Testing the SM with $B \rightarrow DD$ decays

Stefan Schacht

CKM 2014

Vienna, 11/09/2014

based on work with M. Jung

Can we distinguish new physics in $B \rightarrow DD$ decays from the Standard Model?

Data from LHCb, Belle, BaBar, CDF, ...

Mode	$BR_{\rm theo}/10^{-3}$	$A_{\rm CP}/\%$	$S_{\rm CP}/\%$
$B^- \rightarrow D^- D^0$	0.37 ± 0.04	3 ± 7	
$B^- \rightarrow D_s^- D^0$	9.4 ± 0.9		
$\bar{B}^0 \rightarrow D_s^- D^+$	7.6 ± 0.7	-1 ± 2	
$\bar{B}_s \rightarrow D^- D_s^+$	0.30 ± 0.04		
$\bar{B}^0 \rightarrow D^- D^+$	0.226 ± 0.023	(a) 31 ± 14	-98 ± 17
	BaBar :	(b) 7 ± 23	-63 ± 36
	Belle :	43 ± 17	-106^{+22}_{-16}
$\bar{B}_s \rightarrow D_s^- D_s^+$	4.6 ± 0.5		10
$\bar{B}^0 \rightarrow D_s^- D_s^+$	≤ 0.036		
$\bar{B}_s \rightarrow D^- D^+$	0.27 ± 0.05		
$\bar{B}^0 \to \bar{D}^0 D^0$	0.013 ± 0.006		
$\bar{B}_s \rightarrow \bar{D}^0 D^0$	0.19 ± 0.04		

Red: First observation in 2013.

Symmetry analysis \Rightarrow Data-driven approach: Fit SU(3)_F matrix elements to the data

States

•
$$(B^- = - |\bar{u}b\rangle, \bar{B}^0 = |\bar{d}b\rangle, \bar{B}_s = |\bar{s}b\rangle) = \bar{3}$$

• $(D^0 = - |c\bar{u}\rangle, D^+ = |c\bar{d}\rangle, D_s^+ = |c\bar{s}\rangle) = \bar{3}$
• $(\bar{D}^0 = |\bar{c}u\rangle, |D^-\rangle = |\bar{c}d\rangle, |D_s^-\rangle = |\bar{c}s\rangle) = 3$

Product final states: 1 and 8.

Operators: $\Delta B = 1$, $\Delta C = 0$ Hamiltonian [Zeppenfeld 1980] • $\mathcal{H} \supseteq V_{ub}V_{ud}^*(b\bar{u})(u\bar{d}) + V_{ub}V_{us}^*(b\bar{u})(u\bar{s}) + V_{cb}V_{cd}^*(b\bar{c})(c\bar{d}) + V_{cb}V_{cs}^*(b\bar{c})(c\bar{s})$ • $(b\bar{u})(u\bar{s}) \sim 3 + \bar{6} + 15$ • $(b\bar{c})(c\bar{s}) = 3$

Translation to Topological Amplitudes: Power Counting

• Match SU(3)_F expressions \Rightarrow Equivalent topologic decomposition.

[Zeppenfeld 1981, Savage Wise 1989, Gronau Hernandez London Rosner 1994, Buras Silvestrini 1998, ...]

- Enables power counting: Suppression of penguin and annihilation diagrams, 1/N_c-counting and CKM structure.
- Alternative counting: No additional suppression of penguins.

Neglect SU(3)-Xing corrections of penguins due to lack of sensitivity.

Mode	$\lambda_{cD}T$	$\lambda_{cD}A^{c}$	$\lambda_{uD}\tilde{P}_1$	$\lambda_{uD}\tilde{P}_3$	$\lambda_{uD}A_1^u$	$\lambda_{uD}A_2^u$
Counting	1	δ^2	$\delta^{3(5)} \delta^{2(4)}$	$\delta^{4(6)} \delta^{3(5)}$	$\delta^{3(5)}$	$\delta^{4(6)}$
$B^- \rightarrow D^- D^0$	1	0	-1	0	1	0
$B^- \rightarrow D_s^- D^0$	1	0	-1	0	1	0
$\bar{B}^0 \rightarrow D_s^- D^+$	1	0	-1	0	0	0
$\bar{B}_s \rightarrow D^- D_s^+$	1	0	-1	0	0	0
$\bar{B}^0 \rightarrow D^- D^+$	1	1	-1	-1	0	0
$\bar{B}^0 \rightarrow D_s^- D_s^+$	0	1	0	-1	0	0

Approximate Isospin Amplitude Sum Rules

Valid also for enhanced penguins, including SU(3)-Xing

For $b \rightarrow s$ decays: Test for $\Delta I = 1$ NP

[Gronau Hernandez London Rosner 1995, Jung Schacht 2014]

$$1 \quad \mathcal{A}\left(\bar{B}^{0} \to D_{s}^{-}D^{+}\right) \simeq \quad \mathcal{A}\left(B^{-} \to D_{s}^{-}D^{0}\right)$$
$$2 \quad \mathcal{A}\left(\bar{B}_{s} \to D^{-}D^{+}\right) \simeq -\mathcal{A}\left(\bar{B}_{s} \to \bar{D}^{0}D^{0}\right)$$

- No SU(3)-Xing corrections.
- No penguin corrections.
- Corrections from annihilation ~ $\delta^{5(6)}$ and electroweak penguins only.

For $b \rightarrow d$ decays: Test for $\Delta I = 3/2$ NP

[Gronau Rosner Pirjol 2008, Sanda Xing 1997]

- 3 $\mathcal{A}(\bar{B}^0 \to D^- D^+) + \mathcal{A}(\bar{B}^0 \to \bar{D}^0 D^0) \simeq \mathcal{A}(B^- \to D^- D^0)$
- Annihilation ~ δ^3 and electroweak penguin corrections only.

Approximate Isospin Rate Sum Rules

Valid also for enhanced penguins, including SU(3)-Xing

CP-averaged decay rate

$$\Gamma_D = \frac{\Gamma(\mathcal{D}) + \Gamma(\bar{\mathcal{D}})}{2}$$

$$\Delta \Gamma_D = \frac{\Gamma(\mathcal{D}) - \Gamma(\bar{\mathcal{D}})}{2}$$

Precision relations

[Gronau Hernandez London Rosner 1995, Jung Schacht 2014]

1
$$\Gamma(\bar{B}^0 \to D_s^- D^+) = \Gamma(B^- \to D_s^- D^0) \left(1 + O(\delta^5)\right)$$

2 $\Gamma(\bar{B}_s \to \bar{D}^0 D^0) = \Gamma(\bar{B}_s \to D^- D^+) \left(1 + O(\delta^4)\right)$

3 $\Gamma(\bar{B}^0 \to D^- D^+) = \Gamma(B^- \to D^- D^0) \left(1 + O(\delta^2)\right)$

Model-independent test for isospin-breaking New Physics

Further Approximate Sum Rules

Valid also for enhanced penguins, including SU(3)-Xing

Up to $O(\delta^3)$ or better

A

$$\begin{aligned} \mathcal{A}(\bar{B}^0 \to D_s^- D^+) &- \mathcal{A}(\bar{B}_s \to D_s^- D_s^+) + \mathcal{A}(\bar{B}_s \to D^- D^+) = \\ \frac{\lambda_{cs}}{\lambda_{cd}} \left(\mathcal{A}(\bar{B}^0 \to D^- D^+) - \mathcal{A}(\bar{B}_s \to D^- D_s^+) - \mathcal{A}(\bar{B}^0 \to D_s^- D_s^+) \right) \,. \end{aligned}$$
$$\begin{aligned} \mathcal{A}(\bar{B}^0 \to D_s^- D_s^+) &= -\mathcal{A}(\bar{B}^0 \to D^0 \bar{D}^0) \\ \mathcal{A}(\bar{B}_s \to D^- D^+) &= \frac{\lambda_{cs}}{2\lambda_{cd}} (\mathcal{A}(\bar{B}^0 \to D_s^- D_s^+) - \mathcal{A}(\bar{B}^0 \to D^0 \bar{D}^0)) \end{aligned}$$

Further general rules, but valid to less precision than isospin rules.

Expectations for CP Asymmetries

Without penguin enhancement

Tree-dominated $b \rightarrow s$ modes: $O(\delta^5)$, *i.e.*, $\leq 1\%$

 $B^- \to D_s^- D^0, \quad \bar{B}^0 \to D_s^- D^+, \quad \bar{B}_s \to D_s^- D_s^+$

Annnihilation-dominated $b \to s$ modes: $O(\delta^4)$, *i.e.*, $\leq 3\%$ $\bar{B}_s \to D^- D^+$, $\bar{B}_s \to \bar{D}^0 D^0$

Tree-dominated $b \rightarrow d$ modes: $O(\delta^3)$, *i.e.*, $\leq 10\%$

 $B^- \to D^- D^0, \quad \bar{B}_s \to D^- D_s^+, \quad \bar{B}^0 \to D^- D^+$

Annnihilation-dominated $b \to d$ modes: $O(\delta^2)$, *i.e.*, $\leq 30\%$ $\bar{B}^0 \to D_s^- D_s^+$, $\bar{B}^0 \to \bar{D}^0 D^0$

... then if due to penguins, sum rules between CP asymmetries should hold.

Up to $O(\delta)$

$$A_{\rm CP}(\bar{B}^0 \to D_s^- D^+) = A_{\rm CP}(B^- \to D_s^- D^0) [1 + O(\delta)]$$

$$A_{\rm CP}(\bar{B}_s \to \bar{D}^0 D^0) = A_{\rm CP}(\bar{B}_s \to D^- D^+) [1 + O(\delta)]$$

$$\Delta\Gamma(\bar{B}_s \to D^- D_s^+) + \Delta\Gamma(\bar{B}_s \to D_s^- D_s^+) + \Delta\Gamma(\bar{B}^0 \to D^- D^+) = (2\Delta\Gamma(B^- \to D^- D^0) + \Delta\Gamma(B^- \to D_s^- D^0)) [1 + O(\delta)]$$

Crosscheck of power counting in case of enhanced penguins.

Experimental status of Isospin Sum Rules

1st Rule: 2σ Tension

$$\Gamma(\bar{B}^0 \to D_s^- D^+) = \Gamma(B^- \to D_s^- D^0) \left(1 + O(\delta^5)\right)$$

 $\begin{array}{lll} \mbox{Theory:} & BR(B^- \to D_s^- D^0) / BR(\bar{B}^0 \to D_s^- D^+) \sim 1.08 & (\mbox{including } \tau_{B^-,\bar{B}^0}) \\ \mbox{Experiment:} & BR(B^- \to D_s^- D^0) / BR(\bar{B}^0 \to D_s^- D^+) = 1.22 \pm 0.07 & \mbox{[LHCb 2013]} \end{array}$

2nd rule: SM prediction

$$BR(\bar{B}_{s} \to \bar{D}^{0}D^{0}) = BR(\bar{B}_{s} \to D^{-}D^{+})$$

= (0.21 ± 0.03) × 10⁻³
Data: $BR(\bar{B}_{s} \to \bar{D}^{0}D^{0}) = (0.19 \pm 0.04) \times 10^{-3}$

$$BR(\bar{B}_s \to D^- D^+) = (0.27 \pm 0.05)$$

Global Fit

Control Penguins and SU(3)-Xing at the same time !

- Power counting works quite well.
- $\Gamma(\bar{B}^0 \to D^- D^+) = \Gamma(B^- \to D^- D^0)$ holds only marginally. • Sizable annihilation, $|A^c|/T \in [0.1, 0.27]$ (95%). [agreeing with Eeg Fajfer Hiorth 2003]
- Small to moderate (10 30%) SU(3) breaking sufficient.
- Current data: No competitive extraction of $\phi_{d,s}$ possible.

• Two data sets.

Mode	$BR_{\rm theo}/10^{-3}$	$A_{\rm CP}/\%$	$S_{\rm CP}/\%$
$\bar{B}^0 \to D^- D^+$	$0.226 \pm 0.023^{\$}$	(a) 31 ± 14 (HFAG)	-98 ± 17 (HFAG)
	BaBar :	(b) 7 ± 23	-63 ± 36
	Belle :	43 ± 17	-106^{+22}_{-16}

Correlations of Branching Ratios

[Jung Schacht 2014]

Yellow: Data. Violet: Scenario and data set independent fit result.

CP Violation

Time dependent CP Violation

$$a_{CP}(\mathcal{D};t) \equiv \frac{\Gamma(\mathcal{D};t) - \Gamma(\bar{\mathcal{D}};t)}{\Gamma(\mathcal{D};t) + \Gamma(\bar{\mathcal{D}};t)} \\ = \frac{S_{CP}(\mathcal{D})\sin(\Delta mt) + A_{CP}(\mathcal{D})\cos(\Delta mt)}{\cosh(\Delta\Gamma t/2) - A_{\Delta\Gamma}(\mathcal{D})\sinh(\Delta\Gamma t/2)}$$

Penguin pollution [Fleischer 1999, 2007, Ciuchini Pierini Silvestrini 2005, Faller Jung Fleischer Mannel 2008,...]

$$\Delta S_{\rm CP}(\mathcal{D}) \equiv -\eta^f_{\rm CP} S_{\rm CP}(\mathcal{D}) - \sin \phi(\mathcal{D}), \qquad \phi(\mathcal{D}) = \phi_d(\phi_s)$$

How large can the penguin shift become?

Study possible penguin enhancement in CPV observables. CP Violation beyond that \Rightarrow NP.

Disentangling the two data sets

Red: Standard counting. Blue: Enhanced penguins. Outside of blue (red): NP.

Largish Belle CPV measurement difficult for standard counting.

SM Prediction for Flavor-Specific CP Asymmetries

SM Prediction for Time-dependent CP Asymmetries Measurement at 17:05 CEST [Talk by C. Fitzpatrick, LHCb]

Stefan Schacht

Vienna September 2014 16 / 17

Conclusion

• Very exciting time for decays of beauty to charm !

- Isospin sum rules enable precision tests of the SM, already with branching ratios.
 ➡Currently, 2σ tension in BR(B⁻ → D_s⁻D⁰)/BR(B⁰ → D_s⁻D⁺).
- Penguin pollution and SU(3)_F breaking controlled in a global fit.
 Predictions of CP asymmetries.
- Much room for NP to be tested @LHC and Belle II !