay constant in the Borel window 0.05 ≤ τ (GeV−2) ≤ 0.15. Bold lines (lila) —
total results, solid lines (black) — O(1) contributions; dashed lines (red) — O(αs) contributions; dotted lines (blue) — O(α2

s )
contributions; dot-dashed lines (green) — power contributions. (a) pole-mass OPE; (b) running mass for µ = 2.5 GeV; (c)
running mass for µ = 3 GeV; (d) running mass for µ = 4 GeV.

B*-meson
mb

pole = 4.80GeV
mb mb( ) = 4.18GeV

- the expansion in terms of the pole mass show no sign of convergence

- a reasonable hierarchy among the various perturbative orders is found in terms of the MS running mass (the one usually 
  adopted in SR analyses)

- the decay constants exhibit a nice stability over a wide range of values of τ, but the extracted value from the expansion 
  in terms of the pole mass is around 10% lower than the corresponding one obtained in terms of the MS running mass 

* important messages:

***** Borel stability does not guarantee reliability *****



Charmed mesons
* input parameters

- quark masses:

- condensates:

- strong coupling:

- subtraction point:

mc mc( ) = 1.275 ± 0.025GeV    [PDG '13]

mu/d (2GeV ) = 3.42 ± 0.09 MeV , ms (2GeV ) = 93.8 ± 2.4 MeV     [FLAG '13]

α s MZ( ) = 0.1184 ± 0.0007    [PDG '13]

< qq >= (−267 ±17 MeV )3, < ss > / < qq >= 0.8 ± 0.3, < qqqq > / < qq >2= 0.1−1.0
α s

π
<GG >= 0.024 ± 0.012GeV 4 , < qGq > / < qq >= 0.8 ± 0.2GeV 2

W. Lucha et al. / Physics Letters B 701 (2011) 82–88 85

Fig. 2. Dual mass (a) and dual decay constant (b) of the D meson obtained using different Ansätze for the effective continuum threshold seff(τ ) (3.2) and fixing all thresholds
according to (3.3). Results for mc ≡ mc(mc) = 1.279 GeV, µ = mc , and central values of the other relevant parameters are presented. (c) Dual decay constant of the D meson
vs. mc for µ = mc and central values of the other OPE parameters. The integer n = 0,1,2,3 is the degree of the polynomial in our Ansatz (3.2) for seff(τ ): dotted line (red)
– n = 0; solid line (green) – n = 1; dashed line (blue) – n = 2; dash-dotted line (black) – n = 3. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this Letter.)

This gives us the coefficients s(n)
j of the effective continuum thresh-

old. As soon as the latter is fixed, it is straightforward to calculate
the decay constant.

The results presented below indicate that accounting for the τ -
dependence of the effective threshold yields a visible improvement
compared with the usual assumption of a τ -independent quantity
in the following respect: it leads to a much better stability of the
dual mass calculated for a dual correlator, which is tantamount to
a better isolation of the ground-state contribution.

Still, by trying different Ansätze for the effective continuum
threshold, one obtains different estimates for the decay constant.
We discuss the interpretation of these results in connection with
the systematic uncertainties of the method of sum rules.

3.3. Uncertainties in the extracted decay constant

Clearly, the extracted value of the decay constant is sensitive to
the precise values of the OPE parameters and to the prescription
for fixing the effective continuum threshold. The corresponding er-
rors in the resulting decay constants are called the OPE-related error
and the systematic error, respectively. Let us discuss these in turn.

3.3.1. OPE-related error
The value of the OPE-related error is obtained as follows: We

perform a bootstrap analysis [9] by allowing the OPE parameters
to vary over the ranges indicated in (2.1), using 1000 bootstrap
events. Gaussian distributions for all OPE parameters but µ are
employed. For µ we assume a uniform distribution in the cor-
responding range, which we choose to be 1 ! µ(GeV) ! 3 for
charmed mesons and 2 ! µ(GeV) ! 8 for beauty mesons. The re-
sulting distribution of the decay constant turns out to be close to
Gaussian shape. Therefore, the quoted OPE-related error is a Gaus-
sian error.

3.3.2. Systematic error
The systematic error of any hadron parameter determined by

the method of sum rules (i.e., the error related to the intrinsic lim-
ited accuracy of this method) represents the perhaps most subtle
point in the applications of this method. So far no way to arrive
at a rigorous – in the mathematical sense – systematic error has
been proposed. Therefore, in this respect we have to rely on our
experience obtained from the examples where the exact hadron
parameters may be calculated independently from the method of
dispersive sum rules and then compared with the results of the
sum-rule approach. Working with polynomial parameterizations in
the case of potential models, we have seen that the band of values
obtained from linear, quadratic, and cubic Ansätze for the effec-
tive threshold encompasses the true value of the decay constant

[7]. Moreover, we could show that the extraction procedures in
quantum mechanics and in QCD are even quantitatively rather sim-
ilar [8]. Therefore, we believe that the half-width of this band may
be regarded as realistic estimate for the systematic uncertainty of
the decay constant. Presently, we do not see other possibilities to
obtain a more reliable estimate for the systematic error.

3.4. Decay constant of the D meson

The τ -window for the charmed mesons, τ = (0.1–0.5) GeV−2,
is chosen according to the criteria formulated above. Fig. 2 shows
the application of our procedure of fixing the effective contin-
uum threshold and extracting the resulting f D . We would like to
point out that, in the window, the τ -dependent effective thresh-
olds reproduce the meson mass much better than the constant
one (Fig. 2(a)). This signals that the dual correlators corresponding
to the τ -dependent thresholds are less contaminated by excited
states.

The dependence of the extracted value of the D-meson decay
constant f D on the c-quark mass mc ≡ mc(mc) and the condensate
〈q̄q〉 ≡ 〈q̄q(2 GeV)〉 may be parameterized as

f dual
D

(
mc,µ = mc, 〈q̄q〉

)

=
[

206.2 − 13
(

mc − 1.279 GeV
0.1 GeV

)

+ 4
( |〈q̄q〉|1/3 − 0.267 GeV

0.01 GeV

)
± 5.1(syst)

]
MeV. (3.4)

This formula describes the band of values indicated by the two
short-dashed lines in Fig. 2(c), which delimit the results found
from the linear, quadratic, and cubic Ansätze for the effective con-
tinuum threshold. Fig. 3(a) depicts the result of the bootstrap
analysis of the OPE uncertainties. The distribution has a Gaus-
sian shape, and therefore the corresponding OPE uncertainty is the
Gaussian error. Adding the half-width of the band deduced from
our τ -dependent Ansätze for the effective continuum threshold of
degree n = 1,2,3 as the (intrinsic) systematic error, we obtain the
following result:

f D = (206.2 ± 7.3(OPE) ± 5.1(syst)) MeV. (3.5)

The main sources of the OPE uncertainty in the extracted f D are
its renormalization-scale dependence and the error of the quark
condensate.

For a τ -independent Ansatz for the effective continuum thresh-
old a bootstrap analysis entails the substantially lower range
f (n=0)

D = (181.3 ± 7.4(OPE)) MeV, which differs from our τ -depend-
ent result (3.5) by %10%, i.e., by almost three times the OPE
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n
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Fig. 2. Dependence on the Borel parameter τ of the dual mass (a) and the dual decay constant (b) of the D∗ meson, obtained by employing different Ansätze (3.2) for the 
effective continuum threshold seff(τ ) and fixing all thresholds according to (3.3); the results are presented for central values of all OPE parameters and for an average scale 
µ = µ∗ = 1.84 GeV, where the average scale µ∗ is defined by (3.6). (c) Our τ -dependent effective thresholds obtained by the fitting procedure as explained in the text. The 
integer n = 0, 1, 2, 3 is the degree of the polynomial in our Ansatz (3.2) for seff(τ ): dotted lines (red) — n = 0; solid lines (green) — n = 1; dashed lines (blue) — n = 2; 
dot-dashed lines (black) — n = 3.

Fig. 3. Dependence on µ of the dual decay constants: (a) f dual
D (µ) and f dual

D∗ (µ), (b) f dual
Ds

(µ) and f dual
D∗

s
(µ). The depicted results are obtained as follows: for a fixed value 

of µ, central values of the OPE parameters in (2.1) and a Borel parameter τ within the window 0.1 < τ (GeV−2) < 0.5, we determine the effective thresholds by our 
procedure; the presented dual decay constant then is the average of the band formed by the linear, quadratic, and cubic Ansätze for the effective threshold. Clearly, the 
effective thresholds turn out to depend on the scale µ. Dotted lines (red) — vector mesons; solid lines (blue) — pseudoscalar mesons.

and extracting the resulting f D∗ . As must be obvious from Fig. 2a, 
using a constant threshold leads to a contamination of the dual 
correlator by excited states (at a percent level in the dual mass) 
while this contamination is strongly reduced for n > 0. The results 
for the decay constant in Fig. 2b corresponding to n > 0 are nicely 
grouped together, whereas the n = 0 prediction lies ≈ 30 MeV be-
low. Interestingly, the effect visible at only a 1–2% level in the dual 
mass in Fig. 2a manifests itself at a 10% level in the decay constant 
in Fig. 2b. Consequently, the results obtained for n > 0, less con-
taminated by excited states, constitute a significant improvement 
with respect to the results obtained for a constant threshold, i.e., 
n = 0. Allowing the effective threshold to depend on τ brings the 
QCD sum-rule results into agreement with the recent lattice find-
ing f D∗ = (278 ± 13 ± 10) MeV [15].

The dependence of the extracted f D∗ on both c-quark mass 
mc ≡ mc(mc) and quark condensate 〈q̄q〉 ≡ 〈q̄q(2 GeV)〉 at the av-
erage scale µ∗ = 1.84 GeV (see (3.7) below) may be parameterized 
as

f dual
D∗

(
µ = µ∗,mc, 〈q̄q〉

)
=

[
252.2 − 10

(
mc − 1.275 GeV

0.025 GeV

)

+ 6
( |〈q̄q〉|1/3 − 0.267 GeV

0.01 GeV

)

± 4(syst)

]
MeV. (3.4)

The extracted value of f D∗ turns out to be very sensitive to 
the choice of the renormalization scale µ. Recall once more that 
this dependence is unphysical and induced by the truncation of the 
perturbation series. The µ dependence of f D∗ for the central val-
ues of the other OPE parameters is depicted in Fig. 3a. For each µ, 

the value of f D∗ (and f D ) corresponds to the average of the inter-
val formed by the results obtained from the linear, quadratic, and 
cubic Ansätze for the effective continuum threshold. It should be 
noted that the dependence of f D∗ on µ is clearly nonlinear. The 
obtained results may be well interpolated by the following simple 
formula:

f dual
D∗ (µ) = 252.2 MeV

[
1 + 0.233 log

(
µ/µ∗)

− 0.096 log2(µ/µ∗) + 0.17 log3(µ/µ∗)],

µ∗ = 1.84 GeV. (3.5)

Here, µ∗ is the average scale defined in the standard way:

〈
f dual

V (µ)
〉
= f dual

V

(
µ∗), (3.6)

assuming a flat probability distribution for µ in the range 1 <
µ (GeV) < 3. The corresponding standard deviation of f D∗ is 
18.7 MeV. For comparison, we also provide the µ dependence and 
the average scale µ∗ for f D from [6]:

f dual
D (µ) = 208.3 MeV

[
1 + 0.06 log

(
µ/µ∗) − 0.11 log2(µ/µ∗)

+ 0.08 log3(µ/µ∗)], µ∗ = 1.62 GeV. (3.7)

Obviously, the µ dependence of the pseudoscalar correlator is 
much weaker. This effect has the following origin: both the trun-
cated perturbative dual correlator Πdual

pert (seff, τ , µ) and the trun-
cated Πpower(τ , µ) exhibit a rather pronounced µ dependence. For 
the pseudoscalar correlator, these µ dependences to a large extent 
cancel each other, whereas for the vector correlator the cancella-
tion does not occur.

* the spin splitting M
D* −MD( )  is properly reproduced in the full parameter space

τ-dependent seff

mc mc( ) = 1.275 ± 0.025GeV     [PDG '13]



* remarkable sensitivity to the subtraction point μ in the V channel:
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Fig. 2. Dependence on the Borel parameter τ of the dual mass (a) and the dual decay constant (b) of the D∗ meson, obtained by employing different Ansätze (3.2) for the 
effective continuum threshold seff(τ ) and fixing all thresholds according to (3.3); the results are presented for central values of all OPE parameters and for an average scale 
µ = µ∗ = 1.84 GeV, where the average scale µ∗ is defined by (3.6). (c) Our τ -dependent effective thresholds obtained by the fitting procedure as explained in the text. The 
integer n = 0, 1, 2, 3 is the degree of the polynomial in our Ansatz (3.2) for seff(τ ): dotted lines (red) — n = 0; solid lines (green) — n = 1; dashed lines (blue) — n = 2; 
dot-dashed lines (black) — n = 3.

Fig. 3. Dependence on µ of the dual decay constants: (a) f dual
D (µ) and f dual

D∗ (µ), (b) f dual
Ds

(µ) and f dual
D∗

s
(µ). The depicted results are obtained as follows: for a fixed value 

of µ, central values of the OPE parameters in (2.1) and a Borel parameter τ within the window 0.1 < τ (GeV−2) < 0.5, we determine the effective thresholds by our 
procedure; the presented dual decay constant then is the average of the band formed by the linear, quadratic, and cubic Ansätze for the effective threshold. Clearly, the 
effective thresholds turn out to depend on the scale µ. Dotted lines (red) — vector mesons; solid lines (blue) — pseudoscalar mesons.

and extracting the resulting f D∗ . As must be obvious from Fig. 2a, 
using a constant threshold leads to a contamination of the dual 
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The dependence of the extracted f D∗ on both c-quark mass 
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f dual
D∗

(
µ = µ∗,mc, 〈q̄q〉

)
=

[
252.2 − 10

(
mc − 1.275 GeV

0.025 GeV

)

+ 6
( |〈q̄q〉|1/3 − 0.267 GeV

0.01 GeV

)

± 4(syst)

]
MeV. (3.4)

The extracted value of f D∗ turns out to be very sensitive to 
the choice of the renormalization scale µ. Recall once more that 
this dependence is unphysical and induced by the truncation of the 
perturbation series. The µ dependence of f D∗ for the central val-
ues of the other OPE parameters is depicted in Fig. 3a. For each µ, 

the value of f D∗ (and f D ) corresponds to the average of the inter-
val formed by the results obtained from the linear, quadratic, and 
cubic Ansätze for the effective continuum threshold. It should be 
noted that the dependence of f D∗ on µ is clearly nonlinear. The 
obtained results may be well interpolated by the following simple 
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µ∗), (3.6)
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µ (GeV) < 3. The corresponding standard deviation of f D∗ is 
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(
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+ 0.08 log3(µ/µ∗)], µ∗ = 1.62 GeV. (3.7)

Obviously, the µ dependence of the pseudoscalar correlator is 
much weaker. This effect has the following origin: both the trun-
cated perturbative dual correlator Πdual

pert (seff, τ , µ) and the trun-
cated Πpower(τ , µ) exhibit a rather pronounced µ dependence. For 
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Beauty sector

PDG ’13 Narison ’01 Jamin&Lange ’02 Narison ’13 Khod. et al ’13 LMS ’13 Baker et al. ’14

4.18 ± 0.03 4.05 ±0.06 4.21 ±0.05 4.236 ± 0.069 4.18 ± 0.03 4.247 ± 0.034 4.18 ± 0.03

fB (MeV) -- 203 ± 23 210 ± 19 206 ±7 192 ± 15 186 ± 14

mb mb( ) GeV( )

207−9
+17

fB MB ≈ ψ r = 0( ) ≈κ MB −mb

pole( )3/2* HQET and potential models:

fB ≈ 200 MeV
mb

pole ≈ 4.6GeV
κ ≈1

δ fB ≈ −0.5δmb
pole

δ fB ≈ −0.37δmb mb( )* QCD SR: [LMS ’13]

the τ-dependence of seff

produces
a ~ 5% increase in the 

extracted decay constant

B-meson: 0.05 ≤ τ GeV −2( ) ≤ 0.18

seff τ( ) = s j
n( )

j=0

n

∑ τ j

uncertainty of the prediction. The ultimate efficiency and
reliability of this algorithm have already been established
for the decay constants ofD andDs mesons [27]. Here, we
apply this technique to the B and Bs mesons.

A. Decay constant of the B meson

Recall that the ! window for the BðsÞ mesons is fixed by
the above criteria to be equal to ! ¼ ð0:05–0:175Þ GeV$2.
Figure 2 shows the corresponding results for the effective
continuum threshold seffð!Þ and the extracted fB.
Obviously, in this window the !-dependent effective
thresholds reproduce the meson mass MB much better
than the constant one [Fig. 2(a)]. This signals that those
dual correlators that correspond to such !-dependent
thresholds are less contaminated by the excited states.

According to Fig. 2(d), the dependence of our QCD
sum-rule prediction for the B-meson decay constant fB
on mb and the quark condensate h !qqi % h !qqð2 GeVÞi, for
fixed values of the other OPE parameters, may be well
parametrized by

fdualB ðmb;"¼#¼mb;h !qqiÞ

¼
!
192:0$37

"
mb$4:247GeV

0:1GeV

#

þ4
"jh !qqij1=3$0:269GeV

0:01GeV

#
'3ðsystÞ

$
MeV; (3.4)

representing the range of results obtained for n ¼ 1, 2, 3
in the Ansatz (3.3) within the two short-dashed lines in
Fig. 2(d).
Note that our algorithm, relying on polynomial func-

tions, provides a clear and unambiguous prescription for
fixing the effective continuum thresholds. The ! depen-
dence of the latter is crucial for deriving the dual mass, the
definition of which involves a derivative with respect to !.
On the other hand, our decay-constant prediction may be
reproduced by the constant effective continuum threshold
seff ¼ ð33:1' 0:5Þ GeV. However, in order to obtain this
very range of values, one has to apply our algorithm, which
takes advantage of the freedom provided by the ! depen-
dence of the thresholds.
Performing the bootstrap analysis of the OPE uncertain-

ties and adding the half-width of the band deduced from
our !-dependent Ansätze for the effective continuum
threshold of degree n ¼ 1, 2, 3 as (intrinsic) systematic
error, we find

fB ¼ ð192:0' 14:3ðOPEÞ ' 3:0ðsystÞÞ MeV: (3.5)

The main contributions to the OPE uncertainty in
the extracted fB arise from the renormalization-scale de-
pendence and the errors in mb and the quark condensate.
Let us emphasize that for mb ¼ 4:05 GeV one gets
fB ¼ 265 MeV which is very far from the result reported
in [15]; cf. Table I.
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FIG. 2 (color online). Dual mass Mdualð!Þ (a), corresponding to !-dependent effective continuum threshold seffð!Þ according to our
Ansatz (3.2), determined by minimizing the expression (3.3) (b), and dual decay constant fdualð!Þ (c). Results for mb % !mbð !mbÞ ¼
4:25 GeV, " ¼ # ¼ mb, and central values of the other relevant parameters are shown. (d) Dual decay constant of the B meson vs mb

for" ¼ # ¼ mb and central values of all the other OPE parameters. The integer n ¼ 0, 1, 2, 3 is the degree of the seffð!Þ polynomial in
the Ansatz (3.2). Red dotted line: n ¼ 0; green solid line: n ¼ 1; blue dashed line: n ¼ 2; black dot-dashed line: n ¼ 3; red short-
dashed lines: delimiters of the range of results.
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Khodjamirian et al., PRD 88 (2013)

LMS, PRD 88 (2013)

LQCD

QCD SR

FLAG ’13 averages

* the decay constant fB obtained using the PDG 
   value of the b-quark mass is ~ 10% higher than 
   the FLAG averages

* using the lattice average as input for fB, the 
   b-quark mass obtained with Borel QCD sum 
   rules is ~ 2% higher than the PDG value 
   (~ 1.5 standard deviations)

0.154 < τ (GeV-2) < 0.222
3 < μ (GeV) < 5

0.05 < τ (GeV-2) < 0.18
3 < μ (GeV) < 6



* treat τ as a (uniformly distributed) variable in the bootstrap analysis
* for each bootstrap event the value of seff is determined by minimizing [(Mdual - MHexp) / δMHexp]2 with  δ = 0.5% (→ ΔMH = 25 MeV)

LMS

Khod. et al ’13

* at large values of μ and τ the B*-meson mass is not properly 
   reproduced (at variance with the B-meson case)

* the spin splitting MB* - MB is the key quantity to be reproduced 
   and this requires a μ-dependent Borel window

τmin ≤ τ ≤ τmax µ( )



* the value of seff(τ) obtained in this way cannot 
   include the effect of the derivative of seff(τ) in 
   the calculation of Mdual

seff τ( ) = s j
n( )

j=0

n

∑ τ j

* in order to include the effect of the derivative
   of seff(τ) we adopt a polynomial Ansatz

* to work well a quadratic or cubic form for seff(τ) 
   requires a μ-dependent Borel window

τmin ≤ τ ≤ τmax µ( )

* strong μ-dependence around μ = 3 GeV

* for μ > 3 GeV the ratio is definitely 
   below 1

* for μ < 3 GeV the ratio is above 1, but 
   fB is definitely lower than 190 MeV
   (FLAG averages) and the hierarchy 
   between the perturbative orders 
   deteriorates

preliminary results



Bernard et al., PRD 65 (2001) (MILC)

Bowler et al., NPB 619 (2001) (UKQCD)

Becirevic et al., arXiv:1407.1019   (ETM)

LQCD

QCD SR

LMS, preliminary:

τmin ≤ τ ≤ τmax µ( )     and    3≤ µ GeV( ) ≤ 6

* some (moderate) tension present between the predictions for the ratio fB* / fB obtained from LQCD and Borel QCD-SR

M
B*
−MB = 46.5 ± 0.9 MeV

M
B*
−MB⎡⎣ ⎤⎦

exp.
= 45.78 ± 0.35 MeV

f
Bs

* = 207 ±16 MeV ,         
f
Bs

*

fBs
= 0.932 ± 0.047

f
B*
= 175 ±12 MeV

f
B*

fB
= 0.923± 0.059

* in the case of the Bs*-meson we got the preliminary results: 



Conclusions

* Heavy-light meson leptonic decay constants are important hadronic quantities that can be calculated from Borel QCD Sum Rules 
   for heavy-light currents both in the PS and V channels.

* During the past years important improvements in the quality of the QCD-SR predictions have been reached. Among them:
       - perturbative spectral densities known up to NNLO;
       - condensate contributions known up to dimension 6;
       - Borel-dependent effective threshold as a tool to lower excited state contaminations.

* The updated results for fD, fDs, fB and fBs have been compared with the predictions of Lattice QCD analyzed by Flavor Lattice 
   Averaging Group. Note that:
       - during the past decade there has been a remarkable improvement in the quality of LQCD calculations of the decay constants 
         of heavy-light mesons;
       - in the case of fD and fDs LQCD has reached a precision competitive with the experimental errors.

* In the charm sector, both for the PS and V channels, there is full agreement between the predictions of LQCD and Borel QCD-SR, 
   adopting in the latter the PDG value for the charm quark mass.

* In the beauty sector the decay constant fB, extracted from the Borel QCD-SR using the PDG value of the b-quark mass, is ~ 10% 
   higher than the FLAG averages (fBlatt ~ 190 MeV). Correspondingly, using the lattice average as input for fB, the b-quark mass 
   obtained from the Borel QCD sum rule turn out to be ~ 2% higher than the PDG value (~ 1.5 standard deviations).

* In the vector channel the reproduction of the B*-meson mass is problematic in some parts of the parameter space and a μ-dependent 
   Borel window has to be considered for a reliable extraction, in which the experimental spin splitting (MB* - MB) is reproduced.  
   While current LQCD predictions for the ratio fB* / fB suggest a value slightly larger than 1, the Borel QCD-SR is remarkably sensitive
   to the value of the subtraction point μ and favors values of the ratio less than 1 in the range 3 < μ (GeV) < 6.

* The presence of the above tensions in the beauty sector and their absence in the charm one are open issues to be further investigated.
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The most important internal FLAG rules are the following:

• members of the AB have a 4-year mandate (to avoid a simultaneous change of all mem-
bers, some of the current members of the AB will have a shorter mandate);

• the composition of the AB reflects the main geographical areas in which lattice collab-
orations are active: one member comes from America, one from Asia/Oceania and one
from Europe ;

• the mandate of regular members is not limited in time, but we expect that a certain
turnover will occur naturally;

• whenever a replacement becomes necessary this has to keep, and possibly improve, the
balance in FLAG;

• in all working groups the three members must belong to three different lattice collabo-
rations;2

• a paper is in general not reviewed (nor colour-coded, as described in the next section)
by one of its authors;

• lattice collaborations not represented in FLAG will be asked to check whether the colour
coding of their calculation is correct.

The current list of FLAG members and their Working Group assignments is:

• Advisory Board (AB): S. Aoki, C. Bernard, C. Sachrajda

• Editorial Board (EB): G. Colangelo, H. Leutwyler, A. Vladikas, U. Wenger

• Working Groups (WG)
(each WG coordinator is listed first):

– Quark masses L. Lellouch, T. Blum, V. Lubicz

– Vus, Vud A. Jüttner, T. Kaneko, S. Simula

– LEC S. Dürr, H. Fukaya, S. Necco

– BK H. Wittig, J. Laiho, S. Sharpe

– fB(s)
, fD(s)

, BB A. El-Khadra, Y. Aoki, M. Della Morte

– B(s), D semileptonic and radiative decays R. Van de Water, E. Lunghi, C. Pena,
J. Shigemitsu3

– αs R. Sommer, R. Horsley, T. Onogi

1.2 General issues and summary of the main results

The present review aims at two distinct goals:

a. offer a description of the work done on the lattice concerning low energy particle physics;

b. draw conclusions on the basis of that work, which summarize the results obtained for
the various quantities of physical interest.

2The WG on semileptonic D and B decays has currently four members, but only three of them belong to
lattice collaborations.

3J. Shigemitsu has withdrawn from FLAG, immediately after completion of the first version of the present
paper (arXiv:1310.8555 [hep-lat]), of which she is a co-author. She is listed here in recognition of her full in-
volvement in the review of B(s) and D semileptonic and radiative decays, as well as for her valuable contribution
of the whole FLAG effort.
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– Vus, Vud A. Jüttner, T. Kaneko, S. Simula
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f
H *

fH
= 1+ α1

mh

+ α 2

mh
2 + ...

⎛
⎝⎜

⎞
⎠⎟ HQET

Cmatching µ = mh( )

Cmatching µ( ) = 1− 2
3
α s µ( )
π

− − 1
9
ζ 3 +

2
27

π 2 log2 + 4
81

π 2 +
145 − 6nf

36
⎡
⎣⎢

⎤
⎦⎥

α s µ( )
π

⎛
⎝⎜

⎞
⎠⎟

2

+O α s
3( )

around mc

at μ ~ mb: NLO ~ -4% and NNLO -2%

at μ ~ mc: NLO ~ -10% and NNLO -8%

[Broadhurst&Grozin ’95, Campanario et al. ’03]



* quenched calculations with unimproved Wilson valence quarks    [Bernard et al., PRD 65 (2001)]

f
B*

fB
= 1.01± 0.01−0.01

+0.04



* quenched calculations with Clover fermions at a single lattice spacing (a ~ 0.07 fm)    [Becirevic et al., PRD 60 (1999)]

f
B*

fB
= 1.07 ± 0.05 (no matching between full QCD and HQET)

f
B*

fB
= 1.03± 0.05

* taking into account a NLO matching between full QCD
   and HQET:

lattice artifact



* at large values of μτ (μτ > 0.6 GeV-1) the B*-meson mass is not properly reproduced (at variance with the B-meson case)
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Fig. 4. Distribution of the decay constants f D∗ (a) and f D∗
s

(b) obtained by 1000 bootstrap events.

Fig. 5. The same as Fig. 2 but for the D∗
s meson, at the average renormalization scale appropriate for the D∗

s meson: µ∗ = 1.94 MeV.

Assuming Gaussian distributions for all the OPE parame-
ters collected in (2.1) and a flat µ distribution in the range 
1 < µ (GeV) < 3, we obtain the distribution of f D∗ depicted in 
Fig. 4. The f D∗ distribution is clearly not Gaussian, which is due 
to the nonlinear µ dependence of f D∗ shown in Fig. 3. For the av-
erage and the standard deviation of the D∗-meson decay constant 
we obtain

f D∗ = (252.2 ± 22.3(OPE) ± 4(syst)) MeV. (3.8)

The OPE uncertainty is composed as follows: 18.7 MeV are due 
to the variation of the scale µ, 10 MeV arise from the error in 
mc ≡ mc(mc), 2 MeV from αs(M Z ), 6 MeV from the quark conden-
sate, and 3 MeV from the gluon condensate. Higher condensates 
contribute less than 1 MeV to this error.

Combining our above results with those for f D from our earlier 
analysis [6], we obtain

f D∗/ f D = 1.221 ± 0.080(OPE) ± 0.008(syst). (3.9)

The OPE uncertainty of this ratio is fully dominated by the impact 
of the µ dependence.

3.2. Decay constant of the D∗
s meson

For the D∗
s , we take the same Borel-parameter window as for 

D∗: τ = (0.1–0.5) GeV−2. Fig. 5 provides the details of our extrac-
tion procedure. Our results for the D∗

s -meson decay constant may 
be summarized as [ms ≡ ms(2 MeV)]

f dual
D∗

s

(
µ = µ∗,mc,ms, 〈s̄s〉

)
=

[
305.5 − 12.4

(
mc − 1.275 GeV

0.025 GeV

)

+ 1.7
(

ms − 0.1 GeV
0.004 GeV

)

+ 3.9
( |〈s̄s〉|1/3 − 0.248 GeV

0.01 GeV

)

± 5(syst)

]
MeV. (3.10)

Similarly to f D∗ , also the extracted decay constant of D∗
s ex-

hibits a rather strong and almost linear µ dependence (see Fig. 3b) 
which, for average values of the other OPE parameters, may be pa-
rameterized as

f dual
D∗

s
(µ) = 305.5 MeV

[
1 + 0.124 log

(
µ/µ∗)

+ 0.014 log2(µ/µ∗) − 0.034 log3(µ/µ∗)],

µ∗ = 1.94 GeV. (3.11)

For comparison, the µ dependence and the average scale µ∗ for 
f Ds from [6] is also given:

f dual
Ds

(µ) = 246.0 MeV
[
1 + 0.01 log

(
µ/µ∗) − 0.03 log2(µ/µ∗)

+ 0.04 log3(µ/µ∗)], µ∗ = 1.52 GeV. (3.12)

Notice that f Ds is extremely stable with respect to µ. This is an ef-
fect of an almost precise cancellation between the µ dependences 
of the dual perturbative and the condensate contributions.

Again, for Gaussian distributions of all OPE parameters and a 
flat distribution in µ in the range 1 < µ (GeV) < 3, we find a 
nearly Gaussian distribution of f D∗

s
in Fig. 4 which yields

f D∗
s
= (305.5 ± 26.8(OPE) ± 5(syst)) MeV. (3.13)

The composition of the OPE error reads: 10.8 MeV are due to the 
variation of the scale µ, 19.5 MeV are caused by the error of 
the strange-quark condensate, 12.5 MeV by the error of mc(mc), 
6.4 MeV by the gluon condensate, 1.7 MeV by the strange-quark 
mass, and 1.4 MeV by αs(M Z ). Higher condensates contribute 

* distributions of the bootstrap analyses for fD* and fB*



* distribution of the bootstrap analysis for fB* / fB


