Quantum Correlated Charm @ Threshold

and $\phi_3 = \gamma$

from B Decays

Roy A. Briere *

Carnegie Mellon

CKM 2014
Vienna
09 Sep 2014

*Full disclosure: member of CLEO-c / BESIII / BelleII
Outline

Introduction: Essentials
Overview of Results
Recent Published Results
Preliminary $K_S \pi^+ \pi^-$ Results
Conclusion

→ Access to relative $D^0, D^{0\text{bar}}$ strong phase differences
→ Directly measure what B analyses need with no models
→ Useful inputs to CKM γ extractions w/ $B \rightarrow D^{(*)}K^{(*)}, D^{(*)}\pi$
→ Also relevant for D mixing
(and just plain fun to see EPR-like correlations in HEP experiment!)
Introduction

Threshold production of charm with $e^+e^- \rightarrow \psi (3770)$

Decays to *coherent* pair of D mesons

\[
\psi (3770) \rightarrow \left[D^0 D^{0\bar{0}} - D^{0\bar{0}} D^0 \right] / \sqrt{2} \quad \text{(Eq 1)}
\]

\[
= - \left[D_{CP+} D_{CP-} - D_{CP-} D_{CP+} \right] / \sqrt{2} \quad \text{(Eq 2)}
\]

\[
D_{CP\pm} = \left[D^0 \pm D^{0\bar{0}} \right] / \sqrt{2}
\]

Measure various combination of rates for:

- one decay mode only \(\rightarrow \) “single tags”
- two decay modes \(\rightarrow \) “double tags”

Naïve Get interference with CP tags since they project 2nd meson into a $D^0, D^{0\bar{0}}$ superposition (Eq 2)

Truth Yes, but we get interference even *without* CP tags:
Terms in Eq 1 already interfere …
(1st vs. 2nd D means $+z$ vs. $-z$ along decay axis)
Decay Modes

Flavored
- **Flavored semileptonic**: $K^-e^+\nu$, $K^-\mu^+\nu$
 - Pure CF
- **Flavored hadronic**: $K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^+\pi^-$
 - CF + DCSD

Self-conjugate
- **2-body CP eigenstate**: K^-K^+, $\pi^+\pi^-$, $K_S\pi^0$, …
 - SCS
- **Multi body**: $K_S h^+h^-$, $K_L h^+h^-$
 - CF + DCSD
- **Multi body**: $K^+K^-\pi^+\pi^-$, $\pi^+\pi^-\pi^0$
 - SCS

Neither
- $K_S K^-\pi^+$
 - SCS

Both
- "* not possible *"

Blue modes: already used for γ
green: future?
[black: tag only]

"h" = K, π

- **CF**: Cabibbo-Favored
- **SCS**: Singly-Cabibbo-Suppressed
- **DCSD**: Double-Cabibbo-Suppressed (Decay)
Multi-Body “Coherence Factors”

Simplified Two body:
\[|A_1 + A_2|^2 = |A_1^2 + A_2^2 + 2A_1A_2e^{-i\delta}| \quad 1, 2 = CF, \text{DCSD} \]

Generalization \(\Rightarrow\) Atwood-Soni:
Integrate over Dalitz plot; define real average amplitudes
\[[\mathcal{A} \rightarrow A \text{ below}] \]

BUT this requires a “fudge factor” of \(Re^{-i\delta}\) for interference term

Simplified Multi body:
\[\int d\text{ Dalitz } |\mathcal{A}_1 + \mathcal{A}_2|^2 = |A_1^2 + A_2^2 + 2R e^{-i\delta}A_1A_2| \]
Define: \(R e^{-i\delta} = (\text{true cross-term}) / (\text{naïve} = A_1A_2)\)

Note: \(R < 1\) due to two reasons: varying phase & “|r(x)| \neq 1”

\[A_{K^\pm}^{\pi^\mp\pi^0} = \int |\mathcal{A}_{K^\pm}^{\pi^\mp\pi^0}(x)|^2 dx \]

\[R_{K^\mp}^{\pi^0} e^{-i\delta_D^{K^\mp\pi^0}} = \frac{\int \mathcal{A}_{K^-}^{\pi^+\pi^0}(x)\mathcal{A}_{K^+}^{\pi^-\pi^0}(x) dx}{A_{K^-}^{\pi^+\pi^0}A_{K^+}^{\pi^-\pi^0}} \]
QC for Pedestrians I

Simplest effect:
\[\psi(3770) \rightarrow [D_{CP+} D_{CP-} - D_{CP-} D_{CP+}] / \sqrt{2} \]

Like CP (++, --): cancels
Unlike CP (+-, -+): doubled

My favorite general form:
* Ignore mixing for now *

\[\Gamma_{FG} / A_F^2 A_G^2 = [r_F^2 + r_G^2 + 2 r_F r_G R_F R_G \cos(\delta_G - \delta_F)] \]

or
1 + r_F^2 r_G^2 + … :
factor out A_i such that r < 1

\[\rightarrow r_{FG} \text{ (averaged) amplitude ratios } : \sim A(D^{0\text{bar}} \rightarrow F,G) / A(D^0 \rightarrow F,G) \]

1 for CP eigenstates

~\(\tan^2(\theta_C)\) for hadronic K\(^-\) modes
\[\text{[DCSD/CF]} \]

0 for semileptonic
\[\rightarrow \text{ no interference} \]

\[\rightarrow R, \delta: \text{ Atwood-Soni coherence factors} \]

R=1; \(\delta = 0, \pi\) for CP eigenstates;

R=1; \(\delta = ?\) for K\(^-\)\(\pi^+\)

Both non-trivial for multi-body hadronic
QC for Pedestrians II

Need some double-tag rate with two “non-trivial” modes to fully separate parameters

→ If not, get only $\text{Re}[R e^{-i\delta}] = R \cos \delta$, not separate (R, δ)
 [Or, only c_i, not both c_i, s_i]

The reason this works is simple trigonometry:

$$\cos(\delta_2 - \delta_1) = \cos \delta_1 \cos \delta_2 - \sin \delta_1 \sin \delta_2$$

With this, one has enough observables to separate
(& can still use modes where one $\delta_i = 0$)

Two “non-trivial” modes ?

→ Can be different values of n in $K^-(n\pi)^+$ analyses
→ Can even be different bins (i) in $K_S \pi^+ \pi^- c_i, s_i$ analyses
From Tags to Physics

CP+ & CP- tags:
Switch of +- flips sign of interference term
Used for γ, but trivial: no need to study w/ charm [GLW]

Semileptonic flavor tags:
No interference; clean normalization [but pesky ν…]

Hadronic flavor tags:
Normalization, modulo DCSD [easier than semilep for exp.]
Also modes we want to study [ADS]

Multi-body self-conjugate
Modes we want to under study [GGSZ]

Different analyses use different numbers of tag modes
CLEO $K^-\pi^+$ & CLEO-c, BESIII $K_S\pi^+\pi^-$ use many tags
BESIII $K^-\pi^+$ uses only signal and CP tags
Experimental Output

<table>
<thead>
<tr>
<th>Process</th>
<th>Framework</th>
<th>δ Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^-K^+, \pi^+\pi^-$</td>
<td>GLW</td>
<td>$\delta = 0, \pi$</td>
</tr>
<tr>
<td>$K^-\pi^+$</td>
<td>ADS</td>
<td>δ (R=1)</td>
</tr>
<tr>
<td>$K^-\pi^+\pi^0, K^-\pi^+\pi^\pm, K_SK^-\pi^+$</td>
<td>ADS+</td>
<td>R, δ</td>
</tr>
<tr>
<td>$K_S\pi^+\pi^-, K_SK^+K^-$</td>
<td>GGSZ</td>
<td>c_i, s_i</td>
</tr>
</tbody>
</table>

- **R, δ** are Atwood-Soni coherence factors for ADS modes
 - \Rightarrow **No relative** D^0-$D^{0\text{bar}}$ **phase** in separate D^0, $D^{0\text{bar}}$ Dalitz fits
 - e.g., if one fits N amplitudes to D^0, $D^{0\text{bar}}$ separately:
 - [D*-tagged @ B factory] only gets $2(N-1) = 2N-2$ out of $2N-1$ relative phases
 - \Rightarrow Also avoid Dalitz models

- c_i, s_i are "Cartesian R, δ in Dalitz bins" for GGSZ modes
 - \Rightarrow Here, relative D^0-$D^{0\text{bar}}$ phase is trivial
 - (distinction due to self-conjugate modes, not changing basis to c_i, s_i !)
 - \Rightarrow But we still avoid Dalitz models
CLEO-c Results

CLEO-c Data: 0.8 fb\(^{-1}\) @ \(\Psi(3770)\) & 0.6 fb\(^{-1}\) @ 4170 MeV 2003 - 08

\[K^-\pi^+ \] 281 pb\(^{-1}\)
(PRL 100, 221801 (2008);
PRD, 78, 012001 (2008) [= more details]

\[K^-\pi^+\pi^0, K^-\pi^+\pi^+\pi^- \] 818 pb\(^{-1}\)
(PRD 80, 031105(R) (2009)

\[K_S\pi^+\pi^- \] 818 pb\(^{-1}\)
(PRD 80, 032002 (2009)

\[K_{S,L}\h^+\h^- \] 818 pb\(^{-1}\)
(PRD 82, 112006 (2010)

\[K_SK^+\pi^- \] 818 pb\(^{-1}\)*
(PRD 85, 092016 (2012)

\[K^-\pi^+ \rightarrow 818 \text{ pb}^{-1} \]
(PRD 86, 112001 (2012)

\[K^+K^-\pi^+\pi^- \] 818 pb\(^{-1}\)**
(PRD 85, 122002 (2012) \{ isobar analysis;
but \textit{first D, D}\(^{\text{bar}}\} \}

also use high-E continuum
\[* + 15 \text{ fb}^{-1} \sim 10 \text{ GeV} \]
\[** + 24 \text{ fb}^{-1} \sim 10 \text{ GeV} \ & 600 \text{ pb}^{-1} 4.17 \text{ GeV} \]
Today’s Main Topics

BESIII Results

Dataset: 2.92 fb\(^{-1}\) 2010 - 11 (1 2/3 years) \(\rightarrow\) 3.5x CLEO-c

Future ability: \(~ 4 \text{ fb}^{-1} / \text{running year}\)

[note: \(\mathcal{L}_{2011} >> \mathcal{L}_{2010}\)]

K\(^{-}\pi^{+}\) 2.92 fb\(^{-1}\) PLB 734, 227 (2014)

K\(_{S}\pi^{+}\pi^{-}\) 2.92 fb\(^{-1}\) Preliminary @ APS, Apr 2014

\(y_{CP}\) 2.92 fb\(^{-1}\) Preliminary; will submit soon

[\(y_{CP}\): see slides by X.R. Lyu; talk running in parallel now!]

CLEO-c “Legacy” Result

K\(^{-}\pi^{+}\pi^{0}\), K\(^{-}\pi^{+}\pi^{+}\pi^{-}\) 818 pb\(^{-1}\) PLB 731, 197 (2014)

[CLEO-c data analyzed by past members, after collaboration disbanded]
CLEO-c Coherence Factors

Small R for $K\pi\pi\pi$: still useful for r_B!

Or, we could bin across Dalitz plot
c_i and s_i: bin-averaged
$<R \cos \delta>$ and $<R \sin \delta>$

BaBar Model
CLEO-c Data
K^- (nπ)^+ Update

CLEO-c “Legacy data” publication → not a collaboration result (but I personally believe it to be of equal quality)

→ Now includes $K_S\pi^+\pi^-$ tags
→ Updated external inputs (BF, mixing, $K\pi$)

Note: $K\pi\pi\pi$ best fit now in other lobe...

References

2. Shi, et al., CLEO Collaboration, Updated measurements of absolute branching fractions and coherence factors.
3. Nayak, et al., Belle Collaboration, Evidence for the suppressed decay $D^0\rightarrow\pi^+\pi^-\gamma$.
Strong Phase $\delta_{K\pi}$

Simplified Picture: (simple = no mixing)

Amplitude triangle:

$\text{CP}_\pm = \text{CF} \pm \text{DCSD}$

[DCSD enhanced for visibility!]

Complex ratio

DCSD/CF amplitude

$\frac{\langle K^- \pi^+ | D^0 \rangle}{\langle K^- \pi^+ | D^0 \rangle} = -r e^{-i\delta_{K\pi}}$

Flip CP of tag: reverses interference term

$\text{CP-tagged rate asymmetry (essentially) measures } r \cos \delta$

$A_{CP} = \frac{[|A_{CP-}|^2 - |A_{CP+}|^2]}{[|A_{CP-}|^2 + |A_{CP+}|^2]}$

$= r \cos \delta$ (+ D mixing corrections: y, R_{WS})
Strong Phase $\delta_{K\pi}$

First BESIII Quantum Coherence result: straightforward analysis

Tags Used: 5 CP+, 3 CP-

$S+$: $K^+K^-, \pi^+\pi^-, K^0\pi^0\pi^0, \pi^0\pi^0, \rho^0\pi^0$

$S-$: $K^0\pi^0, K^0\eta, K^0\omega$
Strong Phase $\delta_{K\pi}$

$$A_{CP}^{K\pi} \equiv \frac{B_{D^s \rightarrow K^{-}\pi^+} - B_{D^s \rightarrow K^{-}\pi^+}}{B_{D^s \rightarrow K^{-}\pi^+} + B_{D^s \rightarrow K^{-}\pi^+}}$$

$S+$ ($S-$) denotes the CP-even (CP-odd) eigenstate.

Direct result: *

$$A_{CP} = (12.7 \pm 1.3 \pm 0.7)\%$$

$$2r \cos \delta_{K\pi} + y = (1 + R_{WS}) \cdot A_{CP}^{K\pi}$$

Using external inputs for $r_{K\pi}$, R_{WS}, y, we extract:

$$\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$$

Compare to CLEO-c:

$$\cos \delta_{K\pi} = 0.81^{+0.22}_{-0.18}^{+0.07}_{-0.06} \quad (\text{no external inputs})$$

$$\cos \delta_{K\pi} = 1.15^{+0.19}_{-0.17}^{+0.00}_{-0.08} \quad (w/ \text{external inputs})$$

* HFAG can use this, I believe: they now omit final $\delta_{K\pi}$ due to external inputs ...
New $K_S \pi^+ \pi^-$ Results

Classic “GGSZ mode”; better precision than CLEO-c

Preliminary results presented @ APS meeting, Apr 2014

$K_S \pi^+ \pi^-$ is the main topic: extract c_i, s_i

$K_L \pi^+ \pi^-$ is also used: extract c'_i, s'_i

relate to c_i, s_i with model corrections.

Aggressive use of tags, including partial reconstruction

All results preliminary; as presented at April 2014 AP meeting
We can calculate c_i and s_i from double tags of $D^0 \rightarrow K_s \pi^+ \pi^-$ vs $D^0 \rightarrow (K_s, L \pi^+ \pi^-$ or CP eigenstates).

A relationship can be shown between Dalitz bin yields and c_i and s_i (in backup slides).

Only c_i, s_i from $K_s \pi^+ \pi^-$ is used to calculate γ. However adding in $D^0 \rightarrow K_L \pi^+ \pi^-$ we can calculate c'_i, s'_i and use how they relate to c_i, s_i to further constrain our results in a Global fit.

Slide from Dan Ambrose, APS 2014
Result of splitting the Dalitz phase space into 8 equally spaced phase bins based on the BaBar 2008 Model.

Starting with the equally spaced bins, bins are adjusted to optimize the sensitivity to γ. A secondary adjustment smooths binned areas smaller than detector resolution.

Similar to the “optimal binning” except the expected background is taken into account before optimizing for γ sensitivity.

Slide from Dan Ambrose, APS 2014
New $K_S\pi^+\pi^-$ Results

<table>
<thead>
<tr>
<th>Bins</th>
<th>c_i (BES-III)</th>
<th>c_i (CLEO-c)</th>
<th>s_i (BES-III)</th>
<th>s_i (CLEO-c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.066 ± 0.066</td>
<td>-0.009 ± 0.088</td>
<td>-0.843 ± 0.119</td>
<td>-0.438 ± 0.184</td>
</tr>
<tr>
<td>2</td>
<td>0.796 ± 0.061</td>
<td>0.900 ± 0.106</td>
<td>-0.357 ± 0.148</td>
<td>-0.490 ± 0.295</td>
</tr>
<tr>
<td>3</td>
<td>0.361 ± 0.125</td>
<td>0.292 ± 0.168</td>
<td>-0.962 ± 0.258</td>
<td>-1.243 ± 0.341</td>
</tr>
<tr>
<td>4</td>
<td>-0.985 ± 0.017</td>
<td>-0.890 ± 0.041</td>
<td>-0.090 ± 0.093</td>
<td>-0.119 ± 0.141</td>
</tr>
<tr>
<td>5</td>
<td>-0.278 ± 0.056</td>
<td>-0.208 ± 0.085</td>
<td>0.778 ± 0.092</td>
<td>0.853 ± 0.123</td>
</tr>
<tr>
<td>6</td>
<td>0.267 ± 0.119</td>
<td>0.258 ± 0.155</td>
<td>0.635 ± 0.293</td>
<td>0.984 ± 0.357</td>
</tr>
<tr>
<td>7</td>
<td>0.902 ± 0.017</td>
<td>0.869 ± 0.034</td>
<td>-0.018 ± 0.103</td>
<td>-0.041 ± 0.132</td>
</tr>
<tr>
<td>8</td>
<td>0.888 ± 0.036</td>
<td>0.798 ± 0.070</td>
<td>-0.301 ± 0.140</td>
<td>-0.107 ± 0.240</td>
</tr>
</tbody>
</table>

Improved errors w.r.t. CLEO-c

Consistent agreement with CLEO-c measurements.

My Selected Issues

BaBar $K\pi\pi^0$ mixing result uses an isobar fit; gets rotated x'', y''
Can’t this be done in a model-independent way, using charm threshold data if needed ??? (“Atwood-Soni for mixing”)

Efficiencies vary across D Dalitz plots
Charm and B factories differ; traffic in corrected variables
Current methods accurate? Need Dalitz models to do well?

Are studies of D mixing, D CPV, K_S CPV effects complete?

Assumptions of SM re: CPV could be more explicit
e.g., GGSZ assumes no weak phase between CF & DCSD (I think!)

Maintain a lively $D \leftrightarrow B$ interchange & forge ahead!
Everything is a Special Case! (almost)

so if you were confused, you’re probably not alone…

\[
\begin{align*}
K^-\pi^+ & \quad K^-\pi^+\pi^0 & \quad K^-\pi^+\pi^+\pi^- & \quad K_SK^+\pi \\
K^+K^- & \quad \pi^+\pi^- & \quad K^+K^-\pi^+\pi^- & \quad K_S\pi^+\pi^- & \quad \pi^+\pi^-\pi^0
\end{align*}
\]

K^-\pi^+ only \(\delta\); K^-\pi^+\pi^0, K^-\pi^+\pi^+\pi^- have both R & \(\delta\)

Multi-body Self-conjugate modes:
- If no CPV, only 2(n-1) isobar phases, not 2n-1
 - threshold data only to avoid model dependence;
 - no “essential” \(D^0-D^{0\bar{\text{bar}}}\) phase
- 4-body: more complicated angular momenta than 3-body
- \(K_S\) modes: CF and DCSD give \(K^0, K^{0\bar{\text{bar}}},\) not \(K_S\) directly
Extracting CKM γ

without charm

with charm
Conclusions

Unique access to strong phases & ability to extract model-independent results with charm at threshold

• Started with many CLEO-c Results
• Still some activity with CLEO-c “legacy data” [≥1 more paper?]
• Now, the 3.5x larger BESIII dataset is producing results

Interest of B physics users remains high

• LHCb is a huge addition to older B-factory data
• But e^+e^- will return soon with BelleII
• Important to keep active interaction between B & D

Future prospects are bright

• More precision, new modes, new variables!
• Need to maintain threshold analysis manpower
Selected Theory References

Quantum Correlations
Xing, Phys. Rev. D55, 196 (1997)

DCSD mixing background cancels for correlated D pairs
Bigi & Sanda, Phys. Lett. B171, 320 (1986) [see Ref. 5 for other contributors…]

B physics: CKM Υ with “DK” modes
Atwood, Dunetz & Soni, Phys. Rev. D63, 036005 (2001)
“ADS”: CF + DCSD (incl. D mixing)
Coherence factors
“GGSZ”: $K_S\pi\pi$
CF multi-body: larger strong phases?
optimizing GGSZ

D^0 Mixing with $K_SK\pi$
Selected Theory References

“Attention PDG”: $K_S \neq 1/2$ of K^0 or $K^{0\text{bar}}$

D mixing and CKM Υ from $K_S\pi\pi$
Bondar, Poluektov, & Vorobiev, Phys. Rev. D82, 034033 (2010)

D Direct CPV and CKM Υ from $B \rightarrow DK$

CPV in K_S & CKM Υ
Grossman & Savastio, JHEP 03, 008 (2014)

K_S decay time acceptance and CPV in tau, D

K_S detector interactions & B, D CPV
Ko, Won, Golob, Pakhlov, Phys. Rev. D 84, 111501(R) (2011)