

Measurement of CP Violation in $B_s \to J/\psi \, \phi$

JACOPO PAZZINI¹

ON BEHALF OF THE CMS COLLABORATION

1 PADOVA UNIVERSITY & INFN

EN NF

CP-VIOLATION IN $B_S \rightarrow J/\psi \, \phi$ DECAYS

- lacksquare B_s mesons mix via box diagrams with relatively large decay width difference ($\Delta\Gamma_s$) between the two mass eigenstates
- lacksquare Final state of the B_s ightarrow J/ ψ ϕ decay is un-flavoured and therefore accessible by both B_s and \overline{B}_s

The weak phase ϕ_s arises from the quantum interference between direct and mixing-mediated decays

$$\phi_{ extsf{S}}\simeq -2eta_{ extsf{S}}$$
 , $eta_{ extsf{S}}= ext{arg}(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$ $2eta_{ extsf{S}}=0.0363_{-0.0015}^{+0.0016}$ rad in the SM

- Theoretically clean decay channel with precise SM predictions [PRD 84, 033005 (2011)]
- lacksquare Sensitive to New Physics in mixing o many NP scenarios predict enhanced values of $\phi_{ extsf{S}}$

$$\phi_{s} = \phi_{s}^{SM} + \Delta \phi \qquad \qquad \Delta \phi = arg(M_{12}/M_{12}^{SM}) \tag{1}$$

$\mathsf{B}_\mathsf{S}\! o \mathsf{J}/\psi\,\phi$ analysis

- Experimentally clean fully renconstructed ($\mu^+\mu^-K^+K^-$) final state, with low background
- Two vector mesons final state: mixture of CP-even and CP-odd states
- Tagged angular analysis to disentangle the two CP components

$$\frac{d^{4}\Gamma(\mathsf{B}_{\mathsf{s}})}{d\Theta dt} = X(\Theta, \alpha, t) = \sum_{i=1}^{10} \frac{O_{i}(\alpha, t) \cdot g_{i}(\Theta)}{O_{i}(\alpha, t) \cdot g_{i}(\Theta)}$$

- \blacksquare Θ \rightarrow decay angles defined in the transversity basis
 - $\triangleright (\theta_{\mathsf{T}}, \varphi_{\mathsf{T}}, \psi_{\mathsf{T}})$
- $t \rightarrow B_s$ proper decay time
- lacksquare $\alpha
 ightarrow$ physics parameters to be determined

$$\triangleright \phi_{s}, \Delta\Gamma_{s}, c\tau, |A_{0}|^{2}, |A_{S}|^{2}, |A_{\perp}|^{2}, \delta_{\parallel}, \delta_{S\perp}, \delta_{\perp}$$

- O_i → time dependent functions
 - $\, \triangleright \, b_i, \, d_i \, {\sf terms} \, {\sf dependent} \, {\sf to} \, {\sf cos} \, \phi_{\sf S} \, {\sf and} \, {\sf sin} \, \phi_{\sf S}$

$$O_i(lpha,t) \propto e^{-\Gamma_{\rm S}t} \left[a_i \cosh(rac{1}{2}\Delta\Gamma_{
m S}t) + b_i \sinh(rac{1}{2}\Delta\Gamma_{
m S}t) + c_i \cos(\Delta m_{
m S}t) + d_i \sin(\Delta m_{
m S}t)
ight]$$

- Opposite side tagger used to infer the B_s flavour at production time
 - ightharpoonup Modify c_i , d_i terms to take into account the tagger response

RECONSTRUCTION AND EVENT SELECTION

- Displaced vertex di-muon trigger $(J/\psi \rightarrow \mu^+\mu^-)$
- lacksquare $p_{\mathrm{T}}\left(\mu
 ight) > 4\,\mathrm{GeV},\,p_{\mathrm{T}}\left(\mu\mu
 ight) > 7\,\mathrm{GeV}$
- ullet $ig| \mathsf{M}_{\mu\mu} \mathsf{M}_{\mathsf{J}/\psi}^{\mathsf{PDG}} ig| < 150\,\mathsf{MeV}$
- $ho_{T}(K) > 0.7 \, \text{GeV}$, at least 5 tracker hits
- ullet $ig| \mathsf{M}_\mathsf{KK} \mathsf{M}_\phi^\mathsf{PDG} ig| < 10 \, \mathsf{MeV}$
- Kinematic fit to the 4 track vertex ($\mu^+\mu^-\text{K}^+\text{K}^-$) candidate
 - $\triangleright uu$ mass contstrained to J/ψ
 - $\nearrow \chi^2$ -probability > 2%
- Fit ranges:
 - ▷ B_s candidate proper decay length [0.02, 0.3] cm

20 fb $^{-1}$ at 8 TeV (full 2012 dataset) $N^{sig}~(B_s) \sim 49000$ $N^{bkg} \sim 21000$ $S/B \approx 6.8~in~[5.33-5.40]~GeV$

EFFICIENCIES AND RESOLUTIONS

Key elements for the $\phi_s/\Delta\Gamma_s$ measurement: resolution and efficiency modeling for proper time and Θ .

- Angular efficiency:
 - ightharpoonup Evaluated using MC simulations, parametrized with a 3D function of decay angles $\varepsilon(\Theta) = \varepsilon(\cos\theta_{\mathsf{T}},\cos\psi_{\mathsf{T}},\phi_{\mathsf{T}})$ in order to take into account the angular cross terms
- Angular resolution:
 - > From MC. Not included in the fit model but considered as systematic uncertainty

- Proper time efficiency:
 - ▷ From MC and cross-checked in data. Flat in the fitting range [0.02, 0.3] cm, variations included as systematic uncertainties

PROPER DECAY TIME RESOLUTION

- Estimated on a per-event basis from the B_s decay vertex proper time uncertainty, scaled by a κ ($c\tau$) factor to take into account the differences wrt the resolution
 - \triangleright Cross checked with a prompt J/ ψ sample
 - \triangleright B_s proper decay length resolution \sim 21 μ m (70 fs)

FLAVOUR TAGGING

- \blacksquare B_s flavour can be inferred from the *other* B meson in the event ($b\bar{b}$ pair production)
- The charge of the Opposite Side leptons (e, μ) tags the B_s flavour under the assumption of direct semileptonic b $\to \ell$ X decay
- Dilution of the tagger (mistag) is induced by
 - ightharpoonup Sequential b ightharpoonup c X ightharpoonup decays

 - \triangleright Leptons arising from other sources (K- π DIF, c $\rightarrow \ell$ X, . . .)
- Tagging perfomances optimized by maximizing the tagging power $\mathcal{P}_{tag} = \varepsilon_{tag} (1 2\omega)$

Tagging efficiency: $\varepsilon_{tag} = N^{tag}/N^{B_s}$ Mistag fraction: $\omega = N^{wrong-tag}/N^{tag}$

- Tagger performances measured with B⁺ \to J/ ψ K⁺ data, and validated with B⁺ \to J/ ψ K⁺ and B_s \to J/ ψ ϕ simulated events
- \blacksquare Mistag fractions are parametrized as functions of p_T for both muons and electrons

FLAVOUR TAGGING

[%]	Muons	Electrons	Combined
ε_{tag}	$4.55 \pm 0.03 \pm 0.08$	$3.26 \pm 0.02 \pm 0.01$	$\textbf{7.67} \pm \textbf{0.04}$
ω	$30.7 \pm 0.4 \pm 0.7$	$34.8 \pm 0.3 \pm 1.0$	$\textbf{32.2} \pm \textbf{0.2}$
\mathcal{P}_{tag}	$0.68 \pm 0.03 \pm 0.05$	$0.30 \pm 0.02 \pm 0.04$	$\boldsymbol{0.97 \pm 0.04}$

- Tagging performances tested with $B^0 \rightarrow J/\psi K^*$ data
 - ightharpoonup Same J/ ψ triggers as for B_s

$$A_{\text{mix}}^{\text{signal}} = \frac{N_{\text{unmixed}} - N_{\text{mixed}}}{N_{\text{unmixed}} + N_{\text{mixed}}}$$

■ B^0 oscillation \Rightarrow seen

LIKELIHOOD AND FIT RESULTS

- Extended maximum likelihood fit applied

 - \triangleright Gaussian constraint on Δm_s to the PDG value 17.69 \pm 0.08 \hbar/ps

$$\mathcal{L} = L_{sig} + L_{bkg}$$

$$L_{sig} = N_{sig} \cdot [X(\Theta, t; \alpha) \otimes G(t, \sigma_t) \cdot \varepsilon(\Theta)] \cdot P_{sig}(m_{\mathsf{B}_{\mathsf{S}}}) \cdot P_{sig}(\sigma t) \cdot P_{sig}(\xi)$$

$$L_{bkg} = N_{bkg} \cdot P_{bkg}(\cos \theta_{\mathsf{T}}, \varphi_{\mathsf{T}}) \cdot P_{bkg}(\cos \psi_{\mathsf{T}}) \cdot P_{bkg}(t) \cdot P_{bkg}(m_{\mathsf{B}_{\mathsf{S}}}) \cdot P_{bkg}(\sigma t) \cdot P_{bkg}(\xi)$$

 \blacksquare Bs mass range [5.24, 5.49] GeV; proper time range [0.02, 0.3] cm

Parameter	Fit result			
$ A_0 ^2$	0.511 ± 0.006			
$ A_{\rm S} ^2$	$\textbf{0.015} \pm \textbf{0.016}$			
$ A_{\perp} ^2$	0.242 ± 0.008			
δ_{\parallel}	$3.48\pm0.09\text{rad}$			
$\delta_{S\perp}^{''}$	$0.34 \pm 0.24\text{rad}$			
δ_{\perp}	$2.73\pm0.36\text{rad}$			
Cτ	447.3 \pm 3.0 μ m			
$\Delta\!\Gamma_{ extsf{s}}$	$0.096\pm0.014\mathrm{ps^{-1}}$			
$\phi_\mathtt{S}$	$-0.03\pm0.11\text{rad}$			

SYSTEMATIC UNCERTAINTIES

Source	$ A_0 ^2$	$ A_S ^2$	$ A_{\perp} ^2$	$\Delta\Gamma_{s}$ [ps ⁻¹]	δ_{\parallel} [rad]	$\delta_{S\perp}$ [rad]	δ_{\perp} [rad]	ϕ_s [rad]	cτ [μm]
2					11		,		
Statistical uncertainty	0.0058	0.016	0.0077	0.0138	0.092	0.24	0.36	0.109	3.0
Proper time efficiency	0.0015	-	0.0023	0.0057	-	-	-	0.002	1.0
Angular efficiency (*)	0.0060	0.008	0.0104	0.0021	0.674	0.14	0.66	0.016	8.0
Model bias (**)	0.0008	-	-	0.0012	0.025	0.03	-	0.015	0.4
Proper time resolution	0.0009	-	0.0008	0.0021	0.004	-	0.02	0.006	2.9
Background mistag modelling	0.0021	-	0.0013	0.0018	0.074	1.10	0.02	0.002	0.7
Flavour tagging	-	-	-	-	-	-	0.02	0.005	-
PDF modelling	0.0016	0.002	0.0021	0.0021	0.010	0.03	0.04	0.006	0.2
Free $ \lambda $ fit (***)	0.0001	0.005	0.0001	0.0003	0.002	0.01	0.03	0.015	-
Kaon p _T re-weighting (****)	0.0094	0.020	0.0041	0.0015	0.085	0.11	0.02	0.014	1.1
Total systematics	0.0116	0.022	0.0117	0.0073	0.684	1.12	0.66	0.032	3.5

- (*) evaluated from the statistical uncertainty of the model
- (**) determined from toy MC bias tests
- (***) let $|\lambda|$ as a free parameter in the fit
- (****) propagated from discrepancy between data and simulations

CMS 2012 data (20 fb^{-1}) results:

$$\phi_{ extsf{s}} = -0.03 \pm 0.11 \pm 0.03 ext{ rad} \ \Delta \Gamma_{ extsf{s}} = 0.096 \pm 0.014 \pm 0.007 ext{ ps}^{-1}$$

 $\Delta\Gamma_{\text{s}}$ confirmed to be non-zero

Measurement precision still dominated by statistical uncertainty

RESULTS COMPARISON

Conclusions

- First CMS measurement of ϕ_s and $\Delta\Gamma_s$ from a time-dependent angular analysis of the $B_s \to J/\psi \, \phi$ decay using the full 2012 dataset (20 fb⁻¹, corresponding to 49k B_s signal events)
- Tagged signal model introduced in the final fit: $\mathcal{P}_{tag} = (0.97 \pm 0.04) \%$

$$\phi_{\rm S} = -0.03 \pm 0.11 ({\rm stat.}) \pm 0.03 ({\rm syst.}) \ {\rm rad}$$

$$\Delta \Gamma_{\rm S} = 0.096 \pm 0.014 ({\rm stat.}) \pm 0.007 ({\rm syst.}) \ {\rm ps}^{-1}$$

- ΔΓ_s is confirmed to be non-zero
- Accurate and compentitive results in agreement with the Standard Model and the HFAG world average
- Results still dominated by the statistical uncertainties

 - Looking forward to the start of the LHC Run2
- Reference: CMS PAS BPH-13-012

BACKUP

FIT MODEL DETAILS

$$\frac{\textit{d}^{4}\Gamma(B_{s})}{\textit{d}\Theta\textit{dct}} = \textit{X}(\Theta,\alpha,\textit{ct}) \propto \sum_{i=1}^{10}\textit{O}_{i}(\alpha,\textit{ct}) \cdot \textit{g}_{i}(\Theta)$$

$$O_i(\alpha,\textit{ct}) = \textit{N}_i e^{-\textit{ct}/\textit{c}\tau} \left[a_i \cosh(\frac{1}{2}\Delta\Gamma_{\textit{s}}\textit{ct}) + b_i \sinh(\frac{1}{2}\Delta\Gamma_{\textit{s}}\textit{ct}) + c_i \cos(\Delta\textit{m}_{\textit{s}}\textit{ct}) + d_i \sin(\Delta\textit{m}_{\textit{s}}\textit{ct}) \right]$$

i	$g_i(\theta_T, \psi_T, \varphi_T)$	N _i	a _i	bj	c _i	dį
1	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\varphi_T)$	$ A_0(0) ^2$	1	D	С	-S
2	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \varphi_T)$	$ A_{ }(0) ^2$	1	D	С	-S
3	$\sin^2 \psi_T \sin^2 \theta_T$	$ A_{\perp}^{"}(0) ^2$	1	-D	С	s
4	$-\sin^2 \psi_T \sin 2\theta_T \sin \varphi_T$	$ A_{ }(0) A_{\perp}(0) $	$C \sin(\delta_{\perp} - \delta_{\parallel})$	$S\cos(\delta_{\perp} - \delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{\sqrt{2}} \sin 2\psi_T \sin^2 \theta_T \sin 2\varphi_T$	$ A_0(0) A_{\parallel}(0) $	$\cos(\delta_{\parallel} - \delta_0)$	$D\cos(\delta_{\parallel} - \delta_0)$	$C\cos(\delta_{\parallel} - \delta_0)$	$-S\cos(\delta_{\parallel}-\delta_{0})$
6	$\frac{1}{\sqrt{2}} \sin 2\psi_T \sin 2\theta_T \sin \varphi_T$	$ A_0(0) A_\perp(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$\frac{2}{3}(1-\sin^2\theta_T\cos^2\varphi_T)$	$ A_{S}(0) ^{2}$	1	-D	С	s
8	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\varphi_T$	$ A_{S}(0) A_{ }(0) $	$C\cos(\delta_{ } - \delta_{S})$	$S\sin(\delta_{\parallel}-\delta_{S})$	$cos(\delta_{ } - \delta_{S})$	$D\sin(\delta_{\parallel} - \delta_{S})$
9	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\varphi_T$	$ A_{S}(0) A_{\perp}(0) $	$sin(\delta_{\perp} - \delta_{S})$	$-D\sin(\delta_{\perp} - \delta_{S})$	$C \sin(\delta_{\perp} - \delta_{S})$	$S\sin(\delta_{\perp} - \delta_{S})$
10	$\frac{4}{3}\sqrt{3}\cos\psi_T(1-\sin^2\theta_T\cos^2\varphi_T)$	$ A_{\mathcal{S}}(0) A_{0}(0) $	$C\cos(\delta_0 - \delta_S)$	$S\sin(\delta_0-\delta_S)$	$\cos(\delta_0 - \delta_S)$	$D\sin(\delta_0 - \delta_S)$
	$C = \frac{1 - \lambda ^2}{1 + \lambda ^2},$	S = -	$\frac{2 \lambda \sin\phi_{\rm s}}{1+ \lambda ^2}$	$D = \frac{1}{2}$	$\frac{2 \lambda \cos\phi_s}{ \lambda }$	
	$1+ \lambda ^2$	_	$1+ \lambda ^2$		$\frac{1}{1+ \lambda ^2}$	

- ullet $|\lambda|$ includes possible contributions from CP violation in direct decay
 - $hinspace Assuming |\lambda| = 1 o ext{ the variation of } |\lambda| ext{ is considered as a systematic uncertainty}$
- \blacksquare $\Delta\Gamma_{\text{S}}>0$ using LHCb results [PRL 108, 241801 (2012)] which resolved the $\Delta\Gamma_{\text{S}}$ sign ambiguity

FLAVOUR TAGGING IN THE FIT MODEL

The c_i and d_i terms of the O_i time dependent functions are modified according to the flavour tagging response

$$\begin{split} O_i(\alpha, ct) &= \textit{N}_i e^{-\textit{ct/cT}} [\textit{a}_i \cosh(\frac{1}{2} \Delta \Gamma_{\text{S}} \textit{ct}) + \textit{b}_i \sinh(\frac{1}{2} \Delta \Gamma_{\text{S}} \textit{ct}) + \\ & \textit{c}_i \xi (1 - 2\omega) \cos(\Delta \textit{m}_{\text{S}} \textit{ct}) + \textit{d}_i \xi (1 - 2\omega) \sin(\Delta \textit{m}_{\text{S}} \textit{ct})] \end{split}$$

- lacksquare ξ is the tag decision, based on the charge of the lepton:
 - \triangleright 0 \rightarrow untagged
 - \triangleright +1 \rightarrow B_s tagged
 - $ightarrow -1
 ightarrow \overline{B}_s$ tagged
- $m\omega$ is the mistag fraction evaluated as a function of the lepton tranverse momentum: $\omega=\omega$ $(m
 ho_{
 m T}^\ell)$

LIKELIHOOD AND PDFS

$$\mathcal{L} = \mathcal{L}_{sig} + \mathcal{L}_{bkg}$$

$$\mathcal{L}_{sig} = \mathcal{N}_{sig} \cdot [X(\Theta, ct; \alpha) \otimes G(ct, \sigma_{ct}) \cdot \varepsilon(\Theta)] \cdot P_{sig}(m_{B_s}) \cdot P_{sig}(\sigma_{ct}) \cdot P_{sig}(\xi)$$

$$\mathcal{L}_{bkg} = \mathcal{N}_{bkg} \cdot P_{bkg}(\cos \theta_T, \phi_T) \cdot P_{bkg}(\cos \psi_T) \cdot P_{bkg}(ct) \cdot P_{bkg}(m_{B_s}) \cdot P_{bkg}(\sigma_{ct}) \cdot P_{bkg}(\xi)$$

- G (ct, σ_{ct}): gaussian resolution function, which makes use of the per-event proper decay length uncertainty σ (ct) scaled by a factor κ (ct)
- lacksquare $\epsilon\left(\Theta\right)=\epsilon\left(\cos heta_{\mathrm{T}},\cos\psi_{\mathrm{T}},\phi_{\mathrm{T}}
 ight)$: 3-dimensional angular efficiency
- lacksquare $P_{sig}\left(\mathit{m}_{\mathsf{B}_{\mathsf{S}}}\right)$: B_{S} mass signal PDF o triple gaussian with common mean
- $lackbox{P}_{sig}\left(\sigma_{ exttt{ct}}
 ight)$: proper decay length uncertainty signal PDF ightarrow sum of two Gamma functions
- lacksquare $P_{sig}\left(\xi
 ight)$: signal tag decision obtained from data
- P_{bkg} (cos θ_T , φ_T) and P_{bkg} (cos ψ_T): angular background PDFs \to Legendre polynomials for cos θ_T and cos ψ_T and sinusoidal functions for φ_T . A 2-dimensional PDF is used for cos θ_T and φ_T to take into account the correlations
- P_{bkg} (ct): proper decay length background PDF \rightarrow sum of two exponential functions
- lacksquare $P_{bkg}(m_{B_s})$: B_s mass background PDF ightarrow single exponential
- $lacksquare P_{bkg}\left(\sigma_{\mathrm{ct}}
 ight)$: proper decay length uncertainty background PDF ightarrow single Gamma function
- lacksquare $P_{bkg}\left(\xi
 ight)$: background tag decision obtained from data

DETAILS ABOUT SYSTEMATICS

- Proper time efficiency: fitting the data with a proper decay length efficiency which takes into account a small contribution of the decay length significance cut at small ct and a first order polynomial variations at high ct
- Angular efficiency: propagated the statistical uncertainty of the angular efficiency parameters to the physics observables
- Fit model: reported the bias of the pulls that were measured using toy MC pseudo-experiments
- Proper decay time resolution (κ factor): varied the κ (ct) factors within their stat. errors; the difference with respect to the nominal fit is investigated, and one standard deviation of the obtained distribution is taken as the systematic uncertainty
 - ightharpoonup Difference of κ (ct) in simulation and a prompt J/ ψ data sample is also studied
- BG mistag modelling: no background PDF for ω. Systematic estimated by generating simulated pseudo-experiments with different mistag distributions for signal and background and fitting them with the nominal fit
- Flavour tagging: systematic and statistical tagging uncertainties propagated to the physics observables uncertainty
- PDF modelling assumptions: all the systematics due to the assumption on the PDF model are evaluated with toy MC pseudo-experiments
- Kaon p_T re-weighting: small discrepancy in the kaon p_T spectrum between data and simulations \rightarrow syst. evaluated by re-weighting the simulated kaon p_T spectrum to agree with the data
- $|\lambda| = 1$ assumption: tested by leaving $|\lambda|$ free in the fit $\Rightarrow |\lambda|$ from fit agrees with 1 within one σ . The differences found in the fit results with respect to the nominal fit are used as systematic uncertainties

LHC schedule beyond LS1

CMS UPGRADE PLANS

Tracker upgrade → Phase 1

- Pixel detector will be replaced
- One additional layer, closer to the beampipe ⇒ improved track resolution and efficiency
- New readout chip ⇒ better efficiency to high rate / high PU

Less material, new cooling, new powering scheme, ...

Substantial improvement for low-momentum tracks

TRIGGER UPGRADE → PHASE 1

- New electronics (based on Virtex7 FPGAs) for all the trigger sub-systems: Calorimeter, Muon, Global
- Improved algorithms for PU mitigation and isolation
- Trigger inputs split to allow full commissioning of the new trigger in parallel with the operating legacy system

Figure: Muon trigger

- Muon system:

 - $\,\,\vartriangleright\,\,$ Improvement of $p_{\rm T}$ assignment with new LUTs at track-finding level

Muon system upgrade \rightarrow Phase 2

- Improve trigger and and performances + provide redundancy
 - ightharpoonup Complete muon stations in the 1.6 $< |\eta| <$ 2.4 region
 - ▶ Add GEM detectors in first 2 stations \Rightarrow increase p_T resolution
 - ▷ Add RPCs in last 2 stations ⇒ improve timing resolution to reduce background
- Considering increase of the muon coverage to $2.2 < |\eta| < 4.0$ with one GEM tagging station (ME0) coupled with the extended pixel tracker

1.0 R (m) 1.2 33.5* CSC RPC 1.3 30.5* Wheel 0 Wheel 1 14 27 70 1.5 25.2° 1.6 22.8° RB2 1.7 20.7° 1.9 17.0° 2.1 14.0° 2.2 12.6° 2.3 11.5° HCAL 2.4 10.4° 2.5 9.4° ECAL 3.0 5.7° 40 210 5.0 0.77° 12 z (m)

Example of single μ trigger rate reduction with GEM1/1 station

TRACKER UPGRADE → PHASE 2

- Inner tracker
 - ▷ Pixel tracker with similar configuration (4 layers) as Phase 1
 - \triangleright Thin (100 μ m) sensors with small (30 \times 100 μ m) pixels
- Outer tracker

 - ightharpoonup Two closely-spaced sensors readout by one same front-end 40 MHz [" p_{T} -modules"]
 - 2S (Strip-Strip) p_T-modules
 - ► SP (Strip-Pixel) p_T-modules
- Tracks inputs to L1 trigger ⇒ tracking trigger

- Clear p_T resolution improvements
- Matching muon with tracking trigger inputs at L1 trigger
 - \triangleright Improved precision of p_T measurement
 - ▶ Large rate reduction without increasing the trigger thresholds

