D-D MIXING IN THE SM

Luca Silvestrini INFN, Rome

- Introduction
- Estimating CP violation in the SM:
 - The "real SM" approximation
 - Beyond the "real SM" approximation:
 - future experimental prospects
 - theoretical arguments
- Conclusions

Based on Grossman, Kagan, Ligeti, Perez, Petrov & L.S., in preparation; special thanks to A.K.!

INTRODUCTION

- CP violation in $\Delta F=2$ processes is the most sensitive probe of NP, reaching scales of $O(10^5)$ TeV
- CPV in D mixing gives best bound after $\epsilon_{\mbox{\tiny K}}$
- How far can we push
 i+2

See talk by M. Bona on Thursday for update & details

D MIXING

- D mixing is described by:
 - Dispersive $D \rightarrow \overline{D}$ amplitude M_{12}
 - SM: long-distance dominated, not calculable
 - NP: short distance, calculable w. lattice
 - Absorptive D \rightarrow D amplitude Γ_{12}
 - SM: long-distance, not calculable
 - NP: negligible
 - Observables: $|M_{12}|$, $|\Gamma_{12}|$, Φ_{12} =arg (Γ_{12}/M_{12})

$GIM \Leftrightarrow SU(3) (U-spin)$

Use CKM unitarity

$$V_{cd}V_{ud}^* + V_{cs}V_{us}^* + V_{cb}V_{ub}^* = \lambda_d + \lambda_s + \lambda_b = 0$$

- eliminate λ_d and take λ_s real (all physical results convention independent)
- imaginary parts suppr. by r=Im λ_b/λ_s =6.5 10⁻⁴
- M_{12} , Γ_{12} have the following structure:

$$\lambda_{s}^{2} (f_{dd} + f_{ss} - 2f_{ds}) + 2\lambda_{s}\lambda_{b} (f_{dd} - f_{ds} - f_{db} + f_{sb}) + O(\lambda_{b}^{2})$$

CKM 2014 Vienna

$GIM \Leftrightarrow SU(3) (U-spin)$

• Write long-distance contributions to M_{12} and Γ_{12} in terms of U-spin quantum numbers:

$$\lambda_s^2 (\Delta U=2) + \lambda_s \lambda_b (\Delta U=2 + \Delta U=1) + O(\lambda_b^2)$$
 $\sim \lambda_s^2 \varepsilon^2 + \lambda_s \lambda_b \varepsilon$

• CPV effects at the level of r/s ~2 10^{-3} ~ $1/8^{\circ}$ for "nominal" SU(3) breaking ε ~30%

"REAL SM" APPROXIMATION

- Given present experimental errors, it is perfectly adequate to assume that SM contributions to both M_{12} and Γ_{12} are real
- all decay amplitudes relevant for the mixing analysis can also be taken real
- NP could generate a nonvanishing phase for M_{12}

"REAL SM" APPROXIMATION II

• Define $|D_{SL}| = p|D^0| \pm q|D^0|$ and $\delta = (1-|q/p|^2)/$ $(1+|q/p|^2)$. All observables can be written in terms of $x=\Delta m/\Gamma$, $y=\Delta\Gamma/2\Gamma$ and δ , with

$$\sqrt{2} \,\Delta m = \operatorname{sign}(\cos \Phi_{12}) \sqrt{4|M_{12}|^2 - |\Gamma_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2 |\Gamma_{12}|^2 \sin^2 \Phi_{12}}},$$

$$\sqrt{2} \,\Delta \Gamma = 2\sqrt{|\Gamma_{12}|^2 - 4|M_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2 |\Gamma_{12}|^2 \sin^2 \Phi_{12}}},$$

$$\delta = \frac{2|M_{12}||\Gamma_{12}|\sin \Phi_{12}}{(\Delta m)^2 + |\Gamma_{12}|^2},$$
(7)

- Notice that $\phi = arg(q/p) = arg(y+i\delta x) argT_{12}$
- $|q/p| \neq 1 \Leftrightarrow \phi \neq 0$ clear signals of NP Ciuchini et al; Kagan & Sokoloff

CPV IN MIXING TODAY

latest UTfit average (HFAG very similar):

$$x = (3.6 \pm 1.6) \, 10^{-3}, y = (6.1 \pm 0.6) \, 10^{-3},$$

 $|q/p|-1 = (1.6 \pm 1.8) \, 10^{-2},$
 $\phi = arg(q/p) = (0.45 \pm 0.56)^{\circ}$

CPV IN MIXING TODAY II

The corresponding results on fundamental parameters are

$$|M_{12}|$$
 = $(4 \pm 2)/fs$, $|\Gamma_{12}|$ = $(15 \pm 2)/fs$ and Φ_{12} = $(2 \pm 3)^{\circ}$

BEYOND THE "REAL SM"

- Belle II and LHCb upgrade will considerably improve the sensitivity to CPV in charm mixing
- Should critically re-examine the statement of negligible CPV in the SM:
 - Could CPV amplitudes be dynamically enhanced?
 - Is the SU(3)/U-spin argument reliable?

BEYOND THE "REAL SM" II

- Relax the assumption of real $\Gamma_{\!_{12}}$, introduce $\phi_{\Gamma\!_{12}}$ = arg $\Gamma_{\!_{12}}$
- The relation between ϕ , x, y and δ is modified as follows:
 - $-\phi = arg(q/p) = arg(y+i\delta x) \phi_{\Gamma 12}$
- Can we extract $\phi_{\Gamma 12}$ from experimental data?
- How large can $\phi_{\Gamma 12}$ be in the SM?

BEYOND THE "REAL SM" III

• In principle, if decay amplitudes are not real, they affect the extraction of ϕ :

$$\phi \rightarrow \phi + \delta \phi_f$$
, with $\delta \phi_f = \arg(\overline{A}_f/A_f)$ (f CP eig.)

- for CA and DCS decays, $\delta \phi_f$ negligible
- for SCS decays, $\delta\phi_f = A_{CP}^{dir}(D \rightarrow f) \cot \delta_f$ (δ_f strong phase difference, expected O(1))
- present data on DCPV imply $\delta \varphi_f \sim 10^{\text{-3}}$

BEYOND THE "REAL SM" IV

- CPV contributions to $\phi_{\Gamma12}$ are enhanced by $1/\epsilon,$ while this is not the case for $\delta\phi_f$
- can go beyond the "real SM" approximation by adding one universal phase $\phi_{\Gamma 12}$ and fitting for ϕ_{12} and $\phi_{\Gamma 12}$ or, equivalently, for ϕ_{M12} and $\phi_{\Gamma 12}$

CHARM CPV @ LHCb UPGRADE

- Expected errors w. LHCb upgrade:
 - δx =1.5 10⁻⁴, δy =10⁻⁴, $\delta |q/p|$ =10⁻², $\delta \phi$ =3° (from $K_s \pi \pi$); δy_{CP} = δA_{Γ} =4 10⁻⁵ (from K^+K^-)
- Allows to experimentally determine $\phi_{\Gamma 12}$ with a reach on CPV @ the degree level:
 - $-\delta\phi_{M12} = \pm 1^{\circ}$ (17 mrad) and $\delta\phi_{\Gamma12} = \pm 2^{\circ}$ (34 mrad) @ 95% prob.
 - Λ>10⁵ TeV

CHARM CPV @ HI-LUMI

- "Extreme" flavour experiment (LHCb see e.g. talk by G. Punzi @ 1st Future Hadron Collider Workshop
- Naïve extrapolation, scaling LHCb upgrade estimates:
 - δx =1.5 10⁻⁵, δy =10⁻⁵, $\delta |q/p|$ =10⁻³, $\delta \varphi$ =.3° (from $K_s \pi \pi$); δy_{CP} = δA_Γ =4 10⁻⁶ (from K^+K^-)
 - $-\delta\phi_{M12}$ = ± 0.1° (1.7 mrad) and $\delta\phi_{\Gamma12}$ = ± 0.2° (3.4 mrad) @ 95% prob.
 - Λ >3 10⁵ TeV, close to the bound from $\epsilon_{\rm K}$

CAN WE ESTIMATE $\phi_{\Gamma 12}$ IN SM?

- $\Gamma_{12} = \Gamma_{12}^{0} + \delta \Gamma_{12} = \lambda_{s}^{2} (\Delta U = 2) + \lambda_{s} \lambda_{b} (\Delta U = 2 + \Delta U = 1) + O(\lambda_{b}^{2}) \sim \lambda_{s}^{2} \Gamma_{5} + \lambda_{s} \lambda_{b} \Gamma_{3}$
- Γ_5 changes Uspin by two units, arises @ $O(\epsilon^2)$
- Γ_3 changes Uspin by one unit, arises @ $O(\epsilon)$
- Trade $\Gamma_{12}{}^{0}$ for y Γ , get $\phi_{\Gamma 12} \sim \text{Im } \lambda_{s} \lambda_{b} / \text{y} \ \Gamma_{3} / \Gamma \sim 5 \ 10^{-3} \ \Gamma_{3} / \Gamma$

ESTIMATING Γ_3/Γ

- Γ_3 generated by SCS decay amplitudes
- two-body decays account for 75% of hadronic D decays, with PP~VV~AP~PV/3
- use exp data on BR's and DCPV to perform SU(3) analysis and estimate Γ_3 , using e.g. the general parameterization of U-spin amplitudes in SCS decays by Brod, Kagan, Grossman & Zupan

ESTIMATING Γ_3/Γ II

• analysis of U-spin amplitudes suggests that currently $\Gamma_{\rm 3}/\Gamma\sim 1$ is plausible, and also that $\phi_{\Gamma12}/\delta\phi_{\rm f}\sim 4$, as previously argued, yielding

 $\phi_{\Gamma_{12}} \sim 5 \text{ mrad } (0.3^{\circ})$

and leaving plenty of room for NP

- more data, in particular for PV SCS decays, would allow for a better estimate of $\phi_{\Gamma12}$
- ϕ_{M12} might be estimated via dispersion rel.

CKM 2014 Vienna

CONCLUSIONS

- Given present experimental errors, SM contributions to CPV in mixing-related observables can be safely neglected, yielding a constrained three-parameter fit $(M_{12}, \Gamma_{12},$ ϕ_{12}) which allows to probe NP at the % level
- future experimental improvements will however go well below the % level, reaching a level in which SM CPV contributions might be non-negligible
 CKM 2014 Vienna

L Silvestrini

CONCLUSIONS II

- Given the SU(3) structure of Δc =1 and Δc =2 amplitudes, CPV contributions to Γ_{12} are parametrically enhanced over CPV contributions to decay amplitudes
- Moreover, the latter are already constrained to lie below the future sensitivity in $\varphi,$ and essentially vanish in the SM
- Generalizing the fit introducing $\phi_{\Gamma 12}$ captures dominant SM effects

ZM 2014 Vienna L. Silvestrini 20

CONCLUSIONS III

- Belle II/LHCb upgrade will probe ϕ_{M12} and $\phi_{\Gamma12}$ at the level of 1°, while an "extreme" flavour experiment might reach the 0.1° level
- $\phi_{\Gamma 12}$ can be estimated using fits of SCS decay amplitudes (in particular PV ones)
- at present $\phi_{\Gamma 12}$ at the 0.3° level is plausible, but more data needed to refine this estimate; may also estimate ϕ_{M12} via disp. rel.

BACKUP SLIDES

9 U-spin structure of $\Delta C = 1$ Hamiltonian

$$H_1: \Delta U = 1 \text{ triplet } \propto \bar{c}u \ (\bar{d}s, \ \bar{s}s - \bar{d}d, \ \bar{s}d)$$

$$H_0: \Delta U = 0 \text{ singlet } \propto \bar{c}u \left(ss + \bar{d}d\right)$$

 \blacksquare Possible final state U-spin quantum numbers

triplet
$$f_1$$
 $(U = 1, U_3 = 0, \pm 1)$, singlet f_0 $(U = 0, U_3 = 0)$

 $ar{D}^0 o PP$ example, with CP eigenstates:

$$f_1 = \frac{K^+K^- - \pi^+\pi^-}{\sqrt{2}}, \quad K^+\pi^-, \quad K^-\pi^+; \quad f_0 = \frac{K^+K^- + \pi^+\pi^-}{\sqrt{2}}$$

 $ar{D}^0 o VP$ example, non-CP eigenstates $(\bar{D}^0 o f_1, f_0; \ \bar{f}_1, \bar{f}_0)$:

$$f_1 = \frac{K^{*+}K^{-} - \rho^{+}\pi^{-}}{\sqrt{2}}, K^{*+}\pi^{-}, K^{-}\rho^{+}; f_0 = \frac{K^{*+}K^{-} + \rho^{+}\pi^{-}}{\sqrt{2}}$$

$$\bar{f}_1 = \frac{K^{*-}K^+ - \rho^-\pi^+}{\sqrt{2}}, K^+\rho^-, K^{*-}\pi^+; \bar{f}_0 = \frac{K^{*-}K^+ + \rho^-\pi^+}{\sqrt{2}}$$

Courtesy of A. Kagan

there are two decay amplitudes at 0'th order in SU(3) breaking, where $|0\rangle$ is U-spin singlet D^0 :

$$t_0[f_1] \propto \langle f_1|H_1|0\rangle, \quad p_0[f_0] \propto \langle f_0|H_0|0\rangle$$

• there are three decay amplitudes at 1st order in SU(3) breaking, $O(\epsilon)$:

$$s_1[f_0] \propto \langle f_0|(H_1 \times M_{\epsilon})_0|0\rangle, \ t_1[f_1] \propto \langle f_1|(H_1 \times M_{\epsilon})_1|0\rangle, \ p_1[f_1] \propto \langle (f_1 \times M_{\epsilon})_0|H_0|0\rangle$$

 M_{ϵ} is the U-spin breaking "spurion"

- M_{ϵ} connects $\Delta U = 1$ operator H_1 with singlet f_0 final state, and $\Delta U = 0$ operator H_0 with triplet final state f_1
- amplitudes for CP conjugate final states (non-CP eigenstates): $t_0[\bar{f}_1], \ p_0[\bar{f}_0]; \ s_1[\bar{f}_0]\epsilon, \ t_1[\bar{f}_1], \ p_1[\bar{f}_1]$

● The SCS decay amplitudes to $O(\epsilon)$, for f_1 , f_0 final states ($U_3 = 0$),

$$\sqrt{2}A(\bar{D}^{0} \to f_{0}) = (\lambda_{s} - \lambda_{d}) \, s_{1}[f_{0}] \, \epsilon - \lambda_{b} \, 2 \, p_{0}[f_{0}] + O(\epsilon^{2})$$

$$\sqrt{2}A(\bar{D}^{0} \to f_{1}) = (\lambda_{s} - \lambda_{d}) \, t_{0}[f_{1}] - \lambda_{b} \, p_{1}[f_{1}] \, \epsilon + O(\epsilon^{2})$$

and similarly for $ar{D}^0
ightarrow ar{f}_0, ar{f}_1$

■ The CF/DCS decay amplitudes, for f_1 final states $(U_3 = \pm 1)$

$$A_{\text{CF}}(\bar{D}^0 \to f_1) = V_{cs}V_{ud}^*(t_0[f_1] - \frac{1}{2} t_1[f_1] \epsilon)$$
$$A_{\text{DCS}}(\bar{D}^0 \to f_1) = V_{cd}V_{us}^*(t_0[f_1] + \frac{1}{2} t_1[f_1] \epsilon)$$

and similarly for $ar{D}^0
ightarrow ar{f}_1$

ullet the ϵ 's are "factored out" to keep track of orders in U-spin breaking. Thus nominally

$$t_0 \sim p_0 \sim s_1 \sim p_1 \sim t_1$$

Courtesy of A. Kagan

Expressed as exclusive sums over all decays, obtain

$$\frac{\Gamma_3}{\Gamma} = -\frac{\sum_{f_{\text{CP}}} \Gamma_3(f_{\text{CP}}) + \sum_{f,\bar{f}} \Gamma_3(f,\bar{f})}{\sum_{f_{1,\text{CP}}} |t_0[f_1]|^2 + \sum_{f_1,\bar{f}_1} (|t_0[f_1]|^2 + |t_0[\bar{f}_1]|^2) + O(\epsilon)}$$

where

$$\Gamma_3(f_{\text{CP}}) = 4 \operatorname{Re}(p_0^*[f_0] s_1[f_0] \epsilon) + 2 \operatorname{Re}(t_0^*[f_1] p_1[f_1] \epsilon)$$

$$\Gamma_3(f,\bar{f}) = 4\operatorname{Re}(p_0^*[f_0]s_1[\bar{f}_0]\epsilon) + 4\operatorname{Re}(p_0^*[\bar{f}_0]s_1[f_0]\epsilon) + 2\operatorname{Re}(t_0^*[f_1]p_1[\bar{f}_1]\epsilon) + 2\operatorname{Re}(t_0^*[\bar{f}_1]p_1[f_1]\epsilon)$$

information about the amplitude ratios

$$\frac{s_0[f_0]\epsilon}{t_0[f_1]}, \quad \frac{p_0[f_0]}{t_0[f_1]}$$

follows from branching ratio and direct CP asymmetry measurements

ullet as more of these ratios are constrained, our knowledge of how large $|\Gamma_3|/\Gamma$ can reasonably be will improve