8th International Workshop on the CKM Unitarity Triangle Vienna, 11/9/2014

的制度使制度和原源。

CP-violating triple product asymmetries in Charm decays Maurizio Martinelli CPU and Collaborations

IH

Outline

Theoretical Introduction

• CPV and T-odd correlations

Search at LHCb

• *CPV* search using *T*-odd correlations in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays

More observables

• The study of further triple-product correlations has been recently suggested

Search at Babar

- Extraction of TP correlation asymmetries with BaBar data
 - $D^0 \longrightarrow K^+ K^- \pi^+ \pi^-, D_{(s)}^+ \longrightarrow K^+ K^0 {}_{S} \pi^+ \pi^-$

Conclusions

Maurizio Martinelli - CPV in Charm using Triple Products Asymmetries | 11.09.2014 3

tion

CP Violation in Charm Mesons Decays

Small CKM contribution

• CPV is expected to be small in the charm sector due to small CKM amplitude

New Physics

 May enhance this amplitude through the introduction of new processes and particles

Recently

- Mixing in charm is established within SM expectation
- Experiments have recorded enough statistics to probe CPV with sensitivities approaching 10⁻³
- If any NP effect is out there we should start to be able to see it

CP Violation

CPV in decay

$$\mathcal{A}_f \equiv \frac{\Gamma(M^- \to f^-) - \Gamma(M^+ \to f^+)}{\Gamma(M^- \to f^-) + \Gamma(M^+ \to f^+)}$$

CPV is measured as the asymmetry between the decay rate of a meson and charge-conjugate state

$$\mathcal{A}_{f\pm} = -\frac{2|a_1a_2|\sin(\delta_2 - \delta_1)\sin(\phi_2 - \phi_1)}{|a_1|^2 + |a_2|^2 + 2|a_1a_2|\cos(\delta_2 - \delta_1)\cos(\phi_2 - \phi_1)}$$

CPV in mixing

 $\frac{q}{p} \neq 1, \quad \mathcal{A}_{SL}(t) \equiv \frac{d\Gamma/dt(\overline{M}_{phys}^{0}(t) \to l^{+}X) - d\Gamma/dt(M_{phys}^{0}(t) \to l^{-}X)}{d\Gamma/dt(\overline{M}_{phys}^{0}(t) \to l^{+}X) + d\Gamma/dt(M_{phys}^{0}(t) \to l^{-}X)}$ *CPV* measured from the mixing parameters

$$\mathcal{A}_{SL} = - \left| \frac{\Gamma_{12}}{M_{12}} \right| \sin(\phi_M - \phi_\Gamma)$$

CPV in interference between decay and mixing

$$Im(\lambda_f) \neq 0, \quad \lambda_f \equiv \frac{q}{p} \frac{\overline{A}_f}{A_f}, \quad \mathcal{A}_{f_{CP}}(t) \equiv \frac{d\Gamma/dt(\overline{M}_{phys}^0(t) \to f_{CP}) - d\Gamma/dt(M_{phys}^0(t) \to f_{CP})}{d\Gamma/dt(\overline{M}_{phys}^0(t) \to f_{CP} + d\Gamma/dt(M_{phys}^0(t) \to f_{CP}))}$$

CPV asymmetry is modified by mixing effects

$$\mathcal{A}_{f_{CP}}(t) = \eta_f \sin(\phi_M + 2\phi_f) \sin(\Delta m t)$$

 Φ : weak phases, from CKM δ : unitarity (strong) phases

S+D+P

A different point of view

• Describe invariant matrix element in the most general way (quasi two-body) $B(p) \rightarrow V_1(k, \epsilon_1)V_2(q, \epsilon_2)$

$$M = a\epsilon_1 \cdot \epsilon_2 + \frac{b}{m_1 m_2} (p \cdot \epsilon_1) (p \cdot \epsilon_2) + i \frac{c}{m_1 m_2} \epsilon^{\alpha \beta \mu \nu} \epsilon_{1\alpha} \epsilon_{2\beta} k_{\mu} p_{\nu}$$
$$a = \sum_j |a_j| e^{i(\delta_{sj} + \phi_{sj})}; \quad b = \sum_j |b_j| e^{i(\delta_{dj} + \phi_{dj})}; \quad c = \sum_j |c_j| e^{i(\delta_{pj} + \phi_{pj})}$$
$$\bar{a} = \sum_j |a_j| e^{i(\delta_{sj} - \phi_{sj})}; \quad \bar{b} = \sum_j |b_j| e^{i(\delta_{dj} - \phi_{dj})}; \quad \bar{c} = \sum_j |c_j| e^{i(\delta_{pj} - \phi_{pj})}$$

A triple-product correlation arises in |M|² from terms involving the *c* amplitude (Im[ac*], Im[bc*]) wrt k
 ·(€1×€2)

$$A_B = \frac{\Gamma(k \cdot \epsilon_1 \times \epsilon_2 > 0) - \Gamma(k \cdot \epsilon_1 \times \epsilon_2 < 0)}{N_B}$$

$$\approx \Im(ac^*) = |ac|e^{i(\delta_s - \delta_p)}e^{i(\phi_s - \phi_p)} = |ac|\sin(\Delta\delta + \Delta\phi)$$

• The same observable on the charge-conjugate decay gives

$$A_{\bar{B}} \approx |ac|e^{i(\delta_s - \delta_p)}e^{-i(\phi_s - \phi_p)} = |ac|\sin(\Delta\delta - \Delta\phi)$$

• That allows the definition of the CPV observable

$$a_{CP}^{T-\text{odd}} = A_B + A_{\bar{B}} \approx \cos \Delta \delta \sin \Delta \phi$$

They are complementary

• The only difference is in the unitarity phases that enter differently in the game

 $a_{CP} \propto \sin \Delta \delta \sin \Delta \phi$ $a_{CP}^{T-\text{odd}} \propto \cos \Delta \delta \sin \Delta \phi$ (*)

- a_{CP} is more sensitive to CPV when the difference in the strong phases is large
- a_{CP}^{T-odd} is more sensitive to CPV when the difference in the strong phases between the interfering amplitudes is small
- Datta and London demonstrated that a TP asymmetry can be also built with interference between decay and mixing, but it is proportional to sinΔδ as well.

(*) **Caveat**: in a_{CP} the two phases are from different diagrams, in a_{CP}^{Todd} from different spin contributions

Experimental Technique

Defining a T-odd observable

• One needs at least 3 independent momentum or spin variables

- \widehat{n}_{ab} ϕ \widehat{n}_{cd} ϕ $\overline{r} = p_{a}^{2} + p_{b}^{2}$ b
 - $\sin\phi = (\hat{n}_{ab} \times \hat{n}_{cd}) \cdot \hat{z}$

Momenta can be also used to define angles

T-odd observables

Asymmetries

 Two asymmetries are measured separately on the particle and chargeconjugate decays

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma}$$
$$\bar{A}_T = \frac{\bar{\Gamma}(-\overline{C}_T > 0) - \bar{\Gamma}(-\overline{C}_T < 0)}{\bar{\Gamma}}$$

• The CP-violating asymmetry is

$$a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \bar{A}_T)$$

Four-body decays

• So far: $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$, $D^+ \rightarrow K^+ K^0 {}_{\mathrm{S}} \pi^+ \pi^-$, $D_{\mathrm{S}}^+ \rightarrow K^+ K^0 {}_{\mathrm{S}} \pi^+ \pi^-$

T-odd observable

• $C_T = \vec{p}(K^+) \cdot \vec{p}(\pi^+) \times \vec{p}(\pi)$

Analysis

- Spilt data sample in 4 depending on D^0 flavour and C_T sign
- Extract the number of signal events for each sample
- Calculate the asymmetry

$$a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \bar{A}_T)$$

Results From Previous Experiments

Used prompt D^0 and $D_{(s)}^+$ decays

• FOCUS (2005) Nev~1k (Link et al., Phys. Lett. B662 (2005)239

 $a_{CP}^{T-\text{odd}}(D^0) = (1.0 \pm 5.7(\text{stat}) \pm 3.7(\text{syst}))\%$

 $a_{CP}^{T-\text{odd}}(D^+) = (2.3 \pm 6.2(\text{stat}) \pm 2.2(\text{syst}))\%$

$$a_{CP}^{T-\text{odd}}(D_s^+) = (-3.6 \pm 6.7(\text{stat}) \pm 2.3(\text{syst}))\%$$

BaBar (2010-2011) N_{ev}~50k

$$a_{CP}^{T-\text{odd}}(D^0) = (1.0 \pm 5.1(\text{stat}) \pm 4.4(\text{syst})) \times 10^{-3}$$

 $a_{CP}^{T-\text{odd}}(D^+) = (-12.0 \pm 10.0(\text{stat}) \pm 4.6(\text{syst})) \times 10^{-3}$ $a_{CP}^{T-\text{odd}}(D^+_s) = (-13.6 \pm 7.7(\text{stat}) \pm 3.4(\text{syst})) \times 10^{-3}$

• BaBar provided significant statistical improvement (x10)

Results From LHCb - $D^0 \rightarrow K^+K^-\pi^+\pi^-$

Semileptonic B decay

- D⁰→K⁺K⁻π⁺π⁻ from semileptonic B decays, tagged from muon charge B→D⁰μ⁻X, D⁰→K⁺K⁻π⁺π⁻
- Clean sample

Data Sample

• 2011+2012: 3fb⁻¹

Fit Model

- Samples simultaneously fit to a model of two Gaussian distributions over an exponential shape
- Asymmetry parameters extracted from the fit

 $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

Three Measurements

1. Integrated

 $a_{CP}^{T-\text{odd}}(D^0) = (1.8 \pm 2.9(\text{stat}) \pm 0.4(\text{syst})) \times 10^{-3}$

2. Bins of phase-space

No significant deviation from 0 observed *CP* conservation tested with $P(\chi^2)=74\%$

3. Bins of proper time

No significant deviation from 0 observed *CP* conservation tested with $P(\chi^2)=83\%$

 $B \rightarrow D^0 \mu^- X, D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

FSI Effects?

- It's possible that FSI are producing effects in all the three measurements
- Significant differences in bins of phase space
- Average consistent wrt *D*⁰ decay time
- Wide spectrum of resonances and rescattering among the final state particles

 $A_T(D^0) = (-71.8 \pm 4.1(\text{stat}) \pm 1.3(\text{syst})) \times 10^{-3}$ $\bar{A}_T(D^0) = (-75.5 \pm 4.1(\text{stat}) \pm 1.2(\text{syst})) \times 10^{-3}$

FSI Effects

Resonant structure in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

- Clear evidence for φ and ρ resonances
- Significant difference in the distributions vs C_T
- Visible effects in angular variables as well
- $D^0 \rightarrow K^0 {}_{S}K^+K^-$ removed by $\pi^+\pi^$ invariant mass cut

Resonant structure

An Almost Systematic Free Measurement

Reconstruction Efficiency \odot

Does not affect at all the result: A_T and A
_T asymmetries are calculated separately on the same final state

Particle Identification 😳

• The same considerations apply to particle identification

C_T Resolution ⊗

• Estimated accurately from Monte Carlo, almost cancels in *a*_{CP}^{Todd}

Peaking Backgrounds under D⁰/D⁰ signal &

Any contamination affects the asymmetry as A→A(1 - f) + f A^d
 very small effect
 f - contamination fraction; A^d - asymmetry of the contamination sample

Flavour Mistag &

• Considering the events with flavour mistag as a contamination $a_{CP}^{T-odd} \rightarrow a_{CP}^{T-odd} - \Delta \omega/2(A_T + \overline{A}_T)$ $\Delta \omega = \omega^+ - \omega^- - \omega^-$ difference among the mistag probabilities, measured from control samples $B \rightarrow D^{*+} \mu^- X$, $(D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^+ K^- \pi^+ \pi^-)$; $B \rightarrow D^0 \mu^- X (D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-)$

Detector bias &

• Conservative estimate from control sample of CF $D^0 \rightarrow K^- \pi^+ \pi^- \pi^-$

LHCb Results

Systematics

Systematic uncertainty estimates

Contribution	$\Delta A_T(\%)$	$\Delta ar{A}_T(\%)$	$\Delta a_{C\!P}^{T ext{-odd}}(\%)$
Prompt background	± 0.09	± 0.08	± 0.00
Detector bias	± 0.04	± 0.04	± 0.04
C_T resolution	± 0.02	± 0.03	± 0.01
Fit Model	± 0.01	± 0.01	± 0.01
Flavor misidentification	± 0.08	± 0.07	± 0.00
Total	± 0.13	± 0.12	± 0.04

LHCb Summary

Three approaches

- *CPV* is searched for in $D^0 \rightarrow K^+K^-\pi^+\pi^-$ using:
 - 1. A measurement integrated over the phase space
 - 2. Measurements in different regions of the phase space
 - **3**. Measurements as a function of the D^0 decay time

Results

- No CPV found
- Nevertheless, a lot of interesting information in the phase space of the decay, with local A_T asymmetries up to 30%

These results are interpreted as possible effects of FSI produced by the rich resonant structure of the decay

• *a_{CP}^{Todd}* measured for the first time in bins of *D*⁰ decay time

Remarks

Systematic uncertainties are found to be very small (as expected) in these observables

High statistics control samples, toy studies

Theoretical reinterpretation

- A recent paper by A. Bevan reinterprets the asymmetries outlined before and suggests describing them as *C*, *P*, and *CP* asymmetries
- A_T interpreted as a *P*-odd (*A_P*) rather than *T*-odd observable since time-reversal test is not possible

$$P(C_T) = P(\vec{p}_{K^+} \cdot \vec{p}_{\pi^+} \times \vec{p}_{\pi^-}) = -\vec{p}_{K^+} \cdot \vec{p}_{\pi^+} \times \vec{p}_{\pi^-} = -C_T$$

Assuming

$$\Gamma_{+} = \Gamma(C_{T} > 0) \qquad \qquad \bar{\Gamma}_{+} = \bar{\Gamma}(\overline{C}_{T} > 0) \\ \Gamma_{-} = \Gamma(C_{T} < 0) \qquad \qquad \bar{\Gamma}_{-} = \bar{\Gamma}(\overline{C}_{T} < 0)$$

One gets

$$A_P = \frac{\Gamma_+ - \Gamma_-}{\Gamma_+ + \Gamma_-}; \quad \bar{A}_P = \frac{\bar{\Gamma}_+ - \bar{\Gamma}_-}{\bar{\Gamma}_+ + \bar{\Gamma}_-}$$

Considering that C(A_P) = Ā_P and CP(A_P) = -Ā_P the following asymmetries testing C and CP can be extracted

$$a_{C}^{P} = \frac{1}{2} \left(A_{P} - \bar{A}_{P} \right) \qquad a_{CP}^{P} = \frac{1}{2} \left(A_{P} + \bar{A}_{P} \right) = a_{CP}^{T - \text{odd}}$$

More Asymmetries

 $CP(A_c) = -\overline{A}_c$

Same exercise for C operator

• One observes that $C(C_T) = \overline{C}_T$

$$C(C_T) = C(\vec{p}_{K^+} \cdot \vec{p}_{\pi^+} \times \vec{p}_{\pi^-}) = \vec{p}_{K^-} \cdot \vec{p}_{\pi^-} \times \vec{p}_{\pi^+} = \bar{C}_T$$

$$A_C = \frac{\Gamma_- - \Gamma_-}{\bar{\Gamma}_- + \Gamma_-}; \quad \bar{A}_C = \frac{\Gamma_+ - \Gamma_+}{\bar{\Gamma}_+ + \Gamma_-};$$

 $a_P^C = \frac{1}{2} \left(A_C - \bar{A}_C \right) \qquad a_{CP}^C = \frac{1}{2} \left(A_C + \bar{A}_C \right)$

 $P(A_C) = \overline{A}_C$

...and for CP

$$CP(C_{T}) = CP(\vec{p}_{K^{+}} \cdot \vec{p}_{\pi^{+}} \times \vec{p}_{\pi^{-}}) = -\vec{p}_{K^{-}} \cdot \vec{p}_{\pi^{-}} \times \vec{p}_{\pi^{+}} = -\bar{C}_{T}$$

$$A_{CP} = \frac{\bar{\Gamma}_{+} - \Gamma_{-}}{\bar{\Gamma}_{+} + \Gamma_{-}}; \quad \bar{A}_{CP} = \frac{\bar{\Gamma}_{-} - \Gamma_{+}}{\bar{\Gamma}_{-} + \Gamma_{+}}$$

$$P(A_{CP}) = \bar{A}_{CP} \quad a_{P}^{CP} = \frac{1}{2} \left(A_{CP} - \bar{A}_{CP} \right) \quad a_{C}^{CP} = \frac{1}{2} \left(A_{CP} + \bar{A}_{CP} \right) \quad C(A_{CP}) = -\bar{A}_{CP}$$

Extraction of the asymmetries

• BaBar data from $D^0 \rightarrow K^+K^-\pi^+\pi^-$, $D_{(s)}^+ \rightarrow K^0{}_SK^+\pi^+\pi^-$ used to extract all the asymmetries

del Amo Sanchez et al., Phys. Rev. D81 (2010) 111103(R) Lees et al., Phys. Rev. D84 (2011) 031103(R)

• A_T and \overline{A}_T translated to yields

$$\Gamma_{+} = N_{D^{0}} (1 + A_{P}) \qquad \bar{\Gamma}_{+} = N_{\bar{D}^{0}} (1 - \bar{A}_{P}) \Gamma_{-} = N_{D^{0}} (1 - A_{P}) \qquad \bar{\Gamma}_{-} = N_{\bar{D}^{0}} (1 + \bar{A}_{P})$$

 Systematic uncertainties propagated by assuming them to be Gaussian-distributed

Original Analysis of BaBar $D^0{\longrightarrow}K^+K^-\pi^+\pi^-$

The 2010 analysis

- Prompt $D^{*+} \rightarrow D^0 \pi^+$ decays
- 2D fit to m(K⁺K⁻π⁺π⁻) and Δm= m(K⁺K⁻π⁺π⁻π_s⁺)-m(K⁺K⁻π⁺π⁻)
- N_{ev} = 47k
- Most important systematic uncertainties from particle identification and selection criteria in general
- Asymmetries:

 $A_T(D^0) = (-68.5 \pm 7.3_{\text{stat}} \pm 5.8_{\text{syst}}) \times 10^{-3}$ $\bar{A}_T(\bar{D}^0) = (-70.5 \pm 7.3_{\text{stat}} \pm 3.9_{\text{syst}}) \times 10^{-3}$ $a_{CP}^{T-\text{odd}}(D^0) = (1.0 \pm 5.1_{\text{stat}} \pm 4.4_{\text{syst}}) \times 10^{-3}$

del Amo Sanchez et al., Phys. Rev. D81 (2010) 111103(R)

 $D^0 \longrightarrow K^+ K^- \pi^+ \pi$

Analysis of BaBar $D_{(s)}^+ \rightarrow K^0{}_{s}K^+\pi^+\pi^-$

Original analysis

- About 20(30)k $D_{(s)}^+$ decays reconstructed
- One-dimensional fit
- Main systematics from PID and selection criteria

Event Rates

• Event rates exacted from the fit results on the asymmetries

Event rate	D^0	D^+	D_s^+
Γ_+	10974 ± 117	5406 ± 136	6792 ± 135
Γ_{-}	12587 ± 125	5287 ± 131	8287 ± 153
$\overline{\Gamma}_+$	12380 ± 124	5073 ± 104	7886 ± 121
$\overline{\Gamma}_{-}$	10749 ± 116	5443 ± 111	6826 ± 107

Extraction of the systematic uncertainties

- Systematic uncertainties assumed to be Gaussian
- The uncertainty on the event rates are then extracted from the ones on the asymmetries
- In addition three other sources of uncertainty have been considered:
 - Slow-pion tag asymmetry (for A_c and A_{CP} negligible) [D⁰]
 - Neutral Kaon regeneration and interference (5-6x10⁻⁴ from $D^+ \rightarrow K^0 sh^+$) $[D_{(s)}^+]$
 - K^+/K^- interaction with detector material (affects A_c and A_{CP} , $5x10^{-3}$) $[D_{(s)}^+]$

BaBar Results

23

Maurizio Martinelli - CPV in Charm using Triple Products Asymmetries | 11.09.2014

Results of the Reanalysis

All the asymmetries

- Possible effects of FSI
- Observation of *P* and *C* violation
- No CPV

Asymmetry	$D^0 ightarrow K^+ K^- \pi^+ \pi^-$	$D^+ ightarrow K^0_{\scriptscriptstyle S} K^+ \pi^+ \pi^-$	$D_s^+ ightarrow K_S^0 K^+ \pi^+ \pi^-$
	$-0.069 \pm 0.007 \pm 0.006$ (7.5)	$0.011 \pm 0.014 \pm 0.006 (0.7)$	$-0.099 \pm 0.011 \pm 0.008 (7.3)$
\overline{A}_{P} , FSI \overline{A}_{P}	$0.071 \pm 0.007 \pm 0.004$ (8.8)	$-0.035 \pm 0.014 \pm 0.007$ (2.2)	$0.072 \pm 0.011 \pm 0.011$ (4.6)
$\mathcal{L}, FS a^P_C$	$-0.070\pm 0.005\pm 0.001(13.5)$	$0.023 \pm 0.011 \pm 0.002$ (2.1)	$-0.086 \pm 0.009 \pm 0.002$ (9.3)
a_{CP}^P	$0.001 \pm 0.005 \pm 0.004 (0.2)$	$-0.012\pm0.010\pm0.005(1.1)$	$-0.014 \pm 0.008 \pm 0.003$ (1.6)
\mathcal{C} A_C	$0.060 \pm 0.007 \pm 0.001$ (8.3)	$-0.026 \pm 0.016 \pm 0.005$ (1.6)	$0.080 \pm 0.013 \pm 0.005 (5.7)$
\mathcal{L} \overline{A}_C	$-0.079 \pm 0.007 \pm 0.001$ (10.8)	$0.020 \pm 0.016 \pm 0.005$ (1.2)	$-0.092 \pm 0.012 \pm 0.005$ (7.1)
	$0.070 \pm 0.005 \pm 0.001 (13.5)$	$-0.023 \pm 0.011 \pm 0.002$ (2.1)	$0.086 \pm 0.009 \pm 0.002$ (9.3)
$a_{C\!P}^C$	$-0.009 \pm 0.005 \pm 0.000$ (1.8)	$-0.004 \pm 0.011 \pm 0.010$ (0.3)	$-0.006 \pm 0.009 \pm 0.010$ (0.4)
A_{CP}	$-0.008 \pm 0.007 \pm 0.004$ (1.0)	$-0.016\pm0.016\pm0.008(0.9)$	$-0.020\pm0.012\pm0.008(1.4)$
$\overline{A}_{C\!P}$	$-0.010 \pm 0.008 \pm 0.004$ (1.1)	$0.008 \pm 0.016 \pm 0.008 (0.5)$	$0.008 \pm 0.013 \pm 0.009 (0.5)$
a_P^{CP}	$0.001 \pm 0.005 \pm 0.004 (0.2)$	$-0.012 \pm 0.011 \pm 0.006$ (1.0)	$-0.014\pm0.009\pm0.006(1.3)$
a_C^{CP}	$-0.009 \pm 0.005 \pm 0.000$ (1.8)	$-0.004\pm0.011\pm0.010(0.3)$	$-0.006\pm0.009\pm0.010(0.4)$

BaBar Preliminary

Tests of C, P and CP violation

- Exploited all the information from *T*-odd correlations in 4-body *D*_(s) decays
- D⁰→K⁺K⁻π⁺π⁻ (CS), D⁺→K⁺K⁰_Sπ⁺π⁻ (CS), D_s⁺→K⁺K⁰_Sπ⁺π⁻ (CF) decays are studied
- No evidence of *CP* violation from the tests performed
- No evidence of C or P violation from the tests performed on D⁺
- Significant deviation from 0 is found for some tests in *D*⁰ and *D*_s⁺
- These results are interpreted as observation of *C* and *P* violation in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ and $D_s^+ \rightarrow K^+ K^0 s \pi^+ \pi^-$ decays

Conclusions

Alternative and Complementary Tests

- Searches for CPV through asymmetries in *T*-odd moments are alternative and complementary to "standard" CPV measurements
- *T*-odd moments can be used for studying *P* and *C* symmetries as well
- Applicable to many possible particle decays

Low Systematics

Previous analysis have demonstrated that the systematic uncertainties are very small

Outlook

 Given the very low systematic uncertainties, such measurements could become extremely competitive at LHCb (10fb⁻¹) or future experiments (Belle-II, LHCb Upgrade,...)

