Prospects for ϕ_3 and Charmless *B* Decay Measurements at Belle II

Pablo Goldenzweig (KIT) On behalf of the Belle II Collaboration

8th International Workshop on the CKM Unitarity Triangle Vienna University of Technology Vienna, Austria September 8-12, 2014

Outline

Belle II

- Improvements in K/π separation and π^0 efficiency

ϕ_3

- Current measurement
- Prospects at Belle II: $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$

DCPV in Charmless B Decays

- $B \to K\pi, K^*\pi, K\rho$
- $B \rightarrow VV$ decays
- 3-body decays

Upgrade for SuperKEKB and Belle II to achieve 40x peak \mathcal{L} under 20x bkgd

Targeted improvements:

- Increase hermiticity.
- Increase K_s^0 efficiency.
- Improve IP and secondary vertex resolution.
- Improve K/π separation.
- Improve π^0 efficiency.
- Add PID in endcaps.
- Add μ ID in endcaps.

K/π Separation

Two RICH systems covering full momentum range

- Barrel: Time of Propagation (TOP) counter (16 modules)
- Forward Endcap: Aerogel Ring Imaging Cherenkov detector (ARICH)

	Belle PID (%)	Belle II PID (%)
Ave. K efficiency	88	94
π fake rate	9	4

\Rightarrow Average K efficiency / π fake rate improved: Fake rate decreases by ≈ 2.5 for the same ε .

P. Goldenzweig

 ϕ_3 and Charmless B Decays @ Belle II

π^0 Reconstruction

Re-usage of Belle's CsI(TI) crystal calorimeter, but with new electronics with 2MHz wave form sampling to compensate for the larger beam-related backgrounds and the long decay time of CsI(TI) signals. \Rightarrow Resolution much better at Belle II

$$\phi_3 = \gamma \equiv \arg \frac{-|\mathbf{V}_{ud}| |\mathbf{V}_{ub}^*|}{|\mathbf{V}_{cd}| |\mathbf{V}_{cb}^*|} \approx \arg |\mathbf{V}_{ub}^*|$$

- The standard candle along with $|V_{ub}|/|V_{cb}|. \label{eq:varphi}$
- Still almost an order of magnitude less precise than φ₂.
- Limited by the small \mathcal{B} of the processes used in its measurement.
- ⇒ Large experimental gain can be made!

http://ckmfitter.in2p3.fr

 $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$

Tree-level Determination

- $b \to c\overline{u}s$ and $b \to u\overline{c}s$ tree amplitudes in the charged-B meson decays to open-charm final states.
 - $\Rightarrow \text{ Interference between same final state for} \\ D \text{ and } \overline{D} \Rightarrow \text{possibility of } DCPV.$

! Challenging: Small overall \mathcal{B} from 5×10^{-6} to 10^{-9} .

 \Rightarrow Precise measurement of ϕ_3 requires a very large data sample.

$$B^{\pm} \to D^{(*)} K^{(*)\pm}$$

Three methods according to final state:

- Cabibbo-suppressed (CS) D decays to CP-eigenstates (K^+K^- , $K_s^0\pi^0$) [GLW] Phys. Lett. B 253, 483 (1991), Phys. Lett. B 265, 172 (1991)
- Cabibbo-favored and double-CS final states ($K^{\pm}\pi^{\mp}$) [ADS] Phys. Rev. D 63, 036005 (2001)
- Dalitz plot distribution of the products of D decays to multi-body self-conjugate final states $(K_s^0 \pi^+ \pi^-)$ [GGSZ] Phys. Rev. D 68, 054018 (2003)

All methods are statistics-limited but have common *B* parameters

⇒ Perform a simultaneous fit using the results of all methods.

Prospects @ Belle II

All methods reproducible at Belle II

- Improvements in PID and qq suppression using neural networks Nucl. Instrum. Meth. A654: 432 (2011)
- Systematic errors from peaking charmless background, and PDFs from Dπ and sidebands will decrease with statistics.
- Elimination of D model uncertainty using samples of neutral D mesons decaying into CP eigenstates from charm factories CLEO-c and BESIII (via ψ(3770) → DD).
 - ⇒ Naive scaling of combination with ADS and GLW yeilds an error of 1.5°. Physics at Super B Factory, arXiv:1002.5012 (2010)

(a) Belle at $0.5ab^{-1}$ and (b) Belle II at $50ab^{-1}$

Much more!

- Statistical error will be dominant and can be improved by including *D* decays to, e.g., $K_s^0 K^+ K^-$, $\pi^+ \pi^- \pi^0$, $K_s^0 \pi^+ \pi^- \pi^0$ (2* $\mathcal{B}(K_s^0 \pi^+ \pi^-)!$).
- Use $D\pi$ in addition to DK
 - \rightarrow Theory: charm mixing has a bigger effect arXiv:1307.4384

$B \to K\pi$

 Measurements of DCPV in B⁺ → K⁺π⁰ found to be different than the same quantity in B⁰ → K⁺π⁻, contrary to the naive expectation from the presence of electroweak penguin diagrams.

 $A_{CP}^{K^+\pi^0} - A_{CP}^{K^+\pi^-} = 0.112 \pm 0.027 \pm 0.007 \ (4\sigma)$

- The difference could be due to:
 - Neglected diagrams contributing to B^{\pm} decays (theoretical uncertainty is still large).
 - Some unknown NP effect that violates isospin.
- $\Rightarrow In combination with other K\pi measurements and with the larger$ Belle II dataset, strong interaction effects can be controlled andthe validitiy of the SM can be tested in a model-independent way.
- \Rightarrow Look for similar effects in $K^*\pi$ and $K\rho$:

	$A_{CP}^{K^+\pi^0}$	$A_{CP}^{K^+\pi^-}$
$K^*\pi$	-0.06 ± 0.24 *	-0.23 ± 0.06 **
$K\rho$	$+0.37 \pm 0.11 *$	$+0.20 \pm 0.11$ ***

* BaBar, Phys. Rev. D 84, 092007 (2011), **HFAG Ave.,
 *** BaBar, Phys. Rev. D 78, 012004 (2008) Belle, Phys. Rev. Lett. 96, 251803 (2006)
 [New K* π BaBar result: Talk by Eli Ben-Haim]

P. Goldenzweig

Figure 17.4.4. The dominant Tree-level (a) and Penguin-loop (b) Feynman diagrams in the two-body decays $B \to K\pi$ and $B \to \pi\pi$ (Lin, 2008).

Test of sum rule for NP free of theoretical uncertainties:

$$A_{CP}^{K^+\pi^-} + A_{CP}^{K^0\pi^+} \frac{\mathcal{B}(B^+ \to K^0\pi^+)\tau_{B^0}}{\mathcal{B}(B^0 \to K^+\pi^-)\tau_{B^+}} = A_{CP}^{K^+\pi^0} \frac{2 \mathcal{B}(B^+ \to K^+\pi^0)\tau_{B^0}}{\mathcal{B}(B^0 \to K^+\pi^-)\tau_{B^+}} + A_{CP}^{K^0\pi^0} \frac{2 \mathcal{B}(B^0 \to K^0\pi^0)}{\mathcal{B}(B^0 \to K^+\pi^-)} = -0.270 \pm 0.132 \pm 0.060 \ (1.9\sigma)$$

- SM can be tested by measuring all observables.
- The isospin sum rule can be presented as a band in the $A_{CP}^{K^0\pi^0}$ vs. $A_{CP}^{K^0\pi^+}$ plane.

→ Most demanding measurement is $K^0 \pi^0$ final state. With Belle II, the uncertainty on $\mathcal{A}(B \to K^0 \pi^0)$ from time-dep. analyses is expected to reach ~ 4% ⇒ sufficient for NP studies.

Observables	Belle + BaBar	Be	Belle II	
	(2014)	5 ab - 1	$_{50 ab} - 1$	
$\mathcal{A}(B \rightarrow K^0 \pi^0)$	$-0.05\pm 0.14\pm 0.05$	0.07	0.04	

$B \to VV$

• Channels have low \mathcal{B} and high background.

Full angular analysis requires large statistics. With the current datasets most analysis are limited to integrating over the angle between the decay planes Φ , and reporting the longitudinal polarization fraction (f_L)

 $(1-f_L)\sin^2\theta_1\sin^2\theta_2 + 4f_L\cos^2\theta_1\cos^2\theta_2$

Highlights to seach for with more data include:

- The SM suppressed decay $B^0 \to K^{*0} K^{*0}$ could appear via an intermediate heavy boson.
- Observation of electro-weak and gluonic $b\to d$ penguin loops to two VV particles in $B^0\to K^{*0}\overline{K}{}^{*0}$
- Contribution of electro-weak penguins in the hierarchy of the decays to ωK^{*0} and $\omega \phi$.
- Triple-product asymmetries, which provide a measure of CP violation that does not require flavor tagging or a time-dependent analysis. \Rightarrow *Require data samples with* \mathcal{L} of order 50 ab⁻¹. Belle, Phys. Rev. D 84, 096013 (2011)

P. Goldenzweig

 $B \to VV$

Full angular analysis and search for DCPV in $B^0 \rightarrow \phi K^{*0}.$

- At Belle/BaBar full angular analysis limited to low-background decays such as B⁰ → φK^{*0}.
- In the Belle analysis, a 9D extended unbinned ML fit is used to extract the 26 parameters related to polarization and CPV.
- Figure show projections onto 6 of the 9 fitted observables.
- All phase ambiguities have been resolved and all parameters related to *CP* violation are consistent with 0.
- $\Rightarrow Belle II's large dataset is needed to perform$ full angular analyses on many other $<math>B \rightarrow VV$ channels.

Belle, Phys. Rev. D 88, 072004 (2013)

 ϕ_3 and Charmless B Decays @ Belle II

* Statistics-limited for most quantities...

TABLE VII. Summary of the results on the $B^0 \rightarrow \phi K^*$ system. See Table II and Eq. (32) for the parameter definition. In this table, we give the fit fraction F_F , per partial wave instead of the branching fraction B_J , which is given in Table VIII together with the yields per partial wave. The first error is statistical and the second is due to systematics.

Parameter	$\phi(K\pi)_0^* J = 0$	$\phi K^*(892)^0 J = 1$	$\phi K_2^*(1430)^0 J = 2$
FFJ	$0.273 \pm 0.024 \pm 0.021$	$0.600 \pm 0.020 \pm 0.015$	$0.099^{+0.016}_{-0.012} \pm 0.018$
f_{LJ}		$0.499 \pm 0.030 \pm 0.018$	$0.918^{+0.029}_{-0.060}\pm0.012$
$f_{\perp J}$		$0.238 \pm 0.026 \pm 0.008$	$0.056^{+0.050}_{-0.035}\pm0.009$
$\phi_{\parallel J}$ (rad)		$2.23 \pm 0.10 \pm 0.02$	$3.76 \pm 2.88 \pm 1.32$
$\phi_{\perp J}$ (rad)		$2.37 \pm 0.10 \pm 0.04$	$4.45^{+0.43}_{-0.38}\pm0.13$
δ_{0J} (rad)		$2.91 \pm 0.10 \pm 0.08$	$3.53 \pm 0.11 \pm 0.19$
\mathcal{A}_{CPJ}	$0.093 \pm 0.094 \pm 0.017$	$-0.007 \pm 0.048 \pm 0.021$	$-0.155^{+0.152}_{-0.133}\pm0.033$
\mathcal{A}^{0}_{CPJ}		$-0.030\pm 0.061\pm 0.007$	$-0.016^{+0.066}_{-0.051}\pm0.008$
$\mathcal{A}_{CPJ}^{\perp}$		$-0.14 \pm 0.11 \pm 0.01$	$-0.01^{+0.85}_{-0.67}\pm0.09$
$\Delta \phi_{\parallel J}$ (rad)		$-0.02 \pm 0.10 \pm 0.01$	$-0.02 \pm 1.08 \pm 1.01$
$\Delta \phi_{\perp J}$ (rad)		$0.05 \pm 0.10 \pm 0.02$	$-0.19 \pm 0.42 \pm 0.11$
$\Delta \delta_{0J}$ (rad)		$0.08 \pm 0.10 \pm 0.01$	$0.06 \pm 0.11 \pm 0.02$

\Rightarrow Statistical errors $\approx 7x$ smaller with 50 ab⁻¹ of Belle II data.

$B \rightarrow VV$: Summary of \mathcal{B} & f_L

Summary of the \mathcal{B} and f_L for charmless vector-vector decays

- Heirarchy of f_L observed with tree-dominated modes $(\rho\rho)$ near 1, and penguin-dominated modes (ϕK^{*0}) near 0.5.
- Hierarchy based on the masses of the vector mesons, with larger masses having smaller *f*_L.
- ⇒ Results from other channels necessary to understand these patterns.

CP violation in $B \rightarrow 3h$

Large CPV effects not associated with resonances \Rightarrow QCD effects to be understood

⇒ Unidentified structure in the $m_{K^+K^-}^2$ projection in $KK\pi$ decays at $< 1.5 \text{ GeV}^2/c^4$. Only present in the B^+ mass projection and gives rise to a large local CP asymmetry. [*Updated measurement: arXiv: 1408.5373 (Submitted to PRD)*]

P. Goldenzweig

 ϕ_3 and Charmless B Decays @ Belle II

Sept. 8, 2014 16 / 21

Enhancements in $M_{K^+K^-}$

• Enhancement observed by Belle in the $M_{K^+K^-}$ invariant mass in $B^0 \rightarrow K^+K^-\pi^0$ decays. V. Gaur *et al.*, (Belle Collaboration) Phys. Rev. D 87, 091101(R) (2013)

B. Aubert *et al.*, (BABAR Collaboration) Phys. Rev. Lett. **99**, 221801 (2007)

⇒ Detailed interpretation requires an amplitude analysis with higher statistics at Belle II.

A_{CP} : Summary

Highlights to search for at Belle II

- Large *CP* asymmetries in *K*π and other final states with an odd number of kaons, e.g., η*K*^{*0} *K*^{*0}π⁺π⁻
 - $\Rightarrow expected to proceed dominantly via b \rightarrow s$ penguin transitions as the b \rightarrow u transition is color-suppressed.
- Large direct *CP* asymmetry expected in: $B^+ \rightarrow \eta \rho^+$ $B^+ \rightarrow \eta \pi^+$ $B^+ \rightarrow \eta' \pi^+$
 - $\Rightarrow \text{ where the } b \rightarrow u \text{ and } b \rightarrow s \text{ amplitudes are of}$ similar size to $B^+ \rightarrow \eta K^+$, which measured $A_{CP} = -0.37 \pm 0.09.$

Most precisely measured modes

Summary and prospects $@50 \text{ ab}^{-1}$

Large improvements in PID (K/π separation), and π^0 reconstruction efficiency \Rightarrow simulation studies showing increased performance as expected

ϕ_3

• Combination of measurements from GLW, ADS, and Dalitz methods yields a combined ϕ_3 uncertainty of 1.5°. \Rightarrow Theoretically clean, reliable test of ϕ_3 in the SM, and to search for NP.

Charmless B Decays

- New insight into $K\pi$ puzzle with $A_{CP}(\mathcal{B} \to K^0\pi^0)$ reaching 4%. \Rightarrow Surprises on the way from $K^*\pi$ and $K\rho$?
- Full angular analysis and triple-product-asymmetries will become feasible in additional $B \rightarrow VV$ channels. \Rightarrow More surprises on the way from angular analysis in $b \rightarrow s$ penguin decays?
- Observation of large local A_{CP} in additional 3-body decays? \Rightarrow New resonances in M_{K+K-} spectrum?

... and much more!

Thank you!

BKUP

Charmless B_s Decays

$B_s \to hh \ (h = \pi, K)$

- Υ(5S) decays are well-suited for studying large multiplicity B_s decays due to the lower particle momenta, the almost 100% trigger ε, and the excellent π/K separation.
- Branching fractions may exhibit direct CP asymmetries, as has been observed for B⁰_d → K[±]π[∓].
- e^+e^- experiment well-suited to study $\overline{K}^0 K^0$ (advantage over hadron collider).
- Table and figures show the 23.6 fb⁻¹ results from Belle. Provide us with normalizations and absolute β for K⁰ K⁰, but likely not competitive with LHCb.

Mode	Yield	Σ	ε (%)	$B(10^{-5})$
K^+K^-	$23.4^{+5.5}_{-6.3}$	5.8	24.5	$3.8^{+1.0}_{-0.9}\pm0.5\pm0.5$
$K^{-}\pi^{+}$	$5.4^{+5.1}_{-4.3}$	1.2	21.0	< 2.6
$\pi^+\pi^-$	$-2.0^{+2.3}_{-1.5}$	-	14.4	< 1.2
$K^0\overline{K}^0$	$5.2\substack{+5.0 \\ -4.3}$	1.2	8.0	< 6.6

