Prospects of Belle II on B-meson Semileptonic Decays

Guglielmo De Nardo University of Napoli Federico II and INFN on behalf of the Belle II Collaboration

8th International Workshop on the CKM Unitarity Triangle 8-12 September 2014, Vienna, Austria

Outline

- Common experimental techniques
- Prospects of Belle II
 - b → c with exclusive and inclusive decays
 - \rightarrow b \rightarrow u with exclusive and inclusive decays
 - \blacktriangleright Semileptonic decays with τ in the final state
 - (Purely leptonic decays in backup slides)

Experimental techniques (tagged analyses)

- For signal with weak exp. signature like
 - Decay with missing momentum (many neutrinos in the final state)
 - Inclusive analyses
- background rejection improved fully reconstructing the companion B (tag)
- Tag with semileptonic decays
 - PRO: Higher efficiency $\varepsilon_{\rm tag}$ ~ 1.5% CON: more backgrounds, B momentum unmeasured
- Tag with hadronic decays
 - PRO: much cleaner events, B momentum reconstructed CON: smaller efficiency ε_{tag} ~ 0.2%

Look for signal

Experimental technique (untagged)

Inclusive on the rest of the event when the signal signature strong enough

Ignore the detail, Measure inclusive observables

- B $\rightarrow \pi I \nu$
 - Loose neutrino reconstruction,
- B $\rightarrow \mu \nu$
 - Monochromatic muon in the final state in B rest frame
 - Smeared in the CM frame

High efficiency but large backgrounds, too

Apply PID, measure p

| Vub | extraction from b → u

$$\frac{d\Gamma(B \to \pi l \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 \times |f(q^2)|^2$$

$$\frac{d\Gamma(B \to \pi l \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 \times |f(q^2)|^2 \qquad \Gamma_{SL} = |V_{ub}|^2 \frac{G_F^2 m_b^5}{192\pi^3} \times A_{pert} \times A_{non-pert} (1/m_b)$$

Theory input: form factors from Lattice and sum rules

Experimentally more constrained

Both untagged & tagged analyses

Theory input: OPE Huge $b \rightarrow c l v$ background Must select phase space region (M_x, q^2, p_l) to enhance $B \rightarrow u$ signal Need theory to extrapolate to full rate Tight selections jeopardize theory extrapolation

Current Measurements with hadronic tag

Extrapolation to Belle II (1)

|Vub|_{exc} vs |Vub|_{inc} "tension" is still here after years of experimental and theoretical efforts Just statistics?

A systematic effect in experiment. or theory or both?

Belle II expected to settle this.

Alexander Ermakov (FPCP14):

Belle II will reduce the uncertainties on |Vub|

But also provide much more consistency checks for theory and experimental effects

| Vub | extrapolation for Belle II (2)

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged))				
$711 \; {\rm fb^{-1}}$	3.0	(2.3, 1.0)	3.8	8.7 (2.0)	9.5(4.3)
5 ab^{-1}	1.1	(0.9, 1.0)	1.7	4.0 (2.0)	4.4(2.6)
50 ab^{-1}	0.4	(0.3, 1.0)	1.1	2.0	2.3
$ V_{ub} $ exclusive (untagged)					
$605 \; {\rm fb^{-1}}$	1.4	(2.1, 0.8)	2.9	8.7 (2.0)	9.1(4.0)
5 ab^{-1}	0.5	(0.8, 0.8)	1.2	4.0 (2.0)	4.2(2.4)
50 ab^{-1}	0.2	(0.3, 0.8)	0.9	2.0	2.2
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

Assumption is theory error down to 2% for exclusive and 2-4 % for inclusive modes

Most promising are exclusive analysis with hadronic tags: to perform clean and detailed exploration of exclusive b \rightarrow u modes spectra. Improvements on theory predictions need as well (B \rightarrow ρ I ν lattice)

Untagged analyses still competitive for |Vub| measurement

Input for SM prediction:
exp: |Vcb| measurement
theory: form factor

New Physics from Charged Higgs

Measure a ratio R = B(B \rightarrow D(*) $\tau \nu$)/B(B \rightarrow D(*)| ν) **Experimentally hard: signature is not a peak** on a smooth background!

Data driven methods to control the backgrounds (combinatorial and D** backgrounds)

Surprise: 30 excess over SM prediction!

Belle is working on update BaBar working on adding more τ decay modes

Surprise: kills the 2HDM Type II

Belle II improvements

Confirm the excess with few ab-1

With more data, better understanding of backgrounds tails under the signal.

We also expect a better understanding of B \rightarrow D** I v (most delicate BG)

Measure differential distribution

Expected Uncertainties

Ratio	5 ab-l	50 ab ⁻¹
R_{D^*}	3%	2%
R_D	6%	3%

Uncertainty dominated by systematics

| Vcb | exclusive B \rightarrow D* 1 v

•Currently most accurate measurement of |Vcb| from B \rightarrow D* I ν exclusive decay

Current Belle measurement has 5% total uncertainty, already systematics dominated Expect theo uncertainty from 2% \rightarrow below 1% with Belle II taking data Most of the systematics are detector related and can improve with Belle II apparatus and scale with luminosity.

Experimental irreducible component estimated at 1% level

$B \rightarrow D^* 1 \nu$ and $B \rightarrow D 1 \nu$

	Statistical	Systematic	Total I	Exp Theor	y Total
	(reducible, irreducible)				
$ V_{cb} $ exclusive : F(1)					
$711 \; {\rm fb^{-1}}$	0.6	(2.8, 1.1)	3.1	1.8	3.6
5 ab^{-1}	0.2	(1.1,1.1)	1.5	1.0	1.8
50 ab^{-1}	0.1	(0.3, 1.1)	1.2	0.8*	1.4
$ V_{cb} $ exclusive : G(1)					
$423 \; {\rm fb^{-1}}$	4.5	(3.1, 1.2)	5.6	2.2	3.6
5 ab^{-1}	1.3	(0.9, 1.2)	2.0	1.5*	2.7
50 ab^{-1}	0.6	(0.4, 1.2)	1.4	1.0*	1.7

Similar level of accuracy from B \rightarrow D* I v and B \rightarrow D I v

$B \rightarrow X_c l \nu$ inclusive at Belle II

(Modest) improvement of experimental uncertainties expected.

- •Better determination of B \rightarrow D** I v component
- •Improved control on the tag B normalization
- ·Largest experimental sys effect from PID and tracking

We expect a 0.5% ultimate systematic uncertainty

We assume theory uncertainty at 1% that will saturate the error budget

Detailed exploration of B \rightarrow D n π I ν

Hopefully will solve "puzzles" like the gap between inclusive and exclusive rates (and Vcb tensions)

Fitted $D^{(*)}\pi$ mass spectrum of Phys.Rev.Lett. 101 (2008) 261802

Conclusions

- Current measurements provide the following landscape
 - ▶ |Vub| measured at 5% but 3σ exclusive-inclusive discrepancy
 - An un-expected excess in B \rightarrow D(*) τ ν over the SM at slightly more than 3σ
- \rightarrow Also for b \rightarrow c many things remain to be understood
 - ▶ |Vcb| measured at 2% but inclusive vs exclusive tension
 - Exclusive modes do not saturate the inclusive rate
 - ▶ Rates to broad and narrow D** resonance not predicted by theory
- Belle II unique place to solve all those puzzles and shed light on new Physics
 - More accurate theory predictions
 - Refinements of experimental techniques to let systematic uncertainties shrink with statistics

Back up and Leptonic decays

$B \rightarrow 1 \nu$

Very clean theoretically, hard experimentally

SM contribution suppressed by helicity
Sensitive to NP contribution (charged Higgs)

$$\mathcal{B}(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

$$\mathcal{B}(B \to l\nu) = \mathcal{B}(B \to l\nu)_{SM} \times r_H$$
$$r_H = (1 - \tan^2 \beta \, \frac{m_B^2}{m_H^2})^2$$

STANDARD MODEL PREDICTIONS

Mode	${\cal B}(B^+ o \ell^+ u_\ell)$	
$ au u_ au$	$(1.01 \pm 0.29) \times 10^{-4}$	Accessible with current data sets
μu_{μ}	$\sim 0.45 \times 10^{-6}$	Need Belle II statistics
$e u_e$	$\sim 0.8 \times 10^{-11}$	Beyond the reach of experiments

$$R^{\tau e} = \frac{\Gamma(B \to e \nu)}{\Gamma(B \to \tau \nu)}$$

$$R^{\tau\mu} = \frac{\Gamma(B \to \mu\nu)}{\Gamma(B \to \tau\nu)}$$

Belle II can also test lepton flavour universality

Belle and BaBar measurements

Measurements vs UT-fit prediction

$B \rightarrow \mu \nu$ and $B \rightarrow e \nu$

Monochromatic lepton in the B rest frame Almost background free with tagged analyses

Semileptonic tag Belle

Belle II outlook

Extrapolated B $\rightarrow \tau \nu$ uncertainty 10% after 5 ab⁻¹ and 3%-5% after 50 ab⁻¹ Dominated by systematics

Extrapolated B $\rightarrow \mu \nu$ uncertainty 20% after 5 ab⁻¹ and 7% after 50 ab⁻¹

B \rightarrow e v SM prediction out of reach, Sensitivity to B.R. of 7 10⁻⁸ with 50 ab⁻¹

Q:What is the ultimate the ultimate experimental systematic uncertainty? Naïve guess : 3%

